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Abstract: Regular exercise with the appropriate intensity and duration may improve an athlete’s
physical capacities by targeting different performance determinants across the endurance–strength
spectrum aiming to delay fatigue. The mechanisms of muscle fatigue depend on exercise intensity
and duration and may range from substrate depletion to acidosis and product inhibition of
adenosinetriphosphatase (ATPase) and glycolysis. Fatigue mechanisms have been studied in isolated
muscles; single muscle fibers (intact or skinned) or at the level of filamentous or isolated motor
proteins; with each approach contributing to our understanding of the fatigue phenomenon. In vivo
methods for monitoring fatigue include the assessment of various functional indices supported by
the use of biochemical markers including blood lactate levels and more recently redox markers.
Blood lactate measurements; as an accompaniment of functional assessment; are extensively used for
estimating the contribution of the anaerobic metabolism to energy expenditure and to help interpret
an athlete’s resistance to fatigue during high intensity exercise. Monitoring of redox indices is
gaining popularity in the applied sports performance setting; as oxidative stress is not only a fatigue
agent which may play a role in the pathophysiology of overtraining syndrome; but also constitutes
an important signaling pathway for training adaptations; thus reflecting training status. Careful
planning of sampling and interpretation of blood biomarkers should be applied; especially given that
their levels can fluctuate according to an athlete’s lifestyle and training histories.

Keywords: training adaptations; exercise induced muscle fatigue; fatigue index; fatigue agents;
lactate monitoring; redox markers; muscle inflammation; oxidative stress monitoring

1. Introduction

Skeletal muscle is a highly plastic tissue which adapts its morphology and metabolism according
to external stimuli. One of the main functions of skeletal muscle is to convert chemical energy into
mechanical work in order to support movement of the human body [1]. During muscle contraction,
aerobic and anaerobic metabolic pathways contribute to energy supply according to the duration and
intensity of muscle effort [2]. There is an inverse relationship between the duration and intensity
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of muscle effort, i.e., very intense muscle contractions can be maintained only for a short duration,
while less intense contractions can be sustained or repeated for longer periods of time. The ability of
an athlete to perform physical work is intrinsically linked to the metabolic pathways sustaining ATP
requirements for the given muscular performance and may thus be delineated as: (a) the capacity to
perform prolonged exercise, (b) the capacity to exercise at high-intensity for a relatively short time
period, (c) the capacity to contract as fast as possible, and (d) generate maximal force instantaneously
(explosive force/power generation) (for a discussion see [3]). These capacities are not developed to
the same degree and can have a strong genetic background (e.g., see [4] on genetic determinants of
exercise performance). Regular exercise with the appropriate intensity and duration may improve
these capacities by modifying energy supply and enzymatic activities, as well as influencing muscle
morphology and contractile function, resulting in improved performance during a given task, and an
enhanced resistance to fatigue [5,6].

Both muscle acidosis [7,8] and reactive oxygen species [9] have been considered as factors which
modulate muscle performance. Recent literature in the field of muscle fatigue indicates previously
unappreciated interactions of fatigue factors as well as effects beyond an acute effect on the actomyosin
interaction per se, which could contribute to a reduced power output [10–12]. Additionally, the different
fiber types have variable resistance to fatigue [13].

The aim of this review is to discuss those aspects of the fatigue phenomenon that should
inform the choice of monitoring indices and their interpretation. Because, there is plethora of
functional indices [14,15] and biomarkers [16] of fatigue we are focusing on the interpretation of
lactate, and oxidative stress indices namely total antioxidant capacity (TAC), protein carbonyls (PC)
and thiobarbituric acid-reactive substances (TBARS), which are commonly used in the laboratory and
field settings. It is hoped that our approach would be helpful for the professional who is active in the
applied sports setting.

2. Materials and Methods

An online search of journal databases PubMed and Scopus was performed. The following
keywords were used as search terms in various combinations: athletic/human performance, training
adaptations, muscle fatigue, fatigue index, fatigue agents, lactate, acidosis, redox status, oxidative
stress, total antioxidant capacity (TAC), protein carbonyls (PC), thiobarbituric acid reactive substances
(TBARS). Articles and articles cited in the reference lists of identified journals were selected based on
their relevance and specificity.

3. Skeletal Muscle Fatigue

Skeletal muscle fatigue has been generally defined as “the decrease in force or power production
in response to contractile activity” [17]. However, more comprehensive definitions regarding exercise
induced muscle fatigue have been introduced focusing either at the reversibility of loss of muscle
force during exercise as discussed in [18] or in the witnessed deviation from the maximal or expected
force or power that muscles can produce after the onset of the sustained exercise [19]. When studying
skeletal muscle fatigue, muscle activation, vascular function, bioenergetics, changes in intracellular
signaling and molecular mechanics should all be considered [17].

