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Abstract: The primary aim of the present study was to examine the commonly performed training
exercise for athlete preparation. Twenty-two recreationally trained males (age: 26.3 ± 4.1 y, height:
1.80 ± 0.07 m; body mass (BM): 87.01 ± 13.75 kg, 1-repetitoon maximum(1-RM)/BM: 0.90 ± 0.19 kg)
participated in the present study. All subjects had their 1-RM power clean tested with standard
procedures. On a separate testing day, subjects performed three repetitions at 30% and 45%, and
two repetitions at 70% and 80% of their 1-RM power clean. During all trials during both sessions,
peak velocity (PV) and mean velocity (MV) were measured with the use of a GymAware device.
There were no significant differences between the actual and estimated 1-RM power clean (p = 0.37,
ES = −0.11) when the load-PV profile was utilized. There was a large typical error (TE) present for
the load-PV- and load-MV-estimated 1-RM values. Additionally, the raw TE exceeded the smallest
worthwhile change for both load-PV and load-MV profile results. Based upon the results of this study,
the load-velocity profile is not an acceptable tool for monitoring power clean strength.
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1. Introduction

Resistance training intensities are commonly prescribed based upon an athlete’s maximum
strength levels [1,2], which are typically evaluated with the use of a 1-repetition maximum (1-RM)
assessment. While the direct assessment of the 1-RM is well established, safe to perform, reliable and
provides a valid method for determining maximal strength [3] several authors have suggested that an
alternative method is to estimate the 1-RM with the use of the load-velocity profile [4–6]. The ability of
the load-velocity profile to predict the 1-RM is based upon the well documented negative relationship
between the relative load (i.e., % of 1-RM) and the velocity at which the load is lifted [7,8]. Thus,
determining the load-velocity relationship is considered by some to be a useful way for establishing
the 1-RM and each of its percentages [9]. Supporters of this method suggest that it is superior to the
direct assessment of the 1-RM because it is a non-invasive method that does not interfere with regular
training [6,10].

The load-velocity profile has been successfully used to estimate the 1-RM with a variety of exercises
including the bench press [10,11], bench-pull [11], seated military press [9] and back squat [2,12].
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However, many of the studies that report that the 1-RM can be accurately predicted from the
load-velocity relationship have utilized the Smith machine [9–12]. When free weights have been used
to determine the load-velocity relationship for the deadlift [13,14] and the back squat [7], it has been
determined that the 1-RM cannot be accurately predicted from velocity measurements. These data
imply that there is a possibility that a more accurate estimate of 1-RM can be achieved by creating the
load-velocity profile with exercises performed on a Smith machine. This, however, creates an issue for
strength and conditioning professionals as the use of free weights is far more commonly used and the
load-velocity profile established in the Smith machine may not be transferable to free-weight resistance
training activities.

Recently, Loturco et al. [1] examined the load-velocity profile and the ability to predict the 1-RM
with the use of the bench press performed with either free weights or in a Smith machine. While the
load-velocity profile was able to accurately predict the 1-RM for the free-weight and Smith machine
bench press, there was a significant difference in the 1-RM and mean propulsive velocity at 1-RM
between the modes of testing. Specifically, the actual and predicted 1-RM of the Smith machine was
found to be 8% higher than the free-weight bench press, whilst the velocity achieved in the Smith
machine was ~16% lower than that seen with free weights. Collectively, these differences suggest
that the load-velocity profile is exercise mode dependent and that different intensities (i.e., % 1-RM)
will be represented by different velocities depending upon if the exercise is performed with free
weights or a Smith machine. Importantly, the prediction equations established with each mode of
exercise are not interchangeable, suggesting that the load-velocity profile needs to be established on an
exercise-specific basis.

