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Abstract: Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel
diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the
exercise physiology field are not well understood in terms of monitoring sports performance. This
pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants.
Plasma and urine samples were collected from 26 marathon participants before, immediately after,
2 h after, and one day after a full marathon. The samples were pooled, and exosomal miRNAs
were extracted and analyzed using next-generation sequencing. We determined that the exosomal
miRNA expression profile changed under time dependency in full marathon. New uncharacterized
exosomal miRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p could be potential biomarkers
reflecting physical stress of full marathon in plasma and urine. In addition, some muscle miRNAs
in plasma and urine have supported the utility for monitoring physical stress. Furthermore, some
inflammation-related exosomal miRNAs were useful only in plasma. These results suggest that these
exosomal miRNAs in plasma and/or urine are highly sensitive biomarkers for physical stress in full
marathons. Thus, our findings may yield valuable insights into exercise physiology.

Keywords: small RNA; miRNA; exosome; full marathon; RNA sequencing; NGS

1. Introduction

The marathon is a long-distance running event in which athletes compete for position
and time on a 42.195 km public road course [1]. The event is based on an ancient Greek
legend and began as a new track-and-field event to establish the first modern Olympics [1].
Visualization of marathon exercise intensity is essential for conditioning and physical
condition management of athletes, and there is, thus, a need for the identification of
characteristic biomarkers [2].

“Liquid biopsy” has emerged as a diagnostic method to include molecular biomark-
ers detected in the blood or other bodily fluids such as urine or cerebrospinal fluid of
patients [3]. Blood, among other such bodily fluids, includes cancer origin molecules
that allow for molecular characterization of the disease, facilitating early diagnosis and
monitoring, prognosis, and personalized medicine [4]. The molecular contents of nu-
cleic acid released from cancer are circulating tumor cells, circulating tumor DNA/RNA
(ctDNA/RNA), cell-free DNA/RNA (cfDNA/RNA), RNAs, and protein and are released
as extracellular vesicles, such as exosomes, into body liquids [5–7]. In particular, miRNAs
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have been spotlighted as potential biomarkers for clinical diagnosis [8,9]. MiRNA is a class
of non-coding RNA and has an approximate length of 21–25 nucleotides. In addition, it has
a function of post-transcriptional expression of genes in eukaryotes [10]. miRNA-mediated
transcriptional repression plays an essential role in a wide range of biological processes
such as development, cell proliferation, differentiation, apoptosis, and metabolism [10].
miRNA is released from its transcribed genome into the bloodstream [4,11]. Such miRNA
contained in bodily fluids can also be detected in healthy people and may change naturally
through physical activity [11]. Indeed, previous studies have shown that intense exercise
changes blood miRNA expression, suggesting that miRNA may be a suitable biomarker
of physical stress [4,11–14]. In addition, miRNAs in urine were studied as biomarkers
in a previous study and can be considered as less invasive biomarkers for visualizing
marathon exercise intensity [15]. In particular, exosomal miRNA is contained in nano-sized
extracellular vesicles and released from cells and transferred between cells [16]. In previous
studies, exosomal miRNA has been shown to be expressed under exercise [17]. However,
miRNA biomarkers for the assessment of competitive sports activity have not been estab-
lished. Thus, this study aims to reveal the exosomal miRNA dynamics in urine and plasma
of full-marathon participants by using next-generation sequencing (NGS).

Our previous study showed that the absolute amount of cfDNA increases during
a full marathon [18]. In previous studies, miRNAs have been reported to increase in
blood after exercise [19]. However, only blood was analyzed in those studies. In addition,
mainly muscle-specific miRNAs have been analyzed. Based on these previous studies, we
considered that if we could comprehensively analyze miRNAs in both blood and urine
and discover common biomarkers for them, we could reduce the cost of analysis, find
physiological commonalities in body fluid circulation, and provide a new perspective on
sports physiology. Here, as a continuation of our research activities, we focus on miRNA
as a biomarker screening study during a full marathon as a high-intensity exercise.