Muscle activation begins in the cortex, continues with excitation of lower motor neurons in the
spinal cord, to the axon of the lower motor neuron and eventually to the neuromuscular junction of the
muscle [20]. In this process, fatigue can potentially arise at any point of the pathway. When focusing on
the processes inside the spinal cord and the brain, fatigue is defined as “central”, and when focusing on
the peripheral nerve, neuromuscular junction, and the muscle, fatigue is defined as “peripheral” [21].
The nature of muscle fatigue depends on the characteristics of exercise, i.e., its intensity and duration,
e.g., fatigue during a marathon run is different from fatigue during a series of repeated sprints [16].
However, although fatigue is evidenced by impaired force or power generation by the contractile
proteins, it should be stressed that it is not caused by a single factor [18,19] and that various mechanisms
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are involved, each having a contribution that is specific to the task being performed, and the overall
health status of the individual [19,22]. Studies on muscle fatigue have been conducted on humans,
isolated muscles, isolated intact muscle fibers (for a review see [21]), isolated skinned muscle fibers
(e.g., [10]) or even at the level of filamentous proteins [23], or isolated motor proteins (e.g., [24]) with
advantages and disadvantages in each approach.

In vitro studies have shown that the impairment of muscle contraction, and thus the development
of muscle fatigue at the cellular level, derives from either (a) alterations in excitability of the muscle
fiber, (b) accumulation of metabolic by-products, (c) production of reactive oxygen species and (d)
Ca2+ movements in the fiber compartments [10,21,23,25–28]. All of the above can be grouped in two
major mechanisms that are responsible for the inhibition of muscle function witnessed during fatigue:
(a) impairment at the level of activation, and b) impairment of the actin–myosin interaction [7].

In humans, fatigue manifests as an inability to continue a motor task at the required intensity,
eventually leading to exhaustion. This performance decline is often called fatigability [14]. Methods
for quantifying fatigue include measurements of the drop in peak force, torque or power of muscle
contraction, expressed as a “fatigue index”, i.e., the percentage or rate of performance decrease over
time [14]. That fatigue index may be taken as a measure of resistance to fatigue, and may be assessed
using various ergometers. On an isokinetic dynamometer, fatigue resistance may be assessed (i) by
the number of maximum effort repetitions until exhaustion or (ii) by the number of maximum effort
repetitions until a 50% reduction in torque output is reached, or (iii) by the percent decline in torque
from the beginning to the end of a predetermined time period [29]. Fatigue index may also be assessed
using maximal sprint cycling tests, such as the Wingate test, by calculating the difference between the
highest and lowest power output, expressed as a percentage of the highest power [30]. Also fatigue
can be assessed by the drop of sprint performance during a repeated sprint test [31]. Of course such
approaches disregard the temporal development of the drop in power output (i.e., is it steep thus
‘early’ or gradual) in the name of simplicity. For this reason, alternatives have been sought by us and
others (see e.g., [32]) considering the whole time course of an exercise bout.

Other fatigue resistance assessment methods include measurement of the number of repetitions
against a submaximal load during resistance exercise [33,34], or measurement of time to exhaustion
during steady or varying pace submaximal or maximal intensity running or cycling [35,36].
At submaximal intensities, the ability to resist fatigue has been linked with substrate availability
and especially glycogen in slow twitch muscle fibers [37], muscle activation [38], muscle fiber type [39],
mitochondrial and oxidative enzymes activity [40] and capillary density [33].

At high or maximal intensities of exercise, fatigue resistance has been linked with fiber
type composition, with individuals having high percentage of slow muscle fibers exhibiting less
fatigue [41], and with average performance depending both on anaerobic and aerobic metabolism,
whose contributions vary according to the test duration and intensity [42,43]. Also, energy availability
at the required rates by anaerobic glycolysis and phosphocreatine breakdown have been linked with
fatigue resistance [44–49].

It is clear from the above that ‘fatigue measurements’ are task-specific. One should consider
carefully how one defines fatigue from a functional point of view for their given population and type
of activity. As various biomarkers, in the blood, or infrequently in muscle, can provide metabolic
information of interest to assist in the interpretation of the mechanisms underlying fatigue or training
adaptation towards resisting fatigue, one needs to then consider carefully the use and interpretation of
popular biomarkers.