It has also been suggested that exercises which utilize larger muscle groups result in higher
movement velocities at the same percentage of 1-RM [11,12]. For example, the velocity at which muscular
failure occurs in the Smith machine bench press has been reported to fall between ~0.17–0.18 m·s−1,
whilst a velocity between 0.31–0.32 m·s−1 is associated with the Smith machine back squat [15].
Additionally, it appears that the velocity at which the 1-RM occurs is different depending upon the
exercise being examined. For example, Banyard et al. [7] report that the free weight back squat
1-RM occurs at a velocity of 0.24 ± 0.06 m·s−1, whilst Lake et al. [14] report that the velocity at 1-RM
for the free-weight deadlift occurs at 0.16 ± 0.05 m·s−1. Based upon these data, it is clear that to
appropriately use movement velocity as a tool for estimating the 1-RM and to prescribe training loads,
more exercise-specific load-velocity profiles must be established.

While there has been considerable research establishing the load-velocity profile for the bench
press [1,10,11], limited work has explored the free-weight back squat [2,7,12] and deadlift [14]. This is
of particular importance as the load-velocity relationship has only been established for a small fraction
of exercises that are commonly used in strength and conditioning programs. For example, weightlifting
movements (i.e., snatch and clean and jerk) and their derivatives (i.e., pulls, power snatch, power clean,
push press, etc.) are commonly employed as part of many strength and conditioning programs [16–18]
but there are no known studies that have attempted to examine the load-velocity profile in these
exercises. Based upon the current available scientific literature, it is likely that the velocity at 1-RM for
weightlifting-based exercises, such as the power clean, will be substantially higher than those seen in
the bench press, back squat and deadlift because of the fact that the performance of these movements
engages a large amount of muscle mass and are performed with free weights. Additionally, similar
to the free-weight back squat and deadlift, it is likely that the load-velocity profile of weightlifting
movements will not be able to accurately predict the 1-RM. While this line of reasoning is logical,
further research is required in order to determine the load-velocity profile of weightlifting movements
and their derivatives. Therefore, the primary aim of the present study was to compare the actual power
clean 1-RM and the power clean 1-RM predicted from individualized load-velocity profiles. It was
hypothesized that the actual and predicted power clean 1-RM would not agree and that the typical
error (TE) would be higher than the smallest worthwhile change (SWC).
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2. Materials and Methods

2.1. Experimental Design

Following completion of the instructional sessions, all subjects were evaluated for 1-RM power
clean strength, which represented the criterion condition. Peak velocity (PV) of the successful
1-RM attempt was acquired with the use of a GymAware (GYM) (version 5.1, Kinetic Performance
Technologies, Canberra, Australia) and used for subsequent analyses. Peak velocity was selected as the
primary experimental condition (PV-C) due to its close association with performance in power-based
exercises and the recommendation that this velocity measure may be more appropriate for analyzing
multi-joint ballistic movements [19], like the power clean. Between four and seven days later, subjects
returned to the laboratory and performed the power clean with loads of 30, 45, 70 and 80% 1-RM while
PV measures were simultaneously recorded. The resulting load-velocity relationship was then used
to calculate individualized linear regression equations in order to predict a 1-RM value using each
participant’s known 1-RM velocity. The validity of the predicted 1-RM with reference to the criterion
value was then investigated.

Additionally, a median split of the group on the basis of 1-RM power clean strength was performed
followed by the aforementioned analysis to investigate the influence of power clean ability on the
validity of the predicted value. A second experimental condition (MV-C) was conducted on a subsample
of subjects (n = 19) using the mean velocity (MV) in the load-velocity relationship, which was then
related to the actual 1-RM achieved in the power clean.

2.2. Subjects

Twenty-two recreationally trained males (age = 26.3 ± 4.1 y, height = 1.80 ± 0.07 m, body mass
(BM) = 87.01 ± 13.75 kg, training experience = 2.30 ± 1.39 y) who could proficiently perform the power
clean (power clean 1-RM/BM = 0.90 ± 0.19 kg) and were free of musculoskeletal injury took part in this
investigation. Eligibility required all subjects receive three one-hour instructional sessions on power
clean technique delivered by a strength and conditioning professional accredited with the Australian
Strength and Conditioning Association and certified with the National Strength and Conditioning
Association (l). Subjects exhibiting a range of power clean strength levels were included in the present
study in order to allow comparison between stronger and weaker individuals, based upon a median
split on the basis of maxima 1-RM power clean strength. All subjects provided their written informed
consent and the investigation was approved by the Bellberry Human Research Ethics Committee
(2016-04-269).