In this pilot study, we analyzed the expression pattern of exosomal miRNAs in plasma
and urine before and after a full marathon. The samples were pooled together for analysis
to protect personal information and to examine the expression levels of exosomal miRNA
in plasma and/or urine. We found that the exosomal miRNA expression patterns also
differed time dependently in plasma and/or urine and could be optimized for use in the
bodily fluid types as biomarkers for monitoring physical intensity under the full marathon.
Thus, our pilot study may offer insights toward the development of an evaluation tool for
improving sports performance.

2. Materials and Methods
2.1. Ethical Approval and Study Overview

An overview of this study’s protocol is shown in Figure 1. This study was approved
by the Ethics Committee of the Faculty of Medicine at the University of Tsukuba (Approval
number: 274). All subjects received an explanation and documents in advance regarding
the experiment’s purpose, content, and safety issues and indicated their informed consent.

2.2. Study Participants

A total of 26 healthy male subjects who engaged in aerobic exercise at least twice
per week were recruited for the study. Their mean age was 25.2 years, with a standard
deviation (SD) of 7.3; mean height was 172.0 cm (SD 5.3); and mean weight was 64.9 kg
(SD 6.9). Blood pressure diastolic/systolic was 125.7/74.7 mmHg (SD 9.1/7.9), and mean
marathon time was 3 h 27 min 14 s (SD 58 min 48 s). All subjects completed the 38th
Tsukuba Marathon, and they determined their own pace. The subjects were instructed not
to drink alcohol, to obtain sufficient sleep, and to avoid overeating before the marathon.
On the day of the full marathon, the participants freely performed warm-up exercises and
drank water. Notably, the subjects were the same as the participants in one of our previous
papers [18,20]. The current study focuses on exsomal miRNAs in plasma and urine, and it
includes new knowledge that was not found in the previous paper [18,20]. In this study,
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three subjects were removed after exceeding the criteria for maximum levels of general
biomarkers, including C-reactive protein and urinary albumin, in sedentary conditions
before the full marathon [20]. The final number of samples for analysis was 23.
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Figure 1. Schematic overview of the experimental protocol. Pre, immediately before the full marathon;
post, immediately after the full marathon; 2 h, two hours after full marathon; and 1 d, 1 day after
full marathon.

2.3. Sample Collection

Outside air conditions on the day of the full marathon were 12.7 ◦C and a relative
humidity level of 60.6%. Blood samples of the participants were collected into EDTA blood
collection tubes at four time points: immediately before the marathon (Pre; also before
warmup), immediately after the marathon (Post), two hours after the marathon (2 h), and
one day after the marathon (1 d). The participants were instructed to drink only water
between the Post and 2 h collection points. The collected blood samples were centrifuged
at 3000 rpm for 15 min at 4 ◦C. Aliquots of the plasma were then dispensed into 1.5 mL
microtubes and stored at −80 ◦C until further analysis. These descriptions about the
sample collection are the same as that reported in our previous study [18,20].

2.4. Extracted Exosomal RNA in Plasma and Urine

Exosomal RNA in plasma sample (total pooled volume 4 mL) was extracted using
a Plasma/Serum Circulating and Exosomal RNA Purification Kit (NORGEN BIOTEK,
Thorold, ON, Canada). Exosomal RNA in urine samples (total pooled volume 30 mL)
was extracted using a Urine Exosome Purification Maxi Kit (NORGEN BIOTEK, Thorold,
ON, Canada). After this, RNA purity check, library preparation, sequencing, and data
analysis were outsourced to Novogen (Beijing, China). RNA purity was then checked using
a NanoPhotometer (IMPLEN, Munich, Germany), and RNA concentration was measured
using Qubit RNA Assay Kit in Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). RNA integrity was assessed by using the RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).

2.5. Library Preparation for Small RNA Sequencing

Small RNA sequencing was performed in Novogene Biotech (Beijing, China) as
outsourcing. The methods including library preparation and data analysis are described as
the following, according to the reports produced by the Novogene Biotech. An amount
of 3 µg of total RNA per sample was used as input material for the small RNA library.
Sequence libraries were generated using the NEBNext multiplex small RNA library prep
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set for Illumina (New England Biolabs, Ipswich, MA, USA), and index codes were added
to attribute a sequence for each sample. Briefly, NEB 3′SR adapters were directly and
specifically ligated to the 3′ ends of exosomal miRNAs, siRNAs, and piRNAs. After the 3′

