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Abstract: Laser powder bed fusion has been widely investigated for shape memory alloys, primarily
NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However,
processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous
study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys
in the aerospace industry, using SLM and investigated the effect of parameters on defect formation.
The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy.
Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys
were characterized across a wide range of PPs (laser power, scanning speed, and hatch spacing)
and correlated with energy density. The optimum laser parameters for defect-free and functional
samples were found to be in the range of approximately 60–100 J/mm3. Below an energy density of
60 J/mm3, porosity formation due to lack-of-fusion is the limiting factor. Samples fabricated with
energy densities of 60–100 J/mm3 showed comparable thermomechanical behavior in comparison
with the starting as-cast material, and samples fabricated with higher energy densities (>100 J/mm3)
showed very high transformation temperatures but poor thermomechanical behavior. Poor properties
for samples with higher energies were mainly attributed to the excessive Ni loss and resultant change
in the chemical composition of the matrix, as well as the formation of cracks and porosities. Although
energy density was found to be an important factor, the outcome of this study suggests that each of
the PPs should be selected carefully. A maximum actuation strain of 1.67% at 400 MPa was obtained
for the sample with power, scan speed, and hatch space of 100 W, 400 mm/s, and 140 µm, respectively,
while 1.5% actuation strain was obtained for the starting as-cast ingot. These results can serve as a
guideline for future studies on optimizing PPs for fabricating functional HTSMAs.

Keywords: HTSMA; NiTiHf; additive manufacturing; 3D printing; smart materials; shape memory
alloy; laser powder bed fusion
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1. Introduction

High-temperature shape memory alloys (HTSMAs) are a subgroup of shape memory alloys (SMAs)
with a martensitic transformation temperature (TT) above 100 ◦C. HTSMAs are receiving increasing
attention in a variety of applications, including energy, automotive, and aerospace applications [1].
Examples of the potential implementation of HTSMAs in aeronautics include actuators for the
deployment mechanism of protective shrouds and seals for booster ring segments of rockets [2],
variable geometry chevrons for jet noise reduction [3], adaptive components for gas turbines [4],
and more recently, the development of NiTiHf/Zr torque tubes for shape-morphing airplanes [5].

Ternary or quarterly elemental addition to binary NiTi, commonly used for many applications [6–9],
can result in various ranges of TTs up to 900 ◦C based on the type of element and the concentration.
NiTiPd alloys with Pd less than 35 at.% showed high irrecoverable strain during thermal cycling
under load. However, they displayed other favorable characteristics, such as good work output,
low hysteresis, and a reasonable shape memory effect (SME) under some loading conditions [10].
TiNiPt with 20 at.% Pt showed reasonably high TTs, low hysteresis, good work output, and dimensional
stability below 350 ◦C, and good oxidation resistance below 500 ◦C [10]. Zr and Hf are other elements
used for raising the TTs and are becoming more of interest due to their lower cost compared to precious
metals (e.g., Au, Pd, or Pt). Hf/Zr addition provides a reasonable increase in TTs with a lower amount
of material concentration, which are important factors for low-cost, high-performance, and lightweight
actuators [10–13]. Zr addition of more than 10 at.% increases martensite start (Ms) temperature at a rate
of 18 ◦C/at.%, while the addition of 5–10 at.% and 10–25 at.% of Hf increases binary NiTi TTs at a rate of
5 ◦C/at.% and 20 ◦C/at.%, respectively, up to 400 ◦C. Hence, Hf can increase TTs more effectively [10,14].
Moreover, NiTiHf shows better SME and dimensional stability [15] compared to NiTiZr. Similar to
NiTi alloys, properties can be further enhanced in NiTiHf through aging and heat treatment. In Ni-rich
NiTiHf alloys, aging leads to precipitation strengthening via nanometer-sized precipitates known as
H-phase precipitates. More importantly, 10–20 nm H-phase precipitates have been shown to produce
stable NiTiHf both dimensionally and microstructurally, which results in high-strength alloys with
excellent superelasticity and actuation, with significantly less training time compared to the binary
counterpart [16,17].

