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Abstract: The atomic structure variations on cooling, vitrification and crystallization processes in
liquid metals face centered cubic (FCC) Cu are simulated in the present work in comparison with body
centered cubic (BCC) Fe. The process is done on continuous cooling and isothermal annealing using
a classical molecular-dynamics computer simulation procedure with an embedded-atom method
potential at constant pressure. The structural changes are monitored with direct structure observation
in the simulation cells containing from about 100 k to 1 M atoms. The crystallization process is
analyzed under isothermal conditions by monitoring density and energy variation as a function of
time. A common-neighbor cluster analysis is performed. The results of thermodynamic calculations
on estimating the energy barrier for crystal nucleation and a critical nucleus size are compared
with those obtained from simulation. The differences in crystallization of an FCC and a BCC metal
are discussed.
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1. Introduction

Crystallization of metals and alloys from the melt (liquid state) takes place by nucleation and
growth [1]. This process has occupied the minds of scientists for quite some time owing to still unresolved
issues, especially related to high nucleation and growth rates of pure substances. Pure metals are
known to exhibit a high crystal nucleation rate at a low enough temperature [1] and high growth rates
in a wide temperature range [2]. Crystallization of different substances [3,4] including liquid metals [5]
and alloys [6] has been studied by molecular-dynamics (MD) simulation with various potentials.
Furthermore, MD simulation of glass transition of pure metals, such as Fe [7,8], Ni [9,10], Cu [11], Al [12]
and other metals [13] has been performed. In a recent work possible heterogeneous nucleation of Fe
was studied at 0.67Tm and 0.58Tm (Tm is the melting point which in pure metals is equal to the liquidus
temperature Tl) [14]. However, one should mention that Tm of 2400 K given by the potential used is
significantly overestimated compared to the experimental value. Recent embedded atom potentials
provide a better correspondence to the experimental values. The crystallization behavior of other metals
was also studied via MD simulation [15] and compared with the experimental data [16]. The energy
barriers for crystallization of pure metals were also compared with those obtained from computer
simulation [17]. In the present work the atomic structure variation, vitrification and crystallization
processes in liquid metals (FCC Cu and BCC Fe) are simulated on continuous cooling and isothermal
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annealing using a classical MD computer simulation procedure with an embedded-atom method
potential at constant pressure.

2. Computational Procedure

Molecular dynamics (MD) computer simulation using a software package for classical molecular
dynamics (LAMMPS) [18] was used to model the crystallization process of Fe and Cu metals at
periodic boundary conditions. The simulation was performed at 1 fs time step using the embedded
atom potentials for Cu [19] and Fe [20] at nearly constant temperature and pressure. In order to let
crystallization occur, the cubic cell size was typically chosen to be about 10 nm. A typical crystalline
cell of the atoms containing 108,000 for FCC and 128,000 atoms for BCC structure was heated to of
2500 K to melt and then cooled down to a certain temperature. In some cases, larger sized cells were
used as indicated. Melting is confirmed by the radial distribution function and stabilization of the
density variation with time. Cooling was performed to different temperatures at about 5 × 1013 K/s.
Temperature upon simulation was maintained at ±6 K (Figure 1) while pressure was kept around zero.
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Figure 1. Frequency distribution of temperature for Cu held at 750 K fitted with the Gaussian 
function with R2 > 0.99. The results were similar for all other cases. 

Neither Fe nor Cu evaporated in the molten state as should have happened at zero pressure, 
likely because there was not enough time for a gaseous phase to nucleate from inside the atomic cell 
(a gaseous phase has to overcome an energy barrier to be formed as well as a crystalline one) and 
absence of the surfaces owing to periodic boundary conditions. A thermostat was used to control 
the temperature [21,22] while pressure was maintained by a Barostat [23]. A software package 
“OVITO” [24] was used to visualize and analyze the simulation results. Adaptive Common 
Neighbor Analysis (CNA) [25] was used to analyze structural changes in Fe and Cu. 