2.3. Power Clean 1-RM

The criterion testing session was initiated with a standardized dynamic warm-up consisting of
squatting and lunging movements, in addition to the performance of countermovement jumps at
progressively increasing intensities. Following the completion of the warm-up, a power clean protocol
consisting of three repetitions at 30% and 50% of the estimated 1-RM and one repetition at 70% and 90%
of the estimated 1-RM were completed. After the completion of the 90% trial, the load was increased
by 2.5 kg increments until a 1-RM was achieved, with a maximum of five 1-RM attempts given [20].
A second attempt at a failed load was allowed to ensure a true maximal effort was attained. Two
minutes of passive recovery was allotted between warm-up sets, while a 3 to 5 min rest interval was
provided between 1-RM power clean attempts. A lift was considered successful if the participant
received the bar no deeper than an internal knee angle of 90 degrees, as visually assessed by the
primary investigator. PV and MV were collected for each 1-RM effort with the use of a GYM and the
value attained from the 1-RM used for analysis.

2.4. Predicted Power Clean 1-RM

Four to seven days following the initial testing session, subjects returned for the assessment of
velocities at four incremental, predetermined loads. The session began with an identical dynamic



Sports 2020, 8, 129 4 of 12

warm-up to that of the criterion session, after which the subjects performed three repetitions of
the power clean at 30 and 45%, and two repetitions at 70 and 80% of the 1-RM power clean load
established in the criterion session. Repetitions were performed non-continuously (the performer was
required to ‘reset’ between repetitions) and with maximal intent. Velocities were recorded for each
loading condition, with the repetition producing the highest respective peak or mean velocity used for
all analyses.

2.5. Instrumentation

The GYM was placed in a position that was perpendicular to the right collar of the barbell and
the cable was attached 100 mm immediately proximal to the right collar of the barbell using a Velcro
strap. The GYM recorded the displacement–time curve data by determining the changes in barbell
position and used a sensor that determined the angle that the cable leaves the unit in order to correct
for any horizontal plane [21]. The device sampled and timestamped the barbell displacement data at
20-millisecond time points and down-sampled to 50 Hz for analyses [22]. Velocity data were calculated
from the first derivative of the change in barbell position with respect to time. The GYM device was
selected for velocity analysis because it has been consistently shown to produce reliable data with
loads between 40–90% when used to examine the velocities achieved during multi-joint free-weight
exercises [7,13].

2.6. Statistical analysis

Individualized linear regression equations were calculated based upon four (30, 45, 70 and 80% of
1-RM; Figure 1) points using a custom-designed Microsoft Excel spreadsheet.
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n = 22; average n = 18).
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Validity of the predicted 1-RMs with reference to the actual 1-RM was assessed via intraclass
correlation coefficient (ICC), the standardized and raw typical error (TE), the coefficient of variation
(CV) and effect size magnitudes (Cohen’s d). Associated 90% confidence limits (CL) were also calculated.
The smallest worthwhile change (SWC) was set as 0.20 × the between-subject standard deviation
(SD). The strength of the ICC was classified as: high (>0.9), acceptable (0.8 to 0.9) and questionable
(0.7–0.8) [23], while the r was classified via the following criteria: trivial (<0.1), small (0.1–0.3), moderate
(0.3–0.5), high (0.5–0.7), very high (0.7–0.9) or practically perfect (>0.9) [24]. An acceptability cut-off

for the CV was set at <15% and was considered high when <5% [25,26]. A moderate and large
standardized TE was indicated by 0.3 and 0.6, respectively. Cohen’s d magnitudes were classified
as: trivial (<0.20), small (0.20–0.50), moderate (0.51–0.80) or large (>0.80) [27]. Paired t-tests were
performed to determine the presence of a difference between conditions with an alpha set at ≤ 0.05.
All validity analyses were performed using open access, peer-reviewed Excel (Microsoft, Redmond,
Washington, USA) spreadsheets attained from Sportsci.org.