As alloys mature and the need for new forms emerges, the development of advanced manufacturing
techniques becomes more essential. Conventionally, NiTi-based SMAs have been produced through
commonly used processes [18], such as vacuum induction melting [19], vacuum arc melting [20],
self-propagating high-temperature synthesis [21], powder metallurgy [22], and mechanical alloying [23].
More recently, additive manufacturing (AM) techniques have been widely investigated [24] to address
difficulties in fabricating these hard-to-process alloys, particularly for complex geometries. SLM [25–33],
wire arc AM [34], electron beam melting [35,36], and direct energy deposition [37,38] are among the AM
techniques used to fabricate complex NiTi geometries [39]. A previous study used the laser powder
bed fusion or selective laser melting (SLM) technique to additively manufacture Ni-rich NiTiHf20.
A set of 30 process parameters (PPs) was used to assess manufacturability, compositional changes,
sample densities, and TTs [40]. It was shown that not all the conditions resulted in defect-free samples
and by altering PPs suitable range of power and energy density were found to build crack free samples
with high density and low porosity level. Later, two representative SLM-fabricated samples with
high and low laser powers were mechanically tested which exhibited shape memory behavior and
superelasticity [41]. However, the one fabricated with low laser power of 100 W showed comparable
results to that of the starting ingot. Building on this work, this study focuses on the thermomechanical
properties of several SLM-fabricated NiTiHf specimens with multiple PPs and the effects of SLM PPs
on the microstructure and properties.

2. Materials and Methods

A Ni-rich Ni50.4Ti29.6Hf20 (at.%) alloy was produced using the vacuum induction skull melting
method followed by casting into rods (Flowserve US Inc., heat designated as FS#9). Electrode
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induction-melting gas atomization (EIGA) by TLS Technique GMbh (Bitterfeld, Germany) was then
employed to produce NiTiHf powder. The particle size distribution of 25 to 75 µm was achieved via a
sieving process using the hydraulic Hi-Sifter (Elcan Industries, Tuckahoe, NY, USA). Cuboid parts
having a 4× 4 mm2 cross section and height of 10 mm were additively manufactured by a SLM machine
(Phenix Systems PXM by 3D Systems) equipped with a 300-W ytterbium fiber laser with a wavelength
of 1070 nm and spot size of 80 µm. Laser power (P), scanning speed (v), hatch spacing (H), and layer
thickness (t) were considered as the main PPs of the SLM method. Thirty different combinations of P, v,
and H were fabricated, while t was kept at 30 µm. Delamination, cracks, and pores were common
defects observed in some combinations of PPs. A detailed study on the SLM builds can be found in
our previous work [24,25], and therefore will only be discussed briefly here. Out of 30 fabrication
conditions, 17 samples (A1-A17) that were defect free and/or in conditions to be tested were selected for
characterization and evaluation. The other 13 samples (A18-A30) with incomplete build or large cracks
were not mechanically tested work but were considered in the manufacturability studies. The PPs and
related volume energy density (E = P

vht J/mm3) are shown in Table 1. The Ni, Ti, and Hf contents were
determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) for selected
samples as shown in the Appendix A. Differential scanning calorimetry (DSC, Perkin-Elmer Pyris 1)
was used to determine TT. DSC analysis was run twice for each sample under nitrogen atmosphere
with a heating/cooling rate of 10 °C/min. The samples were tested mechanically by using a 100 kN load
frame (MTS Landmark servohydraulic test platform). To measure the strain, an MTS high-temperature
extensometer was attached to the compression grippers. A mica band heater and internal liquid
nitrogen flow through the grippers were used for heating and cooling of the samples, respectively.
An X-ray diffraction (XRD) unit (Rigaku D/Max) with wavelength of 1.5418 Å and operated at 40 KV
and 44 mA was used to carry out the phase analysis. Bragg–Brentano mode was used for the XRD
measurement and Jade software was used for phase identification. Scanning electron microscopy
(SEM) and scanning transmission electron microscopy (STEM) were performed with a FEI Quanta 3D
FEG and a Tecnai F20, respectively. TEM samples were prepared through focused ion beam (FIB) and
samples were grinded and polished for XRD analysis. Polished samples were then etched using a H2O
(92%) + HNO3 (6%) + HF (2%) solution for 100 s after mounting on epoxy for optical micrographs.

Table 1. SLM process parameters used for fabrication of cuboid samples. A18-A30 were not tested and
no data is available for the actuation strain.