3. Results and Discussion 

The density changes on heating and cooling as a function of temperature are illustrated in 
Figure 2a. Equilibrium liquid state was obtained at 2500 K in less than 1 ps. The holding time was 
also varied from 1 to 100 ps without visible changes in the liquid structure and density. Thus, the 
atomic cells have been kept for at least 10 ps at 2500 K prior to cooling. 

Figure 1. Frequency distribution of temperature for Cu held at 750 K fitted with the Gaussian function
with R2 > 0.99. The results were similar for all other cases.

Neither Fe nor Cu evaporated in the molten state as should have happened at zero pressure,
likely because there was not enough time for a gaseous phase to nucleate from inside the atomic cell
(a gaseous phase has to overcome an energy barrier to be formed as well as a crystalline one) and
absence of the surfaces owing to periodic boundary conditions. A thermostat was used to control
the temperature [21,22] while pressure was maintained by a Barostat [23]. A software package
“OVITO” [24] was used to visualize and analyze the simulation results. Adaptive Common Neighbor
Analysis (CNA) [25] was used to analyze structural changes in Fe and Cu.

3. Results and Discussion

The density changes on heating and cooling as a function of temperature are illustrated in Figure 2a.
Equilibrium liquid state was obtained at 2500 K in less than 1 ps. The holding time was also varied
from 1 to 100 ps without visible changes in the liquid structure and density. Thus, the atomic cells have
been kept for at least 10 ps at 2500 K prior to cooling.
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Figure 2. Density changes on heating and cooling of Cu and Fe as a function temperature (a). Pair 
distribution functions (PDFs) of Fe in liquid (2500 K) and glassy (300 K) state (b). The values of pair 
distribution function first minimum PDFmin (•) and ratios of PDFmin/PDFmax () (c) for Cu (violet) 
and Fe (blue). 

Vitrification of both Fe and Cu liquids was attained at the cooling rate of about 5 × 1013 K/s 
(Figure 2). At the cooling rate of 5 × 1012 K/s and lower the studied metals start to crystallize directly 

Figure 2. Density changes on heating and cooling of Cu and Fe as a function temperature (a).
Pair distribution functions (PDFs) of Fe in liquid (2500 K) and glassy (300 K) state (b). The values of
pair distribution function first minimum PDFmin (•) and ratios of PDFmin/PDFmax (N) (c) for Cu (violet)
and Fe (blue).
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Vitrification of both Fe and Cu liquids was attained at the cooling rate of about 5 × 1013 K/s
(Figure 2). At the cooling rate of 5 × 1012 K/s and lower the studied metals start to crystallize directly on
cooling. Similarly, high critical cooling rate values indicating high instability of the supercooled liquid
were obtained in other works [13,26,27]. However, theoretical calculations [28] and the experimental
results [29] suggest a lower critical cooling rate (of about 109 K/s) for glass-transition in pure metals,
especially with BCC lattice. The difference could be connected with the type of potentials used.

The values of glass-transition temperature (Tg) defined by the change of the density as a function
of temperature slope are about 1100 K for Fe and 800 K for Cu (Figure 2a). Of course, these values
correspond to this very high cooling rate used when viscosity is still low. However, the value for Fe
corresponds quite well to the isochoric conditions when the volume of the liquid becomes similar to
that of the crystalline phase [30]. Two typical pair distribution functions (PDF) for Fe are shown in
Figure 2b. The values of Tg derived from PDFmin [31] and ratios of PDFmin/PDFmax [32] are shown
in Figure 2c. These values are about 100 K lower than those obtained from Figure 2a. As one can
see for Fe, having a BCC lattice at room temperature has much lower PDFmin value compared to Cu
which has an FCC lattice. It resembles the crystalline structure: there is a deeper gap between the
coordination shells in BCC lattice. Splitting of the first and second pair distribution function (PDF(R))
maxima into two peaks is clearly observed in Figure 2b. It indicates short- and medium-range ordering
of the liquid and glassy phases on cooling and that glassy Cu and Fe inherit the short-range order of
the corresponding crystals.

