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Abstract: The fracture of the Mg/Mg17Al12 interface was investigated by molecular dynamics
simulations. The interface crack extends in a brittle manner without noticeable plasticity.
The distributions of normal stress and separation along the interface were examined to render
a quantitative picture of the fracture process. A normal traction–separation curve was extracted
from simulation and compared with three cohesive zone models, i.e., cubic polynomial cohesive
zone model, exponential cohesive zone model, and bilinear cohesive zone model. The exponential
cohesive zone model exhibits the best agreement with simulation results, followed by the bilinear
cohesive zone model.
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1. Introduction

As one of the lightest structural materials, magnesium (Mg) alloys have attracted substantial
interest from both the scientific community and various industries such as transportation and aerospace,
due to their high specific strength, excellent castability, and superior damping capacity [1–3]. However,
compared to structural materials such as steel, titanium and aluminum alloys, their fracture toughness
is lower, which restricts their applications. It has been reported that the matrix/precipitate interface in
Mg alloys is the potential site for crack nucleation [4,5]. Therefore, it is of enormous significance to
investigate the fracture properties of the matrix/precipitate interface.

Cohesive zone models (CZMs), which were first proposed by Dugdale [6] and Barenblatt [7], have
been widely employed to study interfacial fracture. In the framework of CZM, fracture is described by
a traction–separation relation, which is typically obtained based on macroscale fracture properties
such as fracture strength and toughness. Such traction–separation relations represent the collective
response of all microstructure constituents within the specimen, rather than the unique response of
the interface where fracture takes place [8]. To establish a CZM that can capture the local response in
the vicinity of a crack, one needs to have the knowledge of local nanoscale properties, which can be
obtained through molecular dynamics (MD) simulations. After the pioneering work of Gall et al. [9]
that parameterized CZMs for Al/Si bimaterial by using MD simulation results as input, substantial
efforts have been devoted to developing MD-based CZMs for various materials, including Al grain
boundary [8], SiC/Mg nanocomposite [10], Fe single crystal [11], Al/Si bimaterials [12], and FCC single
crystals [13]. However, despite numerous efforts, no attention has been paid to the fracture of the
matrix/precipitate interface in Mg alloys.

In this work, we investigated by MD simulations the fracture of the Mg/Mg17Al12 interface, which
is commonly found in commercial Mg–Al alloys. Tensile loading was applied to the bimaterial with
an interface crack to initiate crack propagation. The evolution of atomic configuration during tensile
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loading was visualized to reveal the fracture mechanism. The traction–separation relation for the
Mg/Mg17Al12 interface was extracted from MD simulations and then compared with three CZMs.

2. Materials and Methods

As shown in Figure 1, the simulation model has a dimension of 38.7 (w) × 29.6 (h) × 14.6 (t) nm,
with the Mg17Al12 precipitate and Mg matrix orientated such that (0001)M//(110)P, [−2110]M//[1−11]P,
[01−10]M//[−112]P, satisfying the well-known Burgers orientation relationship [14]. The precipitate,
which has a BCC structure with 58 atoms per unit cell, was constructed according to the structure
given by Gharghouri et al. [15]. An interface crack of length c was inserted into the simulation system
by blocking the interactions between atoms above and below crack surfaces, followed by a relaxation
process by the conjugate gradient method. Then, boundary atoms (shaded by light orange) were frozen,
whereas active atoms (all atoms except boundary atoms) were equilibrated in the NVT ensemble at
1 K for 20 ps. Subsequently, a mode I loading with a strain rate of 6.8 × 108 s−1 was applied to the
bimaterial by moving the two boundaries oppositely along the z-axis. We have checked the possible
effects arising from model size and determined that the current model is large enough to yield steady
state propagation.
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3. Results 

The atomic configuration evolution of the bimaterial as the increase of strain is shown Figure 2, 
with atoms colored according to the zz component of the atomic stress. Due to its hexagonal close-
packed (HCP) structure, the available deformation mode in Mg is limited, leading to its relatively 
low ductility [19]. In this study, tensile loading along the [0001] direction, which is the <c> axis of Mg, 
was applied to the simulation system. At room temperature, the <c + a> slip system is difficult to 
activate because of its high critical resolved shear stress, and therefore, twinning is the primary 

Figure 1. Simulation model of the Mg/Mg17Al12 bimaterial.

MD simulations were carried out using the large-scale atomic/molecular massively parallel
simulator (LAMMPS) [16] with a timestep of 1 fs. Atomeye, which is an atomistic configuration viewer
developed by Li [17], was used to visualize atomic configurations. The Mg–Mg, Al–Al, Mg–Al atomic
interactions were described by the embedded atom method (EAM) potential [18]. The stress tensor of
the simulation system was calculated according to the definition of virial stress. A horizontal layer
(shaded by light yellow in Figure 1) consisting of half Mg and half Mg17Al12 was divided into n (45)
small regions, each of which is a cohesive zone volume element (CZVE) [8], with a dimension of 0.9 (lx)
× 2.1 (lz) × 14.6 (t) nm. Two variables were used to monitor the state of each CZVE, i.e., Tn and un. Tn is
the average atomic stress σzz of all atoms in each CZVE, while un is the average atomic displacement
∆z of all atoms in the Mg17Al12 half with reference to the Mg half.