Sample
(ID from

[40])

Laser
Power

(W)

Scanning
Speed
(mm/s)

Hatch
Spacing

(µm)

Energy
Density
(J/mm3)

Austenite
Finish (Af)

(◦C)

Actuation
Strain @ 300

MPa (%)

A1(#14) 100 1000 60 55.5 119 0.88

A2(#8) 100 400 140 59.5 160 1.54

A3(#19) 250 1000 140 59.5 225 0.54

A4(#6) 250 1000 120 69.4 254 0.55

A5(#18) 210 800 120 72.9 258 0.36

A6(#25) 250 733 140 81.2 288 0.3

A7(#2) 135 400 120 93.7 256 0.6

A8(#5) 175 600 100 97.2 260 0.14

A9(#29) 250 1000 80 104.2 294 0.4

A10(#13) 250 466 140 127.5 327 0.44

A11(#15) 250 1000 60 138.9 304 0.33

A12(#3) 210 400 120 145.8 327 0.21

A13(#27) 150 200 140 178.6 332 0.25

A14(#16) 250 733 60 189.4 331 0.16



Metals 2020, 10, 1522 4 of 21

Table 1. Cont.

Sample
(ID from

[4 0])

Laser
Power

(W)

Scanning
Speed
(mm/s)

Hatch
Spacing

(µm)

Energy
Density
(J/mm3)

Austenite
Finish (Af)

(◦C)

Actuation
Strain @ 300

MPa (%)

A15(#17) 200 200 140 238.1 348 0.56

A16(#26) 250 466 60 297.6 363 0.29

A17(#10) 150 200 80 313 353 0.34

A18(#4) 135 800 80 70.3 143 N/A

A19(#20) 100 733 60 75.7 146 N/A

A20(#9) 150 1000 60 83.3 187 N/A

A21(#24) 210 800 80 109.4 294 N/A

A22(#7) 200 1000 60 111.1 276 N/A

A23(#1) 100 200 140 119.0 154 N/A

A24(#22) 100 200 120 138.9 150 N/A

A25(#30) 135 400 80 140.6 239 N/A

A26(#21) 100 200 80 208.3 144 N/A

A27(#12) 210 400 80 218.7 347 N/A

A28(#23) 100 200 60 277.8 280 N/A

A29(#28) 250 200 140 297.7 346 N/A

A30(#11) 250 200 120 347.2 378 N/A

3. Results and Discussion

3.1. Microstructure

Figure 1 shows the morphology of the NiTiHf powder and a cross section of one particle cut
by FIB. The uniform gray tone in the SEM back-scattered image in Figure 1a indicates good starting
homogeneity of the powder. As shown from the previous study [40], low levels of oxygen accompany
the EIGA process while keeping the chemistry close to the target composition. The particles are mostly
spherical with occasional microsatellites that can form due to the collision of fine and coarse particles
during gas atomization. The back-scattered electron image reveals dendritic structures in the powder.
This is most likely the solute segregation of the Hf during rapid cooling in gas atomization [42].
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Figure 1. SEM back-scattered electron images of (a) powder morphology and (b) cross section of one 

particle cut by FIB and showing an entrapped gas pore. Red arrows indicate micron-sized particles. 
Figure 1. SEM back-scattered electron images of (a) powder morphology and (b) cross section of one
particle cut by FIB and showing an entrapped gas pore. Red arrows indicate micron-sized particles.



Metals 2020, 10, 1522 5 of 21

Figure 2 shows the optical micrographs of the selected SLM NiTiHf cross sections from low
to high energy density. Sample A3 has a low energy density of 59.5 J/mm3 and shows a crack-free
microstructure in which some irregular pores are formed. The presence of irregular porosities confirms
the lack of sufficient energy density to appropriately melt all the powders [43]. Samples A4 and A9,
with energy densities of 69.4 J/mm3 and 104.2 J/mm3, respectively, show crack-free microstructures
and smaller pores as compared with the A3 sample. When the energy density reaches 138.9 J/mm3 in
sample A11, the presence of microcracks and micro spherical pores can be observed. Increasing laser
power to 250 W results in high temperature gradients, whereas the high scanning speed of 1000 mm/s
causes a rapid solidification. The input of high thermal energy followed by rapid cooling leads to
microcrack formation in the SLM parts [44,45]. Some micro spherical porosity can be found in the
A11 sample. Gas entrapment during fabrication and Ni evaporation during the SLM process are
two possible reasons for spherical pore formation. The gas-trapped pores formed inside the powder
particle play a role in the formation of this kind of porosity; however, other possible reasons exist,
such as instable melt-pool flow and Maragoni-driven flow [46]. With very high energy densities of
189.4 J/mm3 (A14) and 178.5 J/mm3 (A13), the long cracks form alongside the melt pools, and in some
cases (A15, not shown here) large spherical pores, dominate the microstructure. The solidification
shrinkage due to the high temperature gradient forms long cracks on the melt-pool tracks. The high
energy density also leads to keyhole defects such as the large spherical pores that are usually formed
in the middle of the melt pool [47].
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Figure 2. Representative micrographs from perpendicular to build direction of the as-fabricated SLM
NiTiHf parts with different levels of energy density (Ev): (A3) Ev = 59.5 J/mm3, (A4) Ev = 69.4 J/mm3,
(A9) Ev = 104.2 J/mm3, (A11) Ev = 138.9 J/mm3, (A14) Ev = 189.4 J/mm3, and (A13) Ev = 178.5 J/mm3.
BD shows the building direction.