ligation reaction, the SRRT primers hybridized to the excess 3′SR adapters (which remained
free after the 3′ ligation reaction) and converted the single-stranded DNA adapters into
double-stranded DNA molecules in order to prevent adapter dimer formation. In addition,
as dsDNA is not a substrate for ligation mediated by T4 RNA ligase 1, it does not ligate to
the 5′SR adaptor in the subsequent ligation step. We ligated the 5′ ends adaptor to the 5′

ends of miRNAs, siRNAs, and piRNAs. Next, first-strand cDNA was synthesized using
M-MuLV reverse transcriptase. PCR amplification was performed using LongAmp Taq 2X
master mix, SR primers for illumina sequencing platform, and index primers. PCR products
were purified in an 8% polyacrylamide gel (100 V, 80 min). DNA fragments corresponding
to 140–160 bp (the length of small non-coding RNA plus 3′ and 5′ adapters) were collected
and dissolved in 8 µL of elution buffer. Finally, the quality of the libraries was assessed
on an Bioanalyzer 2100 system (Agilent Technologies, Inc., Santa Clara, CA, USA) using
DNA High Sensitivity Chips (Agilent Technologies). Raw data for RNA sequencing were
acquired using a high-throughput sequencing system, NovaSeq 6000 (Illumina, San Diego,
CA, USA).

2.6. Data Analysis Process

The analysis process is shown in Figure 2.
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Raw data (raw reads) and clean data (clean reads) in quality control FASTQ format
were obtained by removing the following reads from the raw data: those that contained
ploy-N, 5′ adapter contaminants, or ploy A, T, G, or C; those that did not contain 3′ adapters
or insertion tags; and those that were of low quality (Table S1). Simultaneously, the Q20,
Q30, and GC contents of the raw data were calculated (Table S2). Next, a specific range of
lengths from the clean reads was selected to perform all downstream analyses (Table S3).

The small RNAs were mapped to a reference (GRCh38) using Bowtie (version 0.12.9)
and analyzed for expression and distribution without mismatch [21].

The mapped small RNA tags were used to find known miRNAs. Using miRBase20.0
as a reference, modified software miRDeep2 (version 2_0_0_5), ViennaRNA (version
2.1.1) and sRNA-tools-cli were used to retrieve potential miRNAs and analyze secondary
structure [22]. In addition, miRNA counts and base biases were obtained for the first
position of identified miRNAs of a specific length and for each position of all identified
miRNAs, respectively.

To remove tags derived from protein coding genes, repetitive sequences and small
RNA tags were mapped from the specified species itself to RepeatMasker (version open-
4.0.3) and Rfam databases.

Features of the hairpin structure of miRNA precursors can be used to predict novel
miRNAs. The available software miREvo (version 1.1) and miRDeep2 were integrated to
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predict novel miRNAs by exploring the secondary structure, dicer cleavage sites, and mini-
mum free energy of small RNA tags not annotated in the previous step [22,23]. At the same
time, we obtained the identified miRNA counts and the base bias for the first position of
a particular length and for each position of all identified miRNAs, respectively (Figure S1).

In the previous alignments and annotations, some small RNA tags were mapped to
multiple categories. To map all unique small RNAs to only one annotation, the priority rule
of known miRNA > rRNA > tRNA > snRNA > snoRNA > repeat > gene > NAT-siRNA >
gene > novel miRNA > ta-siRNA was followed. The total rRNA ratio was used as a marker
as a sample quality indicator.

The expression level of miRNAs was estimated by TPM (transcripts per million)
using the following criteria normalization formula: normalized expression = mapped read
counts/total reads × 1,000,000 [24].

Differential expression analysis used the DEGseq (version 2010) R package [25]. The
p-value was adjusted using q-value [26]. Q-value was set as the threshold for significant
differential expression by default.

2.7. Selection of miRNA Potential Biomarkers by Filtering with Sufficient Expression and Fold Change

In order to narrow down the miRNA biomarker candidates for monitoring the physical
activity intensity of the full-marathon participants, the following process was employed
using the miRNA expression profile. The expression data were filtered with a read count
of 100 in time-point samples collected immediately after the full marathon in plasma and
urine, respectively. Then, we added 1 to the zero read count of exosomal miRNA in the
urine and plasma samples before the full marathon. The fold change was then calculated
between the TPM values of the Pre time-point sample and the Post time-point sample to
yield the fold change value. miRNAs with a fold change of more than 2 in urine and blood
were selected as biomarker candidates.

