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Abstract: Brittle failure mechanisms can affect the seismic performance of structures composed
of intersecting moment resisting frames, if the biaxial effects are not considered. In this research,
the bidirectional cyclic response of H-columns with weak-axis moment connections was studied using
numerical models. Several configurations of joints with bidirectional effects and variable axial loads
were studied using the finite element method (FEM) in ANSYS v17.2 software. The results obtained
showed a ductile behavior when cyclic loads are applied. No evidence of brittle failure mechanisms
in the studied joint configurations was observed, in line with the design philosophy established in
current seismic provisions. However, beams connected to the column minor axis reached a partially
restrained behavior. Joints with four beams connected to the column exhibited a partially restrained
behavior for all axial load levels. An equivalent force displacement method was used to compare the
hysteretic response of 2D and 3D joints, obtaining higher deformations in 3D joints with respect to 2D
joints with a similar number of connected beams. Consequently, design procedures are not capable of
capturing the 3D deformation phenomenon.
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1. Introduction

The steel moment frame is a structural system commonly used as an alternative in steel buildings.
Horizontal members (beams) and vertical members (columns) are joined by means of fully or partially
restrained moment connections. The lateral resistance is provided by flexural and shear mechanisms in
beams and columns, capable of reaching high ductility levels. In these systems, moment connections
play an important role in their seismic performance and they may be designed according to [1], which
includes seismic design requirements for connections commonly used in beam-to-column joints with
wide flange columns and beams. In several parts of the world, the design practice calls for the use of
every frame elevation to resist the seismic loads, which generates columns that are part of two seismic
resisting systems oriented in different directions. However, the cyclic response of moment resisting
joints in columns subjected to bidirectional effects has not been extensively studied. The latest version
of the seismic provisions [2] provides general guidelines to design the columns, when they are part
of two intersecting special moment frames in different directions, such as considering the possible
effects of yielding of the beam framing into the column in both directions simultaneously. However,
no prequalified connection framing on the web of wide flange columns is available in [1]. Furthermore,
clearly defined strong-column/weak-beam criteria are only available for planar frames to provide for
wide flange columns strong enough and capable of distributing yielding over multiple stories [2].
On the other hand, brittle failure mechanisms can affect the seismic performance of the structures if the
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biaxial effects are not considered, according to [3]. An overview of the previous research on weak axis
connections is presented below.

The cyclic response of a reduced beam section moment connection to the weak axis of the column
was studied by [4]. In this research, two full-scale tests were performed. The results obtained showed
a ductile behavior of weak-axis Reduce beam section (RBS) connections, reaching 0.03 (rad) plastic
rotation. However, field welding is required in the RBS moment connection. A few years later, research
conducted by [5] studied a new weak-axis moment connection improving constructability details.
Three specimens were tested under a monotonic load, reaching high deformation levels.

Experimental research on wide flange beams, connected to wide flange columns, with large
width–thickness ratios, subjected to a cyclic load about the weak-axis was performed [6]. A failure
mechanism controlled by local buckling in all specimens was obtained, demonstrating the strong
influence of the flange/web and width–thickness relationship. Shim. et al. [7] conducted an experimental
study of a new weak-axis moment connection. Bolted splices at the top and bottom flange and web
were considered. The results showed an improvement in the structural performance of weak-axis
moment connections, allowing the removal of typical brackets in this type of connection.

Oh. et al. [8] evaluated the seismic behavior of column-tree moment connections with reduced
flanges connected to the weak-axis of columns in steel moment frames. A ductile behavior was obtained
in the tested specimens, which reached a 0.05 (rad) story drift ratio. The requirements established in
the seismic provisions were satisfied. An evaluation of seismic performance in weak-axis moment
connections with high-tension bolts was developed by [9]. The significant effect of high-tension bolts
in the cyclic response of weak-axis moment connections was observed. The requirements of partially
restrained moment connections defined in design codes and were verified when more than four bolts
were employed.

Ying. et al. [10] conducted an experimental study of weak-axis moment connections with I-beams
and H-columns. A cyclic load was applied in joint specimens and the influence of composite action in
the hysteretic behavior was obtained. The results showed a welding fracture at the conjunction of the
diaphragm and beam-end flange. Additionally, a story drift of 0.04 (rad) in composite specimens was
reached. Experimental research of cyclic behavior in semi-rigid joints was performed by Shi et al. [11].
In this proposal, T-stubs connecting beams to the weak-axis of the column were used. The results
showed failure in beams and T-stub fractures. Furthermore, a decrease in rotational stiffness with an
increase in the end-plate thickness was obtained.