Optical microscopy images of A10 and A11 from the samples’ sides (parallel to build direction)
are shown in Figure 3. The semicircular melt pools are marked with dashed lines. As discussed earlier,
energy density is one of the most significant factors affecting the microstructure of SLM parts, but it is
not the only factor. Samples A10 and A11 were selected because they have approximately the same
energy densities but different PPs, namely scanning speed and hatch spacing. The laser power and
scanning speed define the melt-pool size, and the hatch spacing dictates the melt-pool overlaps. In this
case, the melt-pool overlap is 55 µm and 75 µm for A10 and A11, respectively. The differences in the
melt-pool overlap result in differences in thermal history and microstructure, potentially leading to
different thermomechanical behaviors. In other words, in addition to energy density, the thermal
history plays an important role in type of defects, precipitates, grain size, and textures that can form.
As shown in Figure 3, long cracks form in A10. However, a uniform crack-free microstructure is
achieved in A11 with nearly the same energy density, showing the importance of selecting the right
combination of PPs to define the thermal history. This is primarily attributed to the level of residual
stresses induced due to the large thermal gradients with two possible mechanisms: the temperature
gradient mechanism (TGM) and molten pool cooling. In TGM, the laser creates a melt pool with a very
high temperature gradient beneath the laser spot, causing the material to expand, generating tensile
stresses (σth) as shown schematically in Figure 3c. The neighboring solidified sublayers are relatively
cold and resist this expansion, resulting in compressive stresses on these layers and bending toward
the laser beam (Figure 3c). Upon reaching the material yield strength, these compressive stresses can
plastically deform the underlying layers, which can form cracks. In molten pool cooling, once the
melt pool cools down, it tends to shrink due to thermal contraction while the underlying/surrounding
cold material restricts the shrinkage. This induces tensile stresses in the current solidified layer and
compressive stresses in the surrounding area [45,48,49].
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Figure 3. Optical images from the build direction showing (a) sample A10 with long cracks along
the BD, (b) crack-free micrograph of sample A11, and (c) schematics of heating and cooling stages in
temperature gradient mechanism as a probable cause of cracks.