3. Results
3.1. Quality Information of the NGS Run and Informatics Analysis

Regarding RNA data from plasma and urine, we obtained a total of 19–36 million
reads (Table S1). In terms of quality, Q20 was over 93% and Q30 was over 89% (Table S1),
and 7–31 million reads (Table S2) were clean reads. The total quantity of RNAs was
0.9–7 million (Table S3). Among these data, there were 0.4–1.3 million known miRNAs
(Table S3). In addition, there were 175–580 novel miRNAs in plasma (Table S3), and there
were 976–2982 novel miRNAs in urine (Table S3).

Previous studies have shown that miRNAs as new biomarkers can be found in plasma
with around 0.5 million reads [27]. In the present study, since the average number of total
reads in plasma is about 2.8 million, we expected that miRNAs as novel biomarkers could
be found. The software miRDeep2 was used in this analysis. Compared with previous
studies, our results have a Spearman’s correlation of more than 0.85 between different
miRNA algorithms [27]. From this comparison, the number of reads required to find known
and novel miRNAs in plasma has been reached, and the quality of the data was considered
to be at a certain level. Thus, we proceeded with our analysis based on these data.

3.2. MiRNA Expression Profile during Full Marathon

Visualization of marathon exercise intensity is important for conditioning and man-
agement of the physical condition of athletes, and there has been a need to determine
characteristic biomarkers for such visualization. To identify such biomarker candidates, we
performed miRNA-seq analysis. We measured the samples at pre-exercise, during exercise,
and post-exercise time points in urine and blood. The miRNA profile showed greater corre-
lation between time points in blood samples than in urine (Figure 3A). Next, differential
expression miRNA (DEM) analysis identified 878 miRNAs. These RNA expressions were
changed explicitly at certain time points (Figure 3B). These results suggest that miRNA
expression changes in a time-dependent manner in a full marathon.
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Figure 3. miRNA expression profile under full marathon. (A): Pearson correlation between samples.
(B): Heatmap showing DEMs. Abbreviations: P-pre (plasma sample before marathon), P-post
(plasma sample immediately after marathon), P-2h (plasma sample after two hours of marathon),
P-1d (plasma sample after one day of marathon), U-pre (urine sample before marathon), U-post
(urine sample immediately after marathon), U-2h (urine sample two hours after marathon), and U-1d
(urine sample one day after marathon).

Next, we used Venn diagrams to select miRNAs with sufficient expression and high
fold changes as biomarkers (Figure 4). For example, miRNAs such as hsa-miR-424-5p, hsa-
miR-361-5p, hsa-miR-223-3p, and hsa-miR-223-5p were upregulated in plasma (Figure 5A).
In addition, other miRNAs such as hsa-miR-218-5p, hsa-miR-3158-3p, hsa-miR-3158-5p,
and hsa-miR-517a-3p were upregulated in urine (Figure 5B). Moreover, miRNAs such as
hsa-miR-582-3p, hsa-miR-23a-3p, and hsa-miR-199a-3p were upregulated in both plasma
and urine (Figure 5C). Table 1 shows comparisons of these miRNAs and previous studies.
The previous studies reported that these miRNAs reflect cancer, inflammation, or muscle
damage. Moreover, novel miRNAs, for which there were no reports on characterization,
were identified (Table 1). These results suggest that miRNAs that are unique and/or
common in bodily fluids could serve as candidates for biomarkers.
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Table 1. Example of exercise-dependent miRNA list from Figure 4.