4. Lactate as a Fatigue Agent and as a Signaling Molecule

Lactic acid is the product of the anaerobic breakdown of carbohydrates and quickly dissociates
to lactate and protons (hydrogen ions) promoting acidosis. Lactate accumulation was thought to
indicate inadequate oxygen supply in the working muscles, although oxygen delivery is not always
the main cause of lactic acid production [50–52]. The lactic acid hypothesis for muscle fatigue states
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that “accumulation of lactate or acidosis in working muscle causes inhibition of contractile processes,
either directly or via metabolism, resulting in diminished exercise performance” [53]. Indeed, a strong
connection between pH regulation and work capacity has been shown, suggesting that acidosis strongly
contributes to fatigue [54]. More specifically, acidosis may impair function of contractile properties
by reducing: (a) sarcoplasmic Ca2+ release and re-uptake, (b) myofibrillar Ca2+ sensitivity [55]
and (c) activity of ATPase [56] and key enzymes of glycolysis such as phosphofructokinase and
phosphorylase [57] (Figure 1). However, skinned fiber experiments in variable pH and temperatures
have indicated that acidosis, while still important, is not the only reason behind the slowing of
contractile velocity observed during fatigue (e.g., [10]). Human studies involving repeated sprint
exercise, have shown that peak power output has shown that peak power output during a subsequent
sprint is not affected by acidosis but is dependent on phosphocreatine availability [45,46,48,58].
Regarding lactate per se, a series of experiments conducted mostly on skinned muscle fibers bathed
in lactate solutions with concentrations ranging from 15 to 40 mM while keeping a constant pH
of 7.1, showed that the presence of lactate does not inhibit excitation contraction coupling [59,60].
Kristensen et al. 2005 [61], reported a small beneficial effect of lactate in restoring membrane
depolarization caused by high external K+. Thus the intracellular accumulation of lactate per se
is not a major factor in muscle fatigue.

Besides their potential roles in fatigue, lactate and hydrogen ions in skeletal muscles can
act as intracellular messengers that regulate physiological adaptations by promoting a number
of transcription factors. For example, intracellular lactate is a signaling molecule for inducing
monocarboxylate transporter 1 (MCT1) expression [62] (Figure 2). Furthermore, lactate has been
shown to promote aerobic adaptations by inducing intramuscular triglyceride (TG) accumulation and
mitochondrial maintenance in mouse myotubes (C2C12 cell line) [63], or by regulating intramuscular
triglyceride metabolism via transforming growth factor-b1 mediated pathways during post-exercise
recovery from strenuous exercise in rats [64].

Due to the invasive nature of lactate measurements in the muscle, blood lactate measurements are
used as a practical method of estimating acid–base status in the muscle. This assumes that blood lactate
reflects muscle lactate, although this is not always the case, especially during intense and intermittent
exercise, where lactate efflux from the working muscle and lactate distribution to other muscles or
tissues is unbalanced [65]. Typically lactate levels are monitored in the blood before and after the
performance of all-out intense exercise like the Wingate 30-s test and other shorter sprint tests [66],
or before, during and at the end of graded exercise protocols [67]. Levels of 18.8 ± 1.6 mmol/L
have been measured in trained sprinters [68], while team sport players record levels as high as
13.3 ± 1.9 mmol/L [69] or as low as (7.8 ± 1.6) depending on position played [69], training status [70],
and gender [71].

Change of blood lactate concentration during graded exercise (Lactate Curve) sets multiple
threshold concepts and training intensity domains, while a right shifted curve following training
is indicative of improvement in aerobic fitness [72]. A popular concept is the ‘lactate threshold’
which is defined as the exercise intensity at which a certain blood lactate concentration is attained, e.g.,
4 mmol/L [73]. Lactate threshold is considered to be linked with the fatigue process, since above this
exercise intensity, blood lactate is rapidly accumulated and this may reflect increases in muscle acidity
and rapid glycogen depletion via anaerobic glycolysis [72].

However, interpretations of such thresholds and relative exercise intensity domains have to be
made on solid testing procedures as recent research highlighted the diversity of such outcomes after
manipulating graded test variables [74]. Additionally, other factors, such as nutrition before the test
are important when blood lactate is used for monitoring purposes. For example, prior exercise that
depleted glycogen levels [75] or a high carbohydrate diet [76] can influence blood lactate concentration
and the timing of the achievement of the predefined thresholds.
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5. Exercise-Induced Oxidative Stress and Inflammation

Oxidative stress, originally defined as “a disturbance in the pro-oxidant– antioxidant balance in
favor of the former”, has acquired more comprehensive definitions such as “an imbalance between
oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and
control and/or molecular damage” [77]. This balance between oxidants and antioxidants is also
termed as redox balance or redox homeostasis [78]. Exercise induces oxidative stress by producing
free radicals and other reactive oxygen species (ROS) which may transiently overcome the antioxidant
capacity. A free radical is defined as any molecular species that contains at least one unpaired electron;
chemically, they are highly reactive because the unpaired electron attempts to stabilize itself by
pairing with another electron [79]. Because of their chemical instability, free radicals are capable of
inflicting biological damage [80]. The main free radicals formed in cells are superoxide (•O−