Phase transformation kinetics for Fe and Cu are shown in Figure 3; Figure 4, respectively,
by monitoring the density changes. Energy of the system changes in the way opposite to density.
Please, note that the final product density is different from case to case owing to different fractions of
the internal defects. Full system equilibration upon crystallization requires much longer time. While at
1100 K and above the density, volume and energy values are visibly stable within the incubation period
(relaxation proceeds in 10 ps for liquid Fe at 1100 K) (Figure 3a), these values gradually change at a
lower temperature owing to structural relaxation at low atomic mobility. The structure relaxation
time becomes longer than the simulation time below 1100 K for Fe which corresponds quite well to
the equivolume/isochoric glass-transition temperature determined before [30]. It also takes place at
about 800 K for Cu when the density and energy of the system gradually change with time prior
to crystallization. Both BCC and FCC crystals nucleate directly from the melt and no two-stage
nucleation [33] is found.
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Figure 3. Density change as a function of time for pure Fe at 1100 K (different atomic cell size used 
as indicated) (a) and 900 K (b) (three simulations, same cell size of 128,000 atoms). Inset in (a) shows 
an atomic cell of 1.024 million atoms at 250 ps containing 5 growing nuclei as marked. (b) also 
shows the total energy difference (ΔE) for graph 1 for comparison. Initial 50 ps are related to heating 
and cooling time. 

Figure 3. Density change as a function of time for pure Fe at 1100 K (different atomic cell size used as
indicated) (a) and 900 K (b) (three simulations, same cell size of 128,000 atoms). Inset in (a) shows an
atomic cell of 1.024 million atoms at 250 ps containing 5 growing nuclei as marked. (b) also shows
the total energy difference (∆E) for graph 1 for comparison. Initial 50 ps are related to heating and
cooling time.
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Figure 4. Density change as a function of time for pure Cu at 850 K (a) and 750 K (b) for 108,000 
atoms per cell. (b) also indicates the energy difference (ΔE) in blue for one plot. The insert indicates 
the atomic cell at 270 ps with atoms belonging to FCC clusters only. The initial 50 ps are related to 
heating, melting and cooling time. 
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Figure 4. Density change as a function of time for pure Cu at 850 K (a) and 750 K (b) for 108,000 atoms
per cell. (b) also indicates the energy difference (∆E) in blue for one plot. The insert indicates the atomic
cell at 270 ps with atoms belonging to FCC clusters only. The initial 50 ps are related to heating, melting
and cooling time.

As can be found for pure Fe in Figure 3, the incubation time (defined as an intersection of two
tangents to the plot before and after the onset time) changes irregularly with the atomic cell size
owing to stochastic character of nucleation. In a cell containing 432,000 atoms, two overcritical nuclei
nucleated at about 120 ps. In a cell containing 1,024,000 atoms, the first nucleus was formed at 150 ps,
the second at 170 ps, the third at 210 ps, the fourth at 230 ps and the fifth at 240 ps. If one assumes
total nucleation time of 90 ps for four nuclei per a cell of 23 nm size, then the average homogeneous
nucleation rate is 3.7 × 1033 m−3

·s−1. It is a high value but quite close to that reported in an earlier
work [8]. The growing nanocrystals have irregular but nearly spherical shape. In a cell containing
128,000 atoms, the first overcritical stably growing nucleus was formed at 280 ps and consumed the
entire volume at about 410 ps. Thus, at these temperatures (1100 and 900 K which are 0.61 Tl and 0.50 Tl,
respectively; when the liquidus temperature Tl = 1811 K) crystallization of Fe is hardly statistically
predictable, and it is not so sensitive to the cell size if its length exceeds about 10 nm. BCC Cu at 750 K
(which is 0.55 Tl) has even higher homogeneous nucleation rate of 8 × 1034 m−3s−1. At the homological
temperature higher than 0.65 Tl crystallization of Cu and Fe is not detectable within 3 ns of maximum
simulation time.