3. Results

Table 1 presents the predicted and actual velocity scores for the percentages of 1-RM power
clean tested.

Table 1. Predicted and actual velocity scores (±90% confidence intervals) for percentages of the
one-repetition maximum power clean.

Peak Velocity (m·s−1)

%1-RM Actual
(90% CI)

Predicted
(90% CI) p d

30 3.29
(3.07–3.51)

3.37
(3.34–3.41) 0.48 0.21

45 2.82
(2.68–2.96)

3.13
(3.07–3.18) <0.01 1.01

70 2.32
(2.22–2.43)

2.69
(2.60–2.78) <0.01 1.19

80 2.18
(2.07–2.29)

2.52
(2.42–2.61) <0.01 1.13

100 1.79
(1.71–1.87)

2.20
(2.09–2.32) <0.01 1.28

Mean Velocity (m·s−1)

%1-RM Actual
(90% CI)

Predicted
(90% CI) p d

30 1.89
(1.77–2.00)

1.95
(1.92–1.97) 0.38 0.32

45 1.54
(1.42–1.67)

1.78
(1.74–1.81) <0.01 1.00

70 1.22
(1.12–1.32)

1.47
(1.41–1.53) <0.01 1.17

80 1.09
(1.00–1.18)

1.35
(1.29–1.41) <0.01 1.18

100 0.92
(0.84–1.00)

1.13
(1.04–1.21) <0.01 0.98

Figure 2 provides a graphical representation of the CV, TE, ICC and Cohen’s d across all conditions
with respect to the criterion based upon four and three points, respectively.
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Figure 2. (A) Coefficient of variation (CV), (B) typical error (TE), (C) Cohen’s d effect size, and
(D) intraclass correlation (ICC) of the four points predicted with respect to actual 1-RM power clean,
alongside the 90% confidence intervals. The light and dark shaded regions in A represent good (5–10%)
and acceptable (10–15%) validity, respectively. The shaded blocks in panel B indicate the smallest
worthwhile change (SWC). A trivial effect size difference between the two conditions is indicated by
the shaded area in panel C. PV-C: Peak velocity condition; MV-C: Mean velocity condition.

Tables 2 and 3 present the measures of validity across all conditions with respect to the actual 1-RM.

Table 2. Measures of validity using four incremental loads with respect to the actual one-repetition
maximum attained.

Four Point

TE
STD

TE Raw
(kg)

CV%
(90% CI)

SWC
(kg) r ES

(90%CI)
ICC

(90%CI) p

Entire Group
Peak Velocity 0.64 7.15 10.4

(7.1–20.9) 2.60 0.84 −0.11
(−0.62–0.40)

0.86
(0.73–0.93) 0.367

Mean Velocity 1.29 10.12 14.4
(11.0–20.9) 2.49 0.61 −0.51

(−1.06–0.04)
0.64

(0.33–0.82) 0.022

Stronger Peak Velocity 0.66 6.21 7.6
(5.5–12.9) 2.49 0.84 −0.22

(−0.55–0.11)
0.86

(0.59–0.95) 0.262

Weaker Peak Velocity 0.80 7.67 11.6
(8.4–19.9) 2.32 0.78 −0.23

(−0.39–0.34)
0.76

(0.36–0.91) 0.916

Stronger Mean Velocity 3.13 9.27 12.5
(8.7–23.6) 1.82 0.3 −0.36

(−1.08–0.36)
0.35

(0.25–0.75) 0.391

Weaker Mean Velocity 1.53 11.50 16.8
(11.6–32.2) 2.57 0.55 −0.48

(−1.31–0.34)
0.56

(0.02–0.85) 0.026

Note: TE: Typical error; STD: Standardized; CV: Coefficient of variation; SWC: Smallest worthwhile change; r:
Pearson’s correlation; ES: Cohen’s d effect size; CI: Confidence interval.
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Table 3. Measures of validity using three incremental loads with respect to the actual one-repetition
maximum attained.