Figure 4 shows SEM and TEM images of samples A2, A8, and A10 as representatives of samples
with low, medium, and high TTs. The grains in SEM micrographs for fabrications of A8 and A10
(Figure 4c,f) span to several melt pools and layers, showing the grains to be columnar. Intergranular
cracking in A10 is reminiscent of solidification cracking or ductility dip cracking [50,51]. The melt-pool
boundaries in Figure 4c,f (marked with red arrows) have a wider cellular structure and, most likely,
larger sites of elemental segregation. These cellular structures can be formed due to the high cooling
rates where there is not enough time for dendritic branching to occur [52,53]. Micro segregation in
the melt pool can be attributed to partitioning as the solidification progresses. Further compositional
analysis of the cellular solidification of A8 is shown in Figure 5. The SEM micrographs for A8 and A10
(Figure 4c,f) show plate martensite spanning the grains through the melt-pool boundaries. At room
temperature, all three fabrications show martensitic B19’ monoclinic phase with mixes of both the
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plate-like and mosaic martensite morphologies. Upon closer inspection of the martensite laths in the
structure appear to bend upon low-angle boundaries, as shown with the aqua arrows in the A2 and A8
fabrications (Figure 4b,d). In both the A2 and the A10 fabrications, small contours were present in the
martensite laths (Figure 4a,g). The insert in Figure 4a shows a more magnified view of these contours.
These contours are presumed to be dislocations or antiphase boundaries, but further characterization
is needed for verification.
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Figure 5. (a,b) Low-camera-length STEM image of A8 showing light z-contrast along the boundaries
and (c–f) compositional analysis of the cellular solidification. Yellow and orange arrows show dark
and light secondary phases, respectively. EDS analysis on the green area showed oxide formation on
grain boundaries.
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All fabrications reveal a solute boundary network within the grains, as well as nanoprecipitates
on the grains and cell boundaries (Figure 4h). This is unsurprising, as these are preferable sites
for precipitate formation. Low-camera-length STEM imaging revealed light z-contrast along these
boundaries (Figure 5a). The boundaries are likely to be Ni lean and Ti rich, with some boundaries
Hf enriched; similar variations have been observed in NiTi in previous work [54,55], while opposite
behavior has been reported in other Ni and Fe alloys with high refractory metals [56–59]. The dark
and light secondary phases (yellow and orange arrows) were further analyzed by mapping and point
scans (Figure 5b–e). The X-ray mapping of the selected area suggests the dark phases to be Ti-rich
oxides, 13 ± 9 nm, and the light phases to be Hf-enriched oxides, 21 ± 19 nm. It should be noted that
the average cell width is 113 ± 21 nm and that the cell shape is not symmetric. Energy-dispersive
X-ray spectroscopy (EDS) analysis of the cellular networks and secondary phases in the A10 fabrication
revealed similar enrichments and particles. No EDS evidence of H-phase or Ni4Ti3-like precipitates
was found, while electron diffraction data were inconclusive. Oxidation during SLM is inevitable
due to the high-temperature melt pool, impurities (e.g., oxygen) present in the chamber atmosphere,
oxygen adsorption on the powder surface, or powder quality [60].

3.2. Transformation Temperatures and Phases

Figure 6 shows the DSC curves for selected samples categorized in two groups. The first set
of samples (Figure 6a) have energy densities below 100 J/mm3, and the second set (Figure 6b) have
energy densities above 100 J/mm3. In general, TTs shift to higher temperatures by increasing the energy
density for both categories. The effect of the energy density is apparent in the range of austenite finish
(Af) temperatures, which are 100 to 250 ◦C for the low-energy (LE) samples and 250 to 350 ◦C for the
high-energy (HE) samples. It is well known that the Ni content plays a significant role in TTs of Ni-rich
alloys. A higher Ni content lowers the TTs [61].
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Figure 6. DSC curves of SLM NiTiHf samples with energy densities (a) below 100 J/mm3 and (b) above
100 J/mm3. (c) Enthalpy of transformation as a function of energy density. ∆T shows thermal hysteresis
defined as Af–Ms and the shaded shows area where enthalpy of transformation was obtained.

In the LE category, the volume energy density slightly increases from A1 to A3, but there is a
large shift observed in TTs. The Ni loss mostly occurs in the center area of the melt pool exhibiting the
highest temperature. A higher laser power or a higher linear energy density (P/v) results in a wider
affected area and more Ni evaporation. The higher power in sample A3 (250 W) is an example of this
effect, with increased Ni evaporation and higher TTs. Local Ni evaporation means heterogeneous
composition distribution and a wider DSC peak for samples such as A3. Other local phenomena, such as
defects, dislocations, precipitates, and internal stresses, can also impact the TTs. For samples A3–A6,
no significant change or a slight shift to higher TTs can be detected as the energy density increases.

Precipitate and/or inclusion formation during the high-temperature SLM process is another
mechanism that can affect TTs. Ni/Ti-rich nonmetallic inclusions can form during the fabrication,
altering the matrix composition and thereby the TTs. It is noteworthy that the amount of Ni plays a
significant role in TTs for Ni-rich alloys, but this effect is weakened in Ti-rich compositions. As shown
in the EDS analysis of Figure 5, the Ti(Hf)-rich oxides that form in the matrix can affect the composition
of the matrix. The Ti-rich particles deplete the Ti from the matrix and decrease the TTs; however,
Ni evaporation can still be the dominant effect. Additionally, the oxide formation on the hot zone of
the melt pool can hinder Ni evaporation [62]. Therefore, the Ti-rich oxide formation not only shifts the
alloy to a more Ni-rich matrix, but also impedes more Ni evaporation, which is the likely explanation
for the lower TTs in sample A7.