Type of RNA Example of Characteristic Sample with Expression Reference

hsa-miR-424-5p Pancreatic cancer, muscle, and inflammation Plasma [12,28,29]
hsa-miR-361-5p Lung cancer and muscle (smooth muscle) Plasma [30,31]
hsa-miR-223-3p Colon cancer, muscle, and inflammation Plasma [12,32,33]

hsa-miR-223-5p
Malignant neoplasms including vulvar carcinoma,

non-small cell lung cancer, bladder cancer, prostate cancer,
and inflammation

Plasma [12,34–37]

hsa-miR-218-5p Chronic obstructive pulmonary disease and muscle
(smooth muscle) Urine [38,39]

hsa-miR-3158-3p Unknown Urine
hsa-miR-3158-5p Unknown Urine
hsa-miR-517a-3p Lung cancer and inflammation Urine [12,40]

hsa-miR-1-3p Muscle specific Plasma and Urine [4,19,41]
hsa-miR-206 Muscle specific Plasma and Urine [4,19,42]

hsa-miR-23a-3p Muscle Plasma and Urine [43,44]
hsa-miR-582-3p Lung cancer and muscle (smooth muscle) Plasma and Urine [45,46]

hsa-miR-199a-3p Colorectal cancer and muscle Plasma and Urine [47,48]

3.3. Timeline of Known Muscle-Specific MiRNA Expression Patterns in Plasma and Urine

Previous studies suggested that miRNA expressions were regulated by
exercise [4,17,19,49]. In particular, circulating muscle-specific miRNAs (known as my-
omiRs) could reflect muscle status such as damage, exercise, and recovery [4,9,17,19].
However, none of those studies time dependently compared the exosomal miRNAs in
plasma and urine collected from the same samples. Known muscle-specific exosomal
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miRNA changes were confirmed in the overlapped region in plasma and urine (Figure 6).
For example, has-miR-1-3p in plasma increased rapidly immediately after full marathon
and decreased with time. On the other hand, has-miR-1-3p in urine peaked at the U-2h
time point, then tended to decrease over time. These expression patterns were also con-
firmed in hsa-miR-499a-5p and hsa-miR-499-3p. These results are in line with expression
patterns of miRNAs in urine, along with expressions of miRNA in plasma, reported in past
studies [14,19,41,50,51].
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4. Discussion

In order to monitor and improve athletic performance, more detailed monitoring
of physical function requires simple and rapid biomarkers [2]. Previous studies have
reported that common blood indicators such as K+, BUN, creatinine, CK, and LDH can
be monitored for athlete performance [52,53]. However, given recent advances in genome
analysis technology, it may be possible to establish a more precise assessment method.
Since liquid biopsy was developed as a diagnostic method to use molecular biomarkers
in the blood or other bodily fluids [4,17,54], we focused on nucleic acids and studied the
variation before and after a full marathon. For example, a previous study showed that
the absolute amount of cfDNA in plasma is elevated during a full marathon [18]. Since
miRNAs, such as those included in exosome, also have attracted attention as diagnostic
biomarkers for the systemic response of exercise performance [4,11,14,17,19], we sought to
identify biomarker candidates to visualize physical activity by analyzing plasma and urine
samples from full-marathon participants using NGS in this pilot study.

Our results showed higher correlations between plasma samples than between
urine samples (Figure 3A). A total of 878 DEMs were identified to respond under a full
marathon (Figure 3B). Interestingly, our results suggested that some miRNAs changed in
a time-dependent and bodily fluid-dependent manner (Figures 5 and 6 and Table 1). For ex-
ample, we found that hsa-miR-424-5p, hsa-miR-361-5p, hsa-miR-223-3p, and hsa-miR-223-5p
increased specifically in plasma (Figure 5A and Table 1). In particular, hsa-miR-424-5p, hsa-
miR-223-3p, and hsa-miR-223-5p are reported as inflammation-related miRNAs [12,55–58].
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However, previous research has not investigated the expression of has-miR-223-3p and
hsa-miR-223-5p in urine during a full marathon. We confirmed that the expression levels
of has-miR-223-3p and hsa-miR-223-5p were upregulated in Post time-point in plasma
during a full marathon (Figure 5A). Furthermore, hsa-miR-424-5p was also upregulated
only in plasma after the full marathon in our filtering (Figure 5A), and similar trends were
observed in previous studies [19,41]. In previous studies, this miRNA was not upregulated
in 10 km and half-marathon and was only found to be expressed in the full marathon [41].
This suggests that it could be only expressed in cases of prolonged intense exercise or
long-term running. These results suggest that these miRNAs can be useful only in plasma
for monitoring physical stress during full marathon.