In this research, a numerical study of the bidirectional cyclic response of weak-axis beam-to-column
joints using end-plate moment connections was conducted. Several configurations of joints with
bidirectional effects and variable axial loads were studied using the finite element method (FEM) in
ANSYS software [12].

2. Weak-Axis Moment Connection Design

In this research, an extended unstiffened end-plate with four bolts was studied to connect
I-beams with H-columns, considering the bidirectional and axial load effects. In this type of moment
connection, beams connected to the weak and strong axes of a column were considered simultaneously.
The end-plates were bolted to the column using high-strength bolts and horizontal and vertical
diaphragms were welded to the H-column on the weak axis connection (see Figure 1).

Additionally, complete joint penetration (CJP) welds were employed between the diaphragms
and the column. In addition, fillet welds were used between the beam web and the end plate.
The selected configuration improves the field erection process, eliminating field welding. Furthermore,
four configurations of beam-column joints were analyzed, considering the bidirectional cyclic response
and different axial load levels.

The size of beam, end-plate and column were obtained according to [2]. First, the seismic design
of a low-rise building located in Santiago, Chile, with steel moment frames and a story height of
3.50 (m) was performed, according to [2]. The elements of the connection were designed following
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the procedure established in [1]. The vertical diaphragms were designed for the expected shear force,
and the horizontal diaphragms were designed for the expected tension of the beam flange. Figure 2
shows the elements, dimensions and details of the connection. The moment capacity/beam capacity
ratio in the joints was calculated uniquely in the strong-axis of the column, considering the contribution
of beams connected in the weak-axis, according to [2].Metals 2020, 10, x FOR PEER REVIEW 3 of 19 
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Figure 2. (a) Elevation view of moment connection, (b) plan view of moment connection, and (c) details
of the distance between end-plate bolts (all dimensions in mm).

3. Numerical Study

In this research, the cyclic behavior of weak-axis moment connections was studied the using finite
element method with ANSYS Software [12]. Different 3D and 2D joint configurations of beam column
joints, considering variability of the axial load and bidirectional effects simultaneously, were analyzed.
In Figure 3, a 3D view of the joint configurations is shown and the simulation matrix showing
the different axial load levels is reported in Table 1. Appropriate materials, geometrics, contact
nonlinearities, and boundary conditions were used. Additionally, interior and exterior joints were
studied, assuming representative inflection points in columns and beams. In addition, the diameter
of bolts and holes were assumed to be similar, the welds were not included in the numerical model
and the dimensions of nuts and heads were deemed similar. These considerations demonstrated good
results when the end-plate moment connections modeled were subjected to cyclic loads, such as was
studied by [13,14].
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Table 1. Configuration of beam-to-column joints in FE models.

No. Model Joint P/Py

1
1 beam (M1)

M1-00 0
2 M1-25 25%
3 M1-50 50%

4
2 beams–interior

(M2)

M2-00 0
5 M2-25 25%
6 M2-50 50%

7
3 beams–exterior

(M3)

M3-00 0
8 M3-25 25%
9 M3-50 50%

10
4 beams–interior

(M4)

M4-00 0
11 M4-25 25%
12 M4-50 50%

Note: Py = FyAg, where Fy is yield stress and Ag is the gross area of the section.