In the HE samples, the same trend was observed except for very high energy densities. A15 and
A17 have the highest linear energy density of 1000 J/m and 750 J/m, respectively. The high linear energy
density significantly increases the size of the melt pool, and consequently more areas are exposed
to Ni loss and became Ni lean. Because the TTs of Ni-lean samples are not affected by composition
alteration, sharper transformation peaks were observed. Other factors such as grain size, dislocations,
and internal stresses can be of importance in phase transformation and require further investigation.

Enthalpy change (∆H) during phase transformation is derived from the DSC curve and summarized
in Figure 6. ∆H is calculated by taking the area under the heating and cooling curves during forward
and reverse transformation. This change in enthalpy is due to the changes in chemical enthalpy and
strain energy of the transformation as well as the production of internal interfaces during transformation.
The Ni content can explain the enthalpy changes due to the different PPs and related energy densities.
It has been reported that the enthalpy drops when the Ni content increases in binary NiTi [63]. As shown
in Figure 6, ∆H initially increases until energy density reaches 100 J/mm3, followed by a near constant
or a slight drop in energy density between 100 J/mm3 and 200 J/mm3, and finally goes up as the
energy density increases above 200 J/mm3. This trend confirms the previously discussed compositional
variation in NiTiHf samples. The two mechanisms of Ni evaporation and nonmetallic inclusions play
the key roles in this trend. In general, ∆H increases with a decrease in Ni content. For energy density
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below 100 J/mm3, the main mechanism for the linear increase of ∆H can be attributed to the Ni loss,
resulting in higher transformation enthalpies with less Ni content. There is a tradeoff between Ni
evaporation and (Ti,Hf) oxidation for 100–200 J/mm3, and as a result, the same trend is seen for TTs
and enthalpy. When the energy density reaches the higher value above 200 J/mm3, the Ni loss becomes
the dominant mechanism.

The hysteresis values, defined as Af minus Ms, are mostly between 40 and 60 ◦C except for sample
A3, which is 31.5 ◦C. These values are consistent with the previously reported hysteresis ranges for
NiTiHf alloys. It is also noted that higher Ni content results in lower hysteresis in cases with Ni less
than 50.4 at.% [64,65].

To confirm DSC data and Ni evaporation during process, chemical compositions of selected
samples were measured (Appendix A). Figure 7 shows Af and laser power as a function of nickel
content. Af is well-correlated with the measured Ni content and increases almost linearly with the
decrease of Ni. The trend and ranges are very close to what has been reported for extruded and
homogenized NiTiHf20 alloys [64] and slight variations can be due to the inhomogeneities in the SLM
fabricated samples. Similarly, Ni content decreases with the increase of laser power due to higher melt
pool temperatures resulting in higher rate of Ni-evaporation. However, TTs were not solely dependent
on laser power as they also depend on other process parameters and energy density. For example,
A24 and A28 have the same laser power and speed (100 W and 200 mm/s) but different hatch spaces
(120 µm and 60 µm, respectively) so the energy density of A28 is twice the energy density of A24.
Therefore, lower Ni and higher TTs are expected for A28. On the other hand, A24 and A25 have almost
the same energy density (140 J/mm3) but different Ni-content and TTs which stem mainly from different
laser powers and hatch spaces. Therefore, just relying on either laser power or energy density is too
simplistic and other process parameters should also be considered for the careful selection of PPs and
to tailor TTs.
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Figure 7. Af (circles) and laser power (squares) as a function of measured Ni content after fabrication.
Red dotted line shows the trends of Af and the star shows powder Af and Ni content. Cross shapes
show the Af of the homogenized NiTiHf20 samples with different Ni contents from [64].