Owing to rather high nucleation rates, the isothermal crystallization curves can be statistically
well reproduced below 0.55 Tl for Cu (Figure 4b) and below 0.4 Tl for Fe at the chosen atomic cells.
An average incubation time is about 2 times longer than that on pure Ni studied earlier [34]. From this
viewpoint Ni is a special liquid which is the least stable against crystallization among these metals.
Furthermore, in spite of the fact that the nucleation barrier is quite high in pure Ni the nucleation rate
is also high attributed to the high atom attachment kinetics [35].

From the isothermal crystallization plots, the beginning, also called an incubation time, and finish
time of transformation can be calculated using two corresponding tangents to the plot before and after
the inflection point. Note that actual transformation time is longer because the two tails of the S-curve
are not taken into consideration when two tangents are applied. However, it becomes more difficult to
detect the incubation period for each plot below 700 K owing to the long relaxation time manifested in
constant variation of the baseline. Nevertheless, a time-temperature-transformation (TTT) diagram
was constructed, and it is shown in Figure 5. The simulation results are well reproduced (owing to
high nucleation rate) below 0.55 Tl for Cu and below 0.4 Tl for Fe. The nose of the TTT diagram is
about 0.55 Tl for Fe and about 0.6 Tl for Cu.
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Figure 6. Adaptive common neighbor cluster analysis for Fe (a) and Cu (b) cells at 750 K together 
with the density (ρ) curve (blue) as a function of time. 

Figure 5. Time-temperature-transformation (TTT) diagram for Fe (blue) and Cu (green). Circles indicate
beginning of crystallization while diamonds show end of crystallization.

According to adaptive common neighbor analysis (Figure 6), crystallization becomes detectable
by volume and energy changes when the fraction of atoms in crystalline clusters attains about 2%.
The increase in the numbers of atoms with the icosahedral-like configuration prior to the nucleation
of crystalline phases found in earlier works [36,37] is not seen in the present study (see Figure 6).
Although only BCC crystals form and grow in Fe FCC, BCC and hexagonal close packed (HCP)
atomic arrangements are found in Cu owing to low stacking fault energy of this metal (well estimated
experimentally) as seen in Figure 7.
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Typical growth rates (crystal radius change as a function of time) are shown in Table 1. The growth
rates are lower than those found earlier in simulations [15]. The growth rate of FCC Cu crystals is
less temperature dependent than that of BCC Fe. Furthermore, one should note that some growing
particles have much lower growth rate owing to interaction with other nuclei (even under-critical) [38].
At the same time the observed growth rate values for Fe are quite close to the experimental ones of
40 m/s [39]. The observed growth rate of the order of tens meters per second are lower than those
obtained for flat interfaces.

Table 1. Typical growth rates (UN) values at some temperatures for the studied metals estimated from
an average single crystal radius measured in two mutually perpendicular directions.

Metal T (K) UN (m/s)

Fe
1100 48
900 20

Cu
850 18
750 16

A liquid/solid interfacial energy (σ) value of 0.37 J/m2 is obtained in the present work for Fe at
1100 K as an excess energy per surface area of a single particle of 1.8 nm radius. It is calculated taking
into account the potential energy difference of 23.7 eV at 170 ps of the simulation time between its
value for the entire atomic cell and a sum of that energy values for the atoms belonging to a crystalline
particle of about 3.6 nm diameter formed at that stage (1657 atoms) and the potential energy of the
other atoms in the cell belonging to liquid phase (128,000−1657 = 126,343 atoms). The potential energy
for the liquid part of the atomic cell was obtained at the 50 ps stage when all atoms belonged to the
supercooled liquid phase while that of a crystal was taken for fully crystalline state on heating the
initial perfect crystal to 1100 K. The value of 0.33 J/m2 for the Cu crystal at 850 K is found in a similar
way. These values are not too far from the experimental values of 0.28 and 0.18 J/m2 obtained for Fe
and Cu, respectively [1]. Please note that although the calculated values are somewhat overestimated
owing to the internal defects in the growing crystals, the value for Fe is still higher than that for Cu.
The earlier simulation results indicated that the crystal–melt interfacial energy calculated from a planar
interface needs to be adjusted to a smaller value in order to predict the correct nucleation rate at deep
supercooling [40].
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Calculation of the critical nucleus size (Rc) and work for the formation of critical nucleus (W*) was
done according to classical nucleation theory:

Rc = 2σ/∆Gv (1)

W* = 16πσ3/(3∆Gv
2) (2)

Using the Gibbs free energy difference (∆Gv). σ values of 0.277 J/m2 for Fe and 0.178 J/m2 for
Cu were obtained from Ref. [1]. The temperature dependences of enthalpies of liquid and crystalline
phases were used to estimate the enthalpy of melting at about 1809 K. The enthalpy difference of
0.164148 eV/at or 15.837 kJ/mol found for Fe is not far from the experimental value of 15.2 kJ/mol [1].
The value of 13 kJ/mol was used for Cu [1]. ∆Gv can be estimated from the liquid crystallization
enthalpy (∆Hc) and the liquidus temperatures Tl using the following equation [41]:

∆Gv = (∆Hc·∆T/Tl)·(7T/(Tl + 6T)) (3)

According to thermodynamic calculations the critical nucleus radius in the studied temperature
range is about 0.4–0.6 nm for Cu and for 0.5–0.6 nm Fe. Steadily growing particles found in this
simulation were larger than 0.8 nm in size. At such small size the energy barrier W* to the thermal
energy RT ratio is about 20 for Cu and about 30 for Fe. A higher energy barrier found for Fe is rather
responsible for a lower number of nuclei found for Fe at the same homological temperature. It is
interesting to note that even at such high energy barriers homogeneous nucleation takes place after
hundreds of picoseconds.

The number of crystal nuclei formed within the typical cells of about 10 nm length in all metals
ranges from 1 to 10, leading to the number density of precipitates of the order of 1024 m−3. The highest
number density of nuclei is observed in Cu which leads to better reproducibility of the crystallization
traces at different simulation runs. Such high number densities of precipitates are more or less typical
for crystallization of pure metals at extremely low homological temperatures of about 0.55 Tl or lower,
which are unattainable in the experiments on undercooling but quite common in various metallic
glasses which nanocrystallize in a similar temperature range [42,43].

4. Conclusions

Liquid structure variation of cooling and glass transition indicated that glassy Cu and Fe inherit
the short-range order of the corresponding crystals. Nevertheless, a nucleation and growth type
(with an energy barrier) phase transformation is observed. The crystallization kinetics of FCC Cu and
BCC Fe were analyzed in isothermal conditions by monitoring the density and energy variation as
a function of time, and a TTT diagram was constructed. BCC Fe shows a lower number density of
precipitates than FCC Cu. A higher energy barrier for nucleation found for Fe is rather responsible
for a lower number of nuclei found for Fe at the same homological temperature. On the other hand,
BCC Fe, in general, shows a shorter incubation period than FCC Cu and generally a higher growth rate
though the nucleation rate of Cu crystals at a higher rate. The nose of the TTT diagram is about 0.55 Tl
for Fe and about 0.6 Tl for Cu. Homogeneous nucleation of both metals becomes difficult to detect
above about 0.65 Tl within a reasonable simulation time scale, while below ~0.6 Tl a high population
density of crystalline precipitates is obtained. The growing nanocrystals have an irregular but nearly
spherical shape. The observed growth rates of the order of tens meters per second are lower than those
obtained for flat interfaces. Some of the crystalline particles displayed a lower growth rate than the
others owing to the lattice defects within the growing crystals and existing order in the supercooled
liquid. The crystal growth rate was scattered from crystal to crystal likely owing to the local order
in surrounding environment and the lattice defects (mostly HCP staking faults) within the growing
crystals in Cu. According to thermodynamic calculations the critical nucleus radius in the studied
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temperature range is about 0.4–0.6 nm for Cu and for 0.5–0.6 nm Fe. The energy barrier to the thermal
energy ratio is about 20 for Cu and about 30 for Fe.
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