Three Point

TE
STD

TE Raw
(kg)

CV%
(90% CI)

SWC
(kg) r ES

(90%CI)
ICC

(90%CI) p

Entire Group
Peak Velocity 0.75 8.02 12.8

(8.6–25.9) 2.60 0.80 −0.25
(−0.49–0.00)

0.78
(0.58–0.89) 0.097

Mean Velocity 2.01 11.48 15.1
(10.2–31.0) 2.49 0.44 −0.71

(−1.13–−0.28)
0.42

(−0.01–0.70) 0.008

Stronger Peak Velocity 0.67 6.32 7.5
(4.8–18.6) 2.15 0.83 −0.32

(−1.07– 0.43)
0.78

(0.47–0.92) 0.470

Weaker Peak Velocity 0.99 8.60 13.3
(8.5–34.6) 2.32 0.71 −0.22

(−0.97–0.53)
0.89

(0.7–0.96) 0.620

Stronger Mean Velocity 1.79 8.49 3.8
(2.4–9.2) 1.82 0.49 −0.75

(−1.53–0.04)
0.55

(−0.02–0.85) 0.110

Weaker Mean Velocity 16.08 13.72 16.9
(10.7–44.9) 2.57 0.06 −0.88

(−1.64–−0.13)
−0.10

(−0.50–0.60) 0.060

Note: TE: Typical error; STD: Standardized; CV: Coefficient of variation; SWC: Smallest worthwhile change; r:
Pearson’s correlation; ES: Cohen’s d effect size; CI: Confidence interval.

Across the entire sample, the ICC indicated acceptable validity for the PV-C (ICC = 0.86, 90% CI
= 0.73–0.93), however, acceptability was not reached for the MV-C (ICC = 0.64, 90% CI = 0.33–0.82).
When the predicted 1-RM was compared to the criterion (actual 1-RM) across the entire cohort, a
large standardized TE was present for both experimental conditions (PV-C: standardized TE = 0.64,
90% CI = 0.42 to 1.03; MV-C: standardized TE = 1.29, 90% CI = 0.71–3.40). An acceptable CV was
revealed for the PV-C (CV = 10.4, 90% CI = 7.1 to 20.9%), representative of a raw TE of 7.15 kg (90% CI
= 5.71–9.71 kg). Acceptability was also reached within the MV-C, albeit to a reduced extent (CV =

14.4% (90% CI = 11 to 21%)), representative of a raw TE of 10.12 kg (90% CL = 7.89 to 14.34)). For both
PV-C and MV-C, the raw TE exceeded the SWC (PV-C: 2.60 kg (90% CL = 2.08 to 3.54 kg), MV-C: 2.49
kg (90% CL = 1.94 to 3.52 kg)). Very high (r = 0.84 (90% CL = 0.70 to 0.92)) and high (r = 0.61 (90%
CL = 0.28 to 0.81)) correlations were present for PV-C and MV-C, respectively, with reference to the
criterion condition. The PV-C and MV-C displayed a trivial (Cohen’s d: −0.11 (90% CL = −0.62 to 0.40))
and moderate (Cohen’s d: −0.51 (90% CL = −1.06 to 0.04)) difference, respectively, in comparison to the
criterion. A significant difference was found between the MV-C, but not the PV-C, and the criterion
measure (MV-C: p = 0.37; PV-C: p = 0.02). When stratified on strength level, the stronger subjects
displayed a greater degree of validity, as indicated by the ICC (stronger: 0.86 (90% CL = 0.59 to 0.95);
weaker: 0.76 (90% CL = 0.36 to 0.91)) in the PV-C, but not the MV-C (stronger: 0.35 (90% CL = 0.25 to
0.75); weaker: 0.56 (90% CL = 0.02 to 0.85)). CV, TE and r measures by strength level are presented in
Figure 2. Additionally, the stronger subjects’ 1-RM displayed a small non-statistically significant lower
PV (1.74 ± 0.13 m·s−1, p = 0.34, ES = −0.43) when compared to the weaker subjects (1.83 ± 0.26 m·s−1).