Two types of elements were considered in the numerical model: BEAM188 and SOLID186.
The BEAM188 elements with two nodes and 6 degrees of freedom (DOF) simplified the numerical
model in zones with elastic behavior. The SOLID186 elements, with 20 nodes and three DOF per node,
were used to model beam, column and connection elements because they allow the use of the inelastic
behavior of materials, such as plasticity and hardening, large deflections, and contact nonlinearities.
The use of SOLID186, an element based on quadratic interpolation functions, was also justified by
its adequacy to model regions with non-straight contours, such as the bolt holes or the horizontal
diaphragms. In Figure 4, a schematic view of meshing, the types of contacts and the loads applied are
shown. Each model was composed of solid elements plus beam elements. These elements were joined
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using a multi-point constraint (MPC), as shown in Figure 4d, which establishes compatibility between
the six DOFs of the beam element and the displacement DOFs of the solid elements. In SOLID186
elements, a fine mesh was used to capture the large inelastic deformations. The number of nodes per
model studied is summarized as follows: M1 (43608), M2 (72877), M3 (113676) and M4 (136366).
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In Figure 4a, boundary conditions were assigned to FEM models to emulate the conditions that
would be applied in actual tests. Two types of supports were considered: pinned supports at the column
ends (all three displacements restrained at the base of the column and horizontal displacements at the
top), and rollers (out-of-plane displacements restrained) at the end of beams. Furthermore, vertical
displacements at the beam ends were applied using the “Remote Point Displacement” command
(the Remote Point is a command for remote boundary conditions. Remote points are a way of
abstracting a connection to a solid model, be it a vertex, edge, face, body, or node, to a point in space.
The solver uses multipoint constraint equations to make these connections, according to [12]. In this
study, the displacements were applied by means of a Remote Point command) according to [2]. A bolt
pretension was applied as specified in [2]. A “Bonded” type contact was used to simulate all the
welds between the diaphragms and the beams and columns, and the beams and end-plates. Previous
studies [13] on a connection using similar details, but with Hollow structural sections (HSS) columns,
showed no inelastic effects occur in any weld. The type of contact between the bolts, bolt holes,
nuts and end-plates was characterized through two types of contacts: a “Frictional” type contact with
a friction coefficient equal to 0.3 according to [13], and a “Frictionless” type contact which provided
support in the normal direction to the selected element. Furthermore, movements and rotations
were restrained in the normal direction, but movements or rotations in a tangential direction with
zero friction were permitted, according to [15,16]. The connections were designed to avoid inelastic
deformation in the bolts and nuts. Therefore, it was considered unnecessary to model the nut stripping.
Regarding the shank necking, the bolt thread is not included in the model, therefore only inelastic
deformations in the gross area of the bolt can be captured. However, if these effects need to be
considered, previous studies by [17] provide a methodology to include them in the numerical model.
Finally, the Incremental Newton–Raphson method was used. In this method, the nonlinearities are
considered through the sub-steps for each load step. The Force Convergence Value criterion was used,
where the residual out-of-balance force vector [R] = [Fa] − [Finr] and the force convergence value
must be below the value for convergence, according to [12]. The Augmented Lagrange method was
employed to reach numerical convergence in the contact zone, according to [14]. The contact types
and boundary conditions are shown in Figure 4b,c and Table 2 displays the displacements applied
according to the protocol established in [2].

Table 2. Displacements applied, according to [2].

No. Number of Cycles Drift Angle θ (rad)

1 6 0.00375

2 6 0.00500

3 6 0.00750

4 4 0.01000

5 2 0.01500

6 2 0.02000

7 2 0.03000

8 2 0.04000

Note: continue, applying increments of θ = 0.01 (rad), with two cycles of loading.

A typical ASTM-A36 material was used in the beams, columns and diaphragms, according to
Chilean practice. ASTM-A490 was used to simulate the bolt material. Constitutive law parameters for
steel elements were obtained from coupon specimens tested by [18], and their values are reported in
Table 3. The inelastic model was formulated using the von Mises yielding criteria and an associated
flow rule. The resulting bilinear stress–strain curves are shown in Figure 5.
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Table 3. Material constitutive law parameters of steel elements, according to [18].

Element Designation σy
(MPa) εy

σu
(MPa) εu

Bolts ASTM-A490 1156 0.00586 1433 0.14

Beam, Column,
Horizontal diaphragms,

Vertical diaphragms, End-plate
ASTM-A36 293 0.001465 445 0.24

Note: σy: yield stress; εy: yield strain; σu: ultimate stress; εu: ultimate strain.Metals 2020, 10, x FOR PEER REVIEW 8 of 19 
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4. Analysis of Results

An interstory drift angle of 4% should be accommodated and the flexural resistance of the beam
must be at least 80% of the plastic moment capacity of the beam, Mp, for moment connections in special
moment frames according to [2]. Additionally, a premature failure of columns should be avoided by
concentrating the inelastic response in the beams. In the following sections, the results of the cyclic
response with bidirectional effects are shown.

4.1. Seismic Assessment

Following the equivalent load-displacement method outlined in [19], a seismic assessment was
performed for 2D and 3D joints. A comparison of the load–rotation curves, secant and tangent stiffness,
equivalent damping and energy dissipation, as defined in [20], was carried out. In Figure 6, a similar
cyclic response of the joints studied can be observed. The M2 model reached 66% and 8.8% more load
in comparison to the M1 and M3 models, respectively, and the M4 model developed 51% more load
than the M3 model. Furthermore, the M1 and M2 models reached a 0.046 (rad) drift ratio, while the M3
and M4 models achieved a 0.065 (rad) drift ratio. Therefore, higher values of rotation were developed
by 3D joints than 2D joints, although weak-axis moment connections were used. The response in all
joints showed an isotropic behavior, similar to research performed by [21], where hysteretic behavior
without pinching or brittle failure mechanisms were exhibited.