Figure 8 shows the XRD spectra of NiTiHf powder, sample A2 (Ev = 59.5 J/mm3) and sample
A10 (Ev = 127.5 J/mm3) at room temperature. The powder shows a fully martensitic phase at room
temperature, which confirms the DSC results showing martensite finish temperature near 80 ◦C.
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Similarly, samples A2 and A10 are also martensitic at room temperature consistent with the DSC results
and martensite phase was found to be monoclinic B19’ which is along the findings reported for the
NiTiHf alloys reported in the literature [66]. No significant differences can be observed in the phases
and characteristic peaks of these two samples and major peaks are observed within 35◦–50◦ of 2θ.
However, there are slight differences in peak intensities between the powder and the SLM-fabricated
samples. This can be expected, given that the parts are built under varying thermal conditions that can
result in preferentially formed martensite orientations.
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3.3. Thermomechanical Behavior

Constant stress thermal cycling responses under various levels of compressive stress are shown in
Figure 9 for selected samples. For brevity, only six samples are shown; extracted data corresponding to
the other samples can be found in the summary figures. The results are categorized into two main
categories as defined in Section 3.2: LE and HE. The upper cycle temperatures were selected based on
the DSC results and Af temperature to ensure complete phase transformation. In the lower stresses
(100 MPa and 300 MPa), most of the samples show no or low transformation or residual (εirr) strains.
At 100 MPa, A1 and A2 show recovered (actuation) strains (εrec) of 0.9% and 0.94%, with 0.03% and
zero residual strains, respectively. These are in line with the 0.72% actuation strain and zero residual
strain observed for ingot. The rest of the samples show less than 0.4% actuation strains. The low
actuation strains in these samples are mostly due to insufficient applied stress to reorient additional
martensite variants. Hence, partial recovery is achieved.
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Figure 9. Constant force strain-temperature response of selected samples with energy densities below
100 J/mm3 (A1, A2, and A4) and above 100 J/mm3 (A10, A12, and A13) under different constant stress
levels. Values of constant stresses are shown on each curve. Heating curves are shown in solid red;
cooling curves are shown in blue dashed lines.

As the stress level increases, actuation strains start to increase; after a peak stress, they saturate
and then decrease. Once this critical stress is reached, no further thermal cycles are performed.
This peak stress happened at 200 MPa (εrec = 1.15%) for A1 and at 400 MPa (εrec = 1.67%) for A2,
with comparatively low εirr in both cases. These two have the lowest energy densities among all
samples. Samples A12 and A13 have the highest energy densities; they showed actuation strains of
0.35% and 0.32%, respectively, at 500 MPa, which is much higher than stresses applied on A1 and A2
samples. For a better comparison, actuation strains and residual strains of all samples were extracted
from the thermomechanical cycles shown in Figure 9 for both of the categories and plotted in Figure 10.
The solid lines are the actuation strains, and the dashed lines indicate residual strains measured at the
upper cycle temperature. It is clear that the HE samples mostly exhibited lower actuation strains in
comparison with LE samples. Moreover, higher stress levels are required to induce transformation in
HE samples based on the data shown in Figure 10. In addition, in HE samples, a higher accumulation
of residual strains can be seen compared to the increase of actuation strains.
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Figure 10. Actuation and residual strains as a function of compressive stresses for (a,b) samples with E
below 100 J/mm3, and (c,d) E more than 100 J/mm3.

In general, εrec increases as the level of stress increases, reaching a peak, and then starts to
decrease. This behavior is a previously documented phenomenon for NiTiHf alloys [67]. Increasing
the stress promotes additional variant reorientation, contributing to increased strains. Once a critical
stress is reached, plastic deformation takes place, resulting in decreased strain recovery. As expected,
the irrecoverable strains accompany the transformation at low stresses, and increase as a function of
stress as the other mechanism become more prevalent [10].

As discussed in Nematollahi et al. [40], PPs could affect the compositions and so can result in
affected yield strengths and show peaks at different stress levels. It should be noted that compositions
also impact another important factor which is transformation temperatures. As discussed in Section 3.2,
higher energy densities or lower scanning speeds result in higher temperatures in the melt pool, a higher
level of Ni evaporation, lower Ni content, and thus higher TTs. Higher TTs mean higher critical stresses
needed for inducing martensite phase transformation. It is well reported that Ni-lean NiTiHf alloys
have higher TTs in comparison with Ni-rich NiTiHf alloys while showing poor thermomechanical
stability under thermal cycling, low plastic strength, and large thermal hysteresis [68].