4. Discussion

The primary aim of the current investigation was to determine if the load-velocity relationship
could be used with a linear regression analysis to predict the 1-RM in the power clean. Based upon
the results of the present study, the 1-RM power clean can be accurately estimated from a load-PV
profile, whilst the load-MV profile does not allow for the accurate prediction of the power clean
1-RM. Additionally, the overall ability of the load-velocity relationship to accurately predict the power
clean 1-RM increases with the overall strength of the individual, while the ability of the load-velocity
relationship to detect the SWC in performance is considerably limited.

Conceptually, the linear and negative relationship between the load lifted and the velocity of
movement can be used to estimate the 1-RM for a resistance training exercise [28]. Based upon this
relationship, several authors have suggested that the 1-RM can be accurately estimated with a variety
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of exercises including the bench press [10,11], bench-pull [11], seated military press [9] and back
squat [2,12]. Careful inspection of the literature reveals that the majority of the research that supports
the utility of the load-velocity relationship to estimate the 1-RM has been examined with the use
of resistance training exercises performed in a Smith machine [9–12]. When free-weight resistance
training exercises (e.g., deadlift and back squat) have been examined, the ability of the load-velocity
relationship to estimate the 1-RM is less convincing [7,13,14]. One possible explanation for the reduced
1-RM prediction accuracy with free-weight exercises may be related to the fact that these exercises
have a relevant amount of movement outside of the vertical plane. While the GYM linear position
transducer directly measures vertical displacement, horizontal movement is quantified using basic
trigonometry, which can increase the likelihood of measurement error [21]. As such, it is possible that
as the potential for horizontal movement increases, there is a concomitant decrease in the ability to
accurately predict a 1-RM from a load-velocity profile.

Weightlifting exercises and derivatives are commonly utilized in the strength and conditioning
environment due to their ability to develop key attributes which underpin sports performance [29].
Careful examination of weightlifting movements, such as the power clean and power snatch, reveal
that they have horizontal and vertical movement patterns which are related to the engagement of the
double knee bend technique [30] and how the barbell is caught. Due to the fact that these exercises
have a large degree of horizontal movement, the ability to create a load-velocity profile that accurately
predicts the 1-RM may be questioned. Conversely, the fact that a linear relationship exists between the
load lifted and the velocity of movement during weightlifting exercises suggests that a load-velocity
profile could in fact be constructed whilst using a linear position transducer during the power clean
exercise [31–34]. For example, Cormie et al. [31] present data that the PV achieved during a power
clean displays a linear reduction that corresponds to an increase in load from 30 to 90% of 1-RM (i.e., 30,
40, 50, 60, 70, 80 and 90%). Additionally, Marriner et al. [33] also report that there is a linear decrease in
velocity when power clean loads are increased from 50 to 90% of 1-RM (i.e., 50, 70 and 90%). To the
authors’ knowledge, only two studies have presented load-velocity data that include the velocity at
1-RM as part of the load-velocity profile for the power clean [32,34]. For example, Oranchuk et al. [32]
and Ncalerio and Larumbe-Zabala [34] report that as the load lifted in the power clean increases toward
the 1-RM, there is a linear reduction in the PV of movement, moving from a PV of 2.08 to 1.84 m·s−1.
The present study also suggests that the velocity of movement decreases in a linear manner as the load
lifted during the power clean increases (Figure 1). Similar peak velocities at the 1-RM in the power
clean are noted between the present study and those published in the scientific literature [32,34]. In the
present study, a PV at 1-RM of 1.79 ± 0.20 m·s−1 was achieved. These results are similar to the PV at
1-RM during the power clean of 1.60 ± 0.30 m·s−1 reported by Ncalerio and Larumbe-Zabala [34] and
the PV of 1.81 ± 0.12 m·s−1 reported by Oranchuk et al. [32]. Based upon these data and previous
research that suggests that the 1-RM can be estimated from the load-velocity profile, it is possible that
the 1-RM in the power clean can be estimated from the load-velocity profile.