Figure 7 shows the evolution of the normalized tangent stiffness (tangent unloading stiffness Kt

divided by the initial elastic stiffness Ko) with the rotation amplitude of the connection. The M1 and
M2 models reached values close to 1.0 for all rotation and axial load levels. However, a decrease in
the M3 and M4 models for the 50% axial load case was obtained. Additionally, when the rotation is
higher than 2% a reduction of tangent stiffness was observed. Figure 8 shows the normalized secant
stiffness evolution. A symmetric response in the M1 model with values around 1.0 until 1% of rotation
was obtained and an asymmetric response in the M2 model with a major influence for the 50% axial
load case was observed. However, a major decrease in secant stiffness in the M3 and M4 models was
obtained when rotations exceeded 1%. Therefore, there may derive an influence of the number of
beams connected in the cyclic response.
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In Figure 9, the dissipated energy (DE) is reported. The M3 and M4 models achieved higher values
of DE than the M1 and M2 models. Therefore, a relation between the number of beams connected and
the DE may be deduced. In Figure 10, the equivalent damping (ED) for 0.04 (rad) drift was higher than
12% in all joints, except in the M2 model which reached 9.5% at the same drift. These values are lower
than the values obtained for joints with hollow structural section columns, where a value of 30% was
reported according to [13].
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In Figure 11, moment-rotation curves for one beam connected by minor axis and one beam
connected by major axis are reported. The moment values were normalized by the expected plastic
moment Mp = 486.61 (kN-m) and the rotation values were normalized by a factor equivalent to
Mp/(2 EI/L), where L is the beam length, E is the Young’s modulus of steel, and I is the beam
moment of inertia. The 20 EI/L and 2 EI/L values are stiffness limits that separate fully restrained,
partially restrained and simple connections, according to [22]. Clearly, the major axis connections
can be classified as fully restrained. The minor axis connections fall in the partially restrained region.
However, the M3 model exhibited a decrease in stiffness as the axial load increased, transitioning from
fully restrained to partially restrained. A partially restrained response for all cases was obtained in the
M4 model.
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4.2. Hysteretic Behavior

The M1, M2, M3 and M4 models achieved similar hysteretic behavior. A large number of results
were obtained, therefore, only the results of one minor axis connection and one major axis connection
are reported. In Figure 12, a 4% drift ratio and flexural strength of the beam greater than 0.80 Mp,
where Mp = 486.61324 (kN-m), were obtained. However, a notable decrease in stiffness in models with
minor axis beams was obtained. A behavior without pinching was exhibited, showing the influence of
web column rigidity in the cyclic behavior of moment connections.
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4.3. Failure Mechanism

According to [2], a ductile behavior in joints subjected to seismic loads is desirable. Therefore,
the formation of plastic hinges in beams before columns is preferred. Plastic hinges in beams and
column were reached for the M3 and M4 models. The distribution of von Mises equivalent stress in
the final deformation of each model at the maximum load is reported in Figure 13. Plastic strains
developed in the beams; however, plastic strains also appeared in the column for the M2, M3 and M4
models at 50% axial load level. A slight inelastic incursion in the column for the 25% axial load case in
these models was reached.

Furthermore, the cyclic response of weak-axis moment connections without pinching can be
explained by the limited plastic strains reached in the beams up to 4% drift ratio, as a consequence of
the low elastic stiffness provided by the weak axis of the column. However, a major elastic stiffness
is obtained by strong-axis moment connections and a large plastic strain is mainly developed by the
flange and web of the connected beams up to 4% drift ratio, according to results obtained by [23],
affecting the hysteretic curve in terms of strength and stiffness. Finally, the effect of initial imperfections
can be representative of the cyclic performance of strong-axis moment connections according to results
obtained in [24].
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5. Conclusions

In this research, the bidirectional response of weak-axis end-plate moment connections between
I-beams and H-columns was studied. A numerical study based on finite element models of M1
(one beam, exterior), M2 (two beams, interior), M3 (three beams, exterior) and M4 (four beams, interior)
connections with different levels of axial load was performed. The results obtained showed that
end-plate moment connections with four bolts connected by the weak-axis of columns satisfy the design
criteria, failure mechanisms and performance according to Seismic Provisions [2]. However, a partially
restrained response was observed, showing the significant influence of weak axis connections to
columns in the performance of joints subjected to cyclic loads. In terms of resistance, the elements
of the connection remained elastic at 4% of drift ratio. Using the equivalent load-displacement
method [19], a comparison of cyclic response was performed, showing that 3D models developed
higher deformations than 2D models. Similarly, the equivalent damping and dissipated energy in
the 3D models reached higher values than the 2D models. Finally, the elastic stiffness of weak axis
moment connections shall be considered in the design of buildings with steel moment frames, which
can affect drift verifications. Additionally, it is necessary to verify the strong-column/weak-beam
criteria established in [2], considering the beams connected by the weak axis, which may affect the
performance of the columns, avoiding an incorrect estimation of the flexural resistance of the columns.
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