Next, we found that exosomal miRNAs such as hsa-miR-218-5p, hsa-miR-3158-3p, hsa-
miR-3158-5p, and hsa-miR-517a-5p specifically increased in urine (Figure 5B and Table 1).
For example, hsa-miR-218-5p is related to chronic obstructive pulmonary disease (COPD),
which is a risk factor for cancer [38]. Specifically, the expression of hsa-miR-218-5p is
high in healthy people, while it is low in smokers and people with COPD [38]. Therefore,
it is presumed that the expression level of hsa-miR-218-5p is increased by activation of
lung function. Furthermore, we found two miRNAs, namely hsa-miR-3158-3p and hsa-
miR-3158-5p, in urine samples, and their functions have not been clearly determined
in previous research for full marathons. Thus, these results indicate that cancer-related
miRNAs and unknown-function miRNAs could be useful for monitoring physical activity
using urine samples.

Next, we selected overlapped miRNAs in a Venn diagram for both urine and plasma
(Figure 4 and Table 1). Then, hsa-miR-1-3p, hsa-miR-206, hsa-miR-23a-3p, hsa-miR-582-3p,
and hsa-miR-199a-3p were upregulated in plasma and urine (Table 1). Hsa-miR-582-3p
expression correlated with the overall and recurrence-free survival of non-small-cell lung
cancer patients and activating effect on Wnt/β-catenin signaling for stem cell pluripotency
regulation and cell fate decisions during development [45]. The expression of hsa-miR-582-
3p may be due to the activation of respiratory and pulmonary functions under exercise
and the differentiation of stem cells and cells in the lung. Hsa-miR199a-3p has been
reported as an miRNA biomarker for colorectal cancer (CRC) in serum, and the expression
was significantly higher in CRC patients than in non-cancer patients [47]. Although
mRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p have been reported in previous
studies in oncology, there have been no previous reports on their expression under exercise
in healthy individuals [45,47]. Hsa-miR-23a-3p has been widely reported in previous
exercise studies [43,44,59–62]. In our study, we focused on plasma and urine to confirm the
upregulation of hsa-miR-23a-3p. In addition, it is reported that for participants subjected
to resistance exercise, hsa-miR-23a-3p was upregulated in the group that ingested protein
and in a group that was not detected in previous research [44]. Furthermore, previous
studies in postmenopausal women have reported that miR-23a-3p upregulation levels
also correlate with TRAP5b, a gene involved in bone resorption [62]. Moreover, previous
research using human renal cell carcinoma cells showed that upregulation of hsa-miR-
23a-3p increases cell survival, proliferation, and migration and has been reported to be
useful as a biomarker [61]. In contrast to the above previous research, hsa-miR-23a-3p
has been reported to be downregulated due to high-intensity exercise such as resistance
exercise by muscle biopsy [43]. It has also been reported in previous studies that it is
involved in the regulation of myogenic differentiation by repressing the expression of fast
myosin heavy chain isoforms [60]. In addition, downregulation of hsa-miR-23a-3p after
exercise has also been reported, but these may be due to differences in sampling, such as
muscle biopsy [43,59]. This discrepancy in tissue and blood studies under exercise could
be explained by the opposite phenomenon in tissue and plasma miRNA expression by
drug-induced Injury in previous research [63].

Other miRNAs in Table 1 such as hsa-miR-1-3p and hsa-miR-206 are reported as
muscle specific miRNAs. These miRNAs have been suggested to be useful as biomarkers
for analyzing exercise intensity [14,19,42]. They could be useful for monitoring physical
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intensity under full marathon in both plasma and urine. Thus, we further investigated
muscle-specific miRNAs comprehensively in plasma, such as has-miR-1-3p, hsa-miR-1-5p,
miR-206, and miR-208b-3p (Figure 6). Expression levels of has-miR-1-3p, has-miR-206,
has-miR-208b-3p, has-miR-499a-5p, and has-miR-499b-3p tended to increase earlier in
blood after exercise and later in urine (Figure 6). Our results support the utility of several
previously reported circulating miRNAs, and we observed their new dynamics in plasma
and urine.