While the MV is often recommended to be used when analyzing the load-velocity profile, it has
been suggested that when looking at ballistic [35] or semi-ballistic movements, the use of PV may result
in more accurate and reliable predictions of the 1-RM [36]. In the present study when the entire group
was examined, there was no significant difference (p = 0.367, d = −0.11) between the predicted 1-RM
(75.5 ± 12.8 kg) and the criterion measure (76.9 ± 13.0 kg) when PV was used in conjunction with a
four-point linear regression analysis (Figure 1a). While both prediction equations resulted in predicted
1-RM values that were not significantly different than the criterion measure, these results need to be
interpreted with caution. Firstly, the estimated 1-RM was less than the criterion measure when using
either a four-point (−1.42 ± 7.21 kg) or three-point (−3.63 ± 9.78 kg) prediction. Secondly, it is important
to note that the error of prediction exceeds the SWC for both the four-point (TE = 7.15; SWC = 2.60)
and the three-point (TE = 8.02; SWC = 2.60) predictions. Another important factor to consider is that
while the ICC was acceptable for the four-point prediction (ICC = 0.86), the lower bound was below
the 0.80 threshold set for this investigation. Conversely, when looking at the three-point prediction, the
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ICC failed to reach the acceptable level (ICC = 0.78). Finally, while both the four-point (CV = 10.4%)
and three-point prediction (CV = 12.8%) reached an acceptable level, the upper bound exceed the 15%
boundary set of the present study. Due to these issues, the use of either prediction method with the
use of the PV contains too much noise to properly use it as a tool to monitor meaningful changes in
power clean strength.

While some researchers suggest that PV is a more appropriate measure when examining ballistic
movements [36,37], like the power clean, an alternative approach is to construct the load-velocity
profile using the mean velocity [38]. García-Ramos et al. [38] have presented data that suggest that MV
is the most appropriate variable to monitor during ballistic exercises, such as the bench press throw,
performed in a Smith machine. Conversely, Jukic et al. [39] have recently reported that when the MV is
used as part of a five-point linear equation, the deadlift 1-RM is overestimated by 7.3 ± 6.6 kg when
compared to the actual 1-RM. In the present study when a four-point linear regression analysis was used,
the predicted 1-RM (69.4 ± 12.9 kg) was significantly less (−6.59 ± 11.13 kg, p = 0.023, d = −0.52) than
the criterion measure (76.5 ± 12.4 kg). Additionally, when a three-point linear regression analysis was
used, the predicted 1-RM (66.4 ± 14.5 kg) was significantly less (−10.12 ± 14.29 kg, p = 0.008, d = −0.75)
than the criterion measure. The inability to accurately predict the 1-RM from the load-MV profile in
the present study agrees with existing research looking at multi-joint free-weight exercises such as the
back squat [7] and deadlift [13,14]. Banyard et al. [7] report that when the mean concentric velocity
during the back squat is used as part of the load-velocity relationship, the predicted 1-RM is generally
overestimated. Similarly, Ruf et al. [13] report that the predicted 1-RM is generally overestimated
by 5–10 kg in the deadlift when MV is used as part of the load-velocity analysis. In addition, it is
important to note that the error of prediction exceeds the SWC for both the four-point (TE = 10.12;
SWC = 2.60) and three-point predictions (TE = 8.02; SWC = 2.60). When examining the ICC, neither
the four-point (ICC = 0.64) nor three-point (ICC = 0.42) predictions meet the 0.80 threshold set for this
investigation. Finally, while the four-point prediction meets the minimum requirement for the CV
(CV = 14.40), the upper boundary does exceed the 15% boundary set of the present study. Conversely,
the three-point prediction does not meet the acceptable level of CV established for this study. Based
upon these issues, MV is unable to be used as a method for monitoring changes in power clean strength
due to the excessive noise contained in the data set.