It is noteworthy to study the evolution of TTs as a function of applied compressive stresses.
Figure 11 shows compressive stress versus Ms temperatures for various samples extracted from the
thermal cycling curves. In general, based on the Clausius–Clapeyron (C–C) equation, TTs tend to
increase linearly with the increase in applied stress during each thermal cycling. A1, A2, and A7 have
the lowest slopes—12.6, 8.7, and 13.6 MPa/C—while the HE samples have almost stable Ms, resulting
in high C–C slope. This explains the poor superelastic results achieved for the sample with high power
in previously published work [41].
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The microstructure and thermomechanical properties of the SLM-fabricated NiTiHf samples were
investigated in this study. One of the limitations of this study is that not all PPs resulted in testable
samples. Results showed that that energy density is a primary but not exclusive factor impacting
the properties of SLM parts. For example, while the energy densities of A10 and A11 were similar
(127 J/mm3 and 138 J/mm3, respectively), A10 had longitudinal cracks along the build direction while
A11 was a defect-free sample. In addition to physical properties, other parameters such as laser power,
scanning speed, and hatch spacing can individually alter the thermomechanical behavior of the samples
by changing the final part properties. For instance, the laser power and scanning speeds of A3, A4, A9,
and A11 were kept constant at a level of 250 W and 1000 mm/s, while the hatch spacing decreased
from 140 to 60 µm. Further, as shown in Figure 10, the actuation strains at the stress level of 300 MPa
are different for the samples, and as the hatch spacing increases, the actuation strains also increase.
Two main factors resulted in poor mechanical behavior, particularly for the samples fabricated with
high laser power and energy input, were cracking and Ni evaporation [41]. Nonetheless, it is well
documented that size, shape, and orientation of the grains as well as the texture have a remarkable
impact on the thermomechanical properties of SMAs. As shown in Figure 3, the melt-pool size, shape,
and overlap are different for A10 and A11, while the energy density is almost the same. The overlap
of the melt pools, mainly controlled by hatch spacing, could significantly alter the thermal history
and thus the microstructure and grain morphology of the fabricated samples. Follow-up studies are
needed to investigate the effect of individual parameters on the parts properties. This study provides
general guidelines to select the optimum window of energy density and PPs to tailor the shape memory
properties of SLM NiTiHf parts.

4. Conclusions

In this study, a wide range of PPs, including laser power, scanning speed, and hatch spacing,
were selected to fabricate Ni-rich NiTiHf coupons via SLM technique for the first time. It was discussed
that the energy density plays a key role, but not the only role, in composition, microstructural and
thermomechanical properties of as-fabricated parts. Parts with lower energy densities showed fewer
defects, with the exception of some irregular porosities due to incomplete fusion or spherical gas
entrapment (e.g., A3, A4, and A9). Increasing the energy density resulted in long cracks along
the melt-pool track due to excessive residual stresses (e.g., A10 and A15). Parts showed various
TTs in the range of 100 to 400 ◦C. Parts with higher energy density showed higher TTs than parts
with lower energy density. The Ni evaporation and Ti-rich oxide formation were found to be the
two main mechanisms contributing to the observed changes in the TTs. Composition analysis also
confirmed Ni loss in higher laser powers and energy densities. Higher TT could be a useful alternative
application that should be coupled with further stabilizing processing. The XRD analysis and TEM
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images confirmed the formation of B19’ martensite phase for as-fabricated parts at room temperature.
The thermomechanical responses showed that the recovery strain decreases with the energy density as
a general trend. A maximum actuation strain of 1.67% at 400 MPa was obtained for A2 with power,
scan speed, and hatch space of 100 W, 400 mm/s, and 140 µm, respectively. The results achieved in this
study can be used to select proper PPs to produce SLM NiTiHf samples with properties comparable to
those of conventionally made samples.
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Appendix A

Table A1. Measured Nickel, Titanium, and Hafnium content for selected samples.

SAMPLE
#

POWER
(W)

SPEED
(MM/S)

HATCH
(µM)

EV
(J/mm3)

AF
(◦C)

NI
(AT. %)

TI
(AT. %)

HF
(AT. %)

A28 100 200 60 277 280 50.28 29.82 19.85
A26 100 200 80 208 144 50.5 29.79 19.64
A24 100 200 120 138 150 50.51 29.82 19.63
A19 100 733 60 75 146 50.43 29.81 19.7
A25 135 400 80 140 239 50.32 29.85 19.78
A18 135 800 80 70.3 143 50.49 29.81 19.64
A21 150 1000 60 83 187 50.44 29.81 19.69
A22 200 1000 60 111 276 50.2 29.89 19.84

POWDER — — — — 150 50.42 29.8 19.67
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