For example, in a different study using the same sample, Figure 4 of the paper shows
that leukocytes and myoglobin changed several tens of times after exercise [18]. By contrast,
Figure 5B of the present miRNA study shows a maximum of about 10,000-fold change, and
the TPM change in Figure 6 shows an increase in several thousand-fold change. Therefore,
one of the features of the present study is that it shows the possibility of the use of these
miRNAs as highly sensitive biomarkers compared with the existing kinetic markers.

Variations of existing exercise markers, myoglobin in blood and white blood cells,
have been shown in our previous research [18]. The trends in myoglobin and leukocytes,
rising and falling before and after the full marathon, are similar to the fluctuation pattern
of muscle-specific miRNAs such as miR-1-3p, miR-133a-5p, miR-206, miR499a-5p, and
miR-499b-3p in plasma and urine in the present study. Based on the above findings,
along with the variation of general hematological measurements such as leukocyte and
myoglobin, we confirmed that some inflammation-related and muscle-specific miRNA
showed higher fold changes than the general markers, suggesting the possibility of more
sensitive markers. These results suggested correlations between the miRNAs and muscle
damage or inflammation markers. However, because this study used pooled samples,
statistical correlation analysis could not be achieved.

This study has several limitations. First, a limited number of samples were collected
from full-marathon runners. Many of the participants were men; thus, gender bias was
present. Second, a next-generation sequence sample was created from a pooled sample
to protect personal information because pooled samples were used for anonymization of
personal information as a method approved by the Ethical Review Committee. In addition,
well-established and accepted methods such as restricting access to data to essential study
personnel, coding subjects by number or another method of de-identifying data, password
protecting hard drives and computers, and using physical security such as locked storage
facilities had to be overcome. Thus, we were not looking at variations in the whole but
rather the pooled miRNA expression level. Third, the discrepancy between the existing
studies and this study on miRNA expression may be due to differences in sampling. For
example, our results showed that TPM data of hsa-miR-133a-3p, hsa-miR-133a-5p, and
hsa-miR-133b were missing (Figure 6). In terms of data, the number of sequence reads
in plasma in this study is 19–36 million, which is higher than in previous research [64].
Another factor that could be considered as a hypothesis is the issue of sampling [63].
This is because we collected samples outdoors and used pooled samples. On the other
hand, Russell and Aaron P. et al. used muscle biopsy [59]. Other studies that analyzed
the dynamics of miRNAs in plasma before and after exercise used procedures different
from the RNA extraction method used in this study and different centrifugation times and
speeds, which may have affected our results [51,65]. This is one of the issues to consider
going forward, since such minor differences in extraction methods may also have an impact
on the RNA data obtained. Method of collection and other factors may have affected the
state of the miRNAs, causing them to be degraded. A comprehensive analysis of general
biochemical analysis and cfDNA, in addition to miRNAs, can compensate for missing data
and different sampling. In past studies, cfDNA has been analyzed in some cases, and we
believe that analyzing the data in combination with it will provide physiological findings
from other perspectives [18]. The findings and their implications should be discussed in the
broadest context possible. The reason only male subjects were collected this time was that
80% of the marathon participants were male, and it was difficult to collect female subjects.
For future studies, one improvement would be to obtain a larger number of samples in
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a larger competition in order to balance the gender ratio, to standardize the sampling, and
to analyze the samples separately. In addition, we suggest comparing miRNA expression
changes in plasma and urine of runners who completed the marathon quickly and those
who completed it at a slower pace and conducting a detailed comparative study on exercise
load for detailed analysis. Thus, we suggest establishing and improving sampling and data
standardization to perform the best timing for collecting subjects in future studies.

5. Conclusions

The aim of this study was to illuminate exosomal miRNA dynamics in both urine and
plasma in full-marathon participants using NGS. We found that the exosomal miRNA pro-
file changed significantly in a time-dependent manner. Moreover, potential new biomark-
ers, such as hsa-miR-582-3p and hsa-miR-199a-3p, for determining physical stress levels
were found in both urine and plasma of the marathon participants. While research proto-
cols such as sampling limited the scope of this pilot study, it can serve as a roadmap for
future multi-sampling and time dynamics studies in sports physiology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sports9100134/s1, Table S1: Quality summary of sequence read data, Table S2: Data filtering
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of total RNA.
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