Studies comparing 1-RM velocities in a weightlifting derivative between stronger and weaker
individuals are scarce. However, James et al. [26] reported the 1-RM power clean PV to be practically
lower in those with greater strength in the lift (stronger: 1.72±0.06 m/s; weaker: 1.90±0.27 m/s; PV:
d = −0.89, 95%CI = −1.87 to 0.10). Similar findings have also been reported when examining other
traditional resistance training exercises, such as the bench press [40]. Recently, Ormsbee et al. [40]
reported that the velocity at 1-RM for stronger people (0.14 ± 0.4 m·s−1) was significantly slower
than those demonstrated for weaker individuals (0.20 ± 0.5 m·s−1). These previous findings are in
alignment with the present study, where PV at failure during the power clean for the stronger group
was practically lower (1.74 ± 0.13 m·s−1, p = 0.34, ES = −0.43) than the weaker group (1.83 ± 0.26 m·s−1).
In the case of the power clean, the reduced velocity (and consequently displacement) required suggests
that other factors (i.e., technical proficiency, timing of force application) play a greater role in power
clean performance as strength level in this lift increases. Based upon these data, it is possible that as
subjects become more trained and increase their overall maximal strength, their PV at 1-RM and at
submaximal loads will be more reliable and thus it is possible that the estimates of 1-RM from PV will
also become more reliable. Further research is warranted to explore the impact of increasing maximal
strength levels on both the reliability and accuracy of 1-RM estimates from PV.

While the present study adds to our current understanding of the utility of the load-velocity
profile and its ability to either monitor performance change or estimate the 1-RM in the power clean,
the present study does have limitations. Firstly, while the number of subjects utilized in the present
study is similar to other studies [7,13,14] that have examined the load-velocity profile in multi-joint
ground-based free-weight exercises, studies with larger samples sizes are warranted.
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Secondly, the study required the load-velocity profile to be determined four to seven days after
the 1-RM test. While it is possible that the predictive ability of the load-velocity profile was impacted
by the time course between the maximum test and the development of the load-velocity profile, there
is evidence to suggest that the power clean 1-RM is relatively stable during this time frame [41].
For example, Comfort and McMahon [41] have reported that the power clean 1-RM is reliable and
varies by <1.36 kg when re-tested three to five days after an initial 1-RM test. Therefore, it is likely
that the time between the 1-RM and the development of the load-velocity profile exerted a relatively
minimal impact on the outcome measures of the present study. Even though it is likely that there is a
minimum impact from the method used in the present study, further research is warranted to replicate
the methods of Banyard et al. [7], who tested the 1-RM and load-velocity profile every other day for one
week in order to truly understand the reliability of the 1-RM power clean and the load-velocity profile.

5. Conclusions

The primary goal of the present investigation was to determine if PV or MV could be used with
a linear regression to predict the power clean 1-RM. Based upon the findings of the present study,
it appears that the power clean 1-RM may be estimated from a load-PV profile. However, it is important
to note that there is excessive noise in this estimate, which may reduce the capacity of this measure
as a monitoring tool. Due to the lack of ability to produce reliable estimates, as demonstrated by the
large TE, strength and conditioning professionals should be cautious when using these estimates to
monitor changes in 1-RM power clean. If strength and conditioning professionals decide to use the
load-velocity profile to estimate the power clean 1-RM, they should create a four-point (30%, 45%,
70% and 80% of 1-RM) load-velocity profile utilizing the PV as part of the linear regression analysis.
It is not recommended to create load-velocity profiles with the MV when trying to estimate the 1-RM
power clean.
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