3. Results

The atomic configuration evolution of the bimaterial as the increase of strain is shown Figure 2, with
atoms colored according to the zz component of the atomic stress. Due to its hexagonal close-packed
(HCP) structure, the available deformation mode in Mg is limited, leading to its relatively low
ductility [19]. In this study, tensile loading along the [0001] direction, which is the <c> axis of Mg,
was applied to the simulation system. At room temperature, the <c + a> slip system is difficult
to activate because of its high critical resolved shear stress, and therefore, twinning is the primary
mechanism to accommodate plastic deformation in the <c> axis [19]. However, neither twinning nor
any dislocation activity was observed in our simulations. Instead, the interface crack was observed to
propagate in a brittle manner without any noticeable plasticity, despite crack surfaces not being very
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clean, as shown in Figure 2. This finding is consistent with the previous experimental observation that
decohesion occurs in the Mg/precipitate interface [5]. Due to the existence of the inserted interface
crack, stress concentration was induced near the crack tips, which may make crack propagation along
the interface more favorable than twinning or dislocation activities. Stress concentration at the crack
tips can be observed from Figure 2. In addition, simulations were carried out at a low temperature of
1 K, which might suppress plastic deformation to some extent.
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To render a general quantitative picture of the fracture process, the distribution of Tn, un, and ∆z
along the interface for two strain values corresponding to Figure 2a,c is shown in Figure 3. Both Tn

and un exhibit a near-symmetrical distribution with respect to an axis parallel to the z-axis. un remains
constant as x varies in the bonded region and increases gradually from the crack tips to the axis of
symmetry, where the maximum value is achieved. The displacement of Mg is larger than that of
Mg17Al12, which is reasonable since Mg17Al12 is stiffer than Mg [15]. Tn reaches its maximum value at
the crack tips and decreases rapidly to a nearly constant value for the bonded interface away from
the crack tips. Tn is zero for the cracked interface. The overall distribution of Tn and un is generally
consistent with the prediction of linear elastic fracture mechanics [20]. A similar observation was
reported in previous studies on the fracture of Al/Si interfaces [12] and interfaces composed of BCC
materials [21]. It can be noted from Figure 3 that the interface crack has propagated for a certain
distance when ε increases from 0.031 to 0.046, in agreement with the observation in Figure 2.

The Tn − un curve was extracted from simulation, as shown in Figure 4. Tn increases nearly
linearly as un increases, until reaching the maximum value which is known as cohesive strength σc

(corresponding un is denoted by δc), followed by a descending trend to zero. The un at which Tn

reduces to zero is δs, indicating the complete separation of the interface. The Tn − un curve extracted
from MD simulation was compared with that predicted by three widely used CZMs, namely cubic
polynomial CZM [22], exponential CZM [23], and bilinear CZM [24]. In the cubic polynomial CZM,
Tn is related to un by

Tn =

 27
4 σc

un
δs

(
1− un

δs

)2
for un ≤ δs

0 for un > δs
(1)

Tn for the exponential CZM is expressed as

Tn =
16
9
σce2 un

δs
exp

(
−

16
9

e
un

δs

)
(2)
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In the bilinear CZM, is given as

Tn =

 σc
δs−u∗
δs−δc

un
u∗ for un ≤ δs

0 for un > δs
(3)

where u* = max (δc, un). Note from Equations (1)–(3) that cubic polynomial and exponential CZMs are
associated with two parameters (σc and δs), while bilinear CZM is related to one more parameter δc.
These three parameters were obtained from MD simulation as σc = 5.63 GPa, δs = 7.80 Å, δc = 1.53 Å,
which were then input to Equations (1)–(3) to plot Tn−un curves, as shown in Figure 4. Exponential
CZM exhibits the best agreement with MD results since it can capture the nonlinear processes associated
with bond breaking.
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Metals 2020, 10, x FOR PEER REVIEW 4 of 6 

 

 
Figure 3. (a) Distribution of normal separation un and displacement Δz along the interface for two 
different strains. “Δz (Mg)” and “Δz (Mg17Al12)” are the average atomic displacement Δz of all atoms 
in the “Mg” half and “Mg17Al12” half of an CZVE, respectively. (b) Distribution of normal traction Tn 
along the interface for two different strains. “Overall” indicates the average atomic stress σzz of all 
atoms in each CZVE. “Mg” and “Mg17Al12” are the average atomic stress σzz of all atoms in the “Mg” 
half and “Mg17Al12” half of an CZVE, respectively. 

The Tn−un curve was extracted from simulation, as shown in Figure 4. Tn increases nearly linearly 
as un increases, until reaching the maximum value which is known as cohesive strength σc 
(corresponding un is denoted by δc), followed by a descending trend to zero. The un at which Tn 
reduces to zero is δs, indicating the complete separation of the interface. The Tn−un curve extracted 
from MD simulation was compared with that predicted by three widely used CZMs, namely cubic 
polynomial CZM [22], exponential CZM [23], and bilinear CZM [24]. In the cubic polynomial CZM, 
Tn is related to un by 

 
Figure 4. Normal traction–separation curves obtained from MD simulations and predicted by 
cohesive zone models. Figure 4. Normal traction–separation curves obtained from MD simulations and predicted by cohesive

zone models.

4. Conclusions

MD simulations were performed to investigate the fracture of Mg/Mg17Al12 interface. The interface
crack extended in a brittle manner without noticeable plasticity. The expressions for three CZMs were
established by using parameters obtained from MD simulations. The normal traction–separation curves
predicted by the three CZMs were compared with that extracted from MD simulations. Exponential
CZM shows the closest match with MD results, followed by bilinear CZM.
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