2) and
nitric oxide (NO) [77]. ROS is a general term that refers not only to oxygen-centered radicals but
also includes non-radical but reactive oxygen derivatives (e.g., hydrogen peroxide) and the term
reactive nitrogen species (RNS) refers to both nitrogen radicals as well as other reactive molecules
where the reactive center is nitrogen [81]. Redox homeostasis can be studied in blood or in muscle
tissue with detection and measurements of certain biomarkers that fall into one of the following
categories: (1) oxidants (e.g., superoxide anions), (2) enzymatic (e.g., catalase—CAT) or nonenzymatic
antioxidants (e.g., uric acid, total antioxidant capacity—TAC), (3) oxidation products (e.g., protein
carbonyls), (4) antioxidant/pro-oxidant balance (e.g., GSH/GSSG ratio) [82].

Exercise has been shown to cause redox disruption through many different mechanisms. The most
prominent exercise induced oxidative stress mechanisms include: (1) the mitochondrial electron
transfer system within muscle cells, (2) ROS production via Xanthine oxidase within endothelial
cells, (3) ROS production via nicotinamide adenine dinucleotide phosphate oxidase (NADPH) [77],
(4) infiltrating phagocytes attacking degenerated cells deriving from exercise induced muscle
damage [83], (4) Reduction in blood flow toward splanchnic organs during exercise (under-perfusion)
and subsequent post exercise re-sustained blood flow (reperfusion) [84,85].

The latter indicates that attention should be paid, when taking an athlete’s history, in recording
recent activity but also overall training history involving exposure to eccentric loads. Unaccustomed
or novice, exercise testing participants may exhibit higher levels of inflammatory and/or redox
markers; all participants should avoid such exercise testing if close to undertaking clinical biochemistry
assessments (e.g., yearly check-up) as the testing activity may confound their readings.

6. Reactive Oxygen Species (ROS) as Fatigue Agents and Signaling Molecules

Evidence supporting the role of ROS as agents causing fatigue has come from either laboratory
muscle preparations at conditions mimicking fatigue (direct exposure to ROS) or from human
studies using antioxidants as a pretreatment to decrease fatigue [86]. Laboratory experiments on
muscle fibers have shown that ROS can cause a direct inhibition of force production (Figure 1) by:
(1) compromising sarcolemma ability to depolarize [87], (2) causing disturbance in calcium handling
from the sarcoplasmic reticulum [88,89], (3) causing a decrease in the calcium sensitivity of the
myofilaments [89,90], and (4) having a direct effect on acto-myosin interaction [91]. Furthermore, ROS
can indirectly inhibit force production by disrupting muscle ability to sustain a certain level of force
production by suppressing bioenergetics availability (i.e., reduced lipid oxidation by mitochondria
due to inhibition of Carnitine Palmitoyltransferase I (CPT I) activity, or limited blood supply [92,93]).

Nevertheless, it has to be noted that although high levels of reactive oxygen species may
result in contractile dysfunction and fatigue, physiological levels of reactive oxygen species are
required for normal force production in unfatigued skeletal muscle [82,94]. There appears to be
an optimal redox balance for efficient force generation at the cross-bridge level as indicated by
skinned fiber work (e.g., [11]). Additionally, in muscle preparations of animals with elevated levels
of antioxidants administered by diet [94], or treated with ROS/RNS-neutralizing compounds [95],
or transgenic overexpression [96], there was no evident improvement of fatigability or recovery from



Sports 2018, 6, 153 6 of 15

fatigue. Thus, maximizing availability of antioxidants is not a straightforward avenue for improving
fatigue resistance.
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Figure 1. A simplified scheme of the purported effects of acidosis and reactive oxygen species (ROS)
based on muscle fatigue literature reviewed in this article. Acidosis has been shown to cause impaired
Ca2+ handling [55] and inhibition of key metabolic enzyme activities [57] as well as to inhibit myosin
ATPase [56] affecting force and velocity of contraction [10]. ROS have been shown to cause: impaired
sarcolemma ability to depolarize [87], disturbance in calcium release from the sarcoplasmic reticulum
and decreased calcium sensitivity of the myofilaments [89], impaired acto-myosin interaction [91],
enzyme inhibition [92] and blood flow restriction [93].Sports 2018, 6, x FOR PEER REVIEW  5 of 15 
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Figure 2. A simplified scheme depicting muscle contraction linked signaling pathways and gene
expression induced via acidosis and ROS generation. Exercise-induced acidosis has been linked with
induction of MCT1 expression [62]. Activation of important signaling pathways and gene expression
connected with exercise adaptations, namely; PGC1a [99], NF-κB [97], JNK [98] are ROS dependent.

Exercise-induced ROS also act as intracellular messengers that regulate exercise induced
adaptations with respect to muscle hypertrophy and oxidative metabolism [9]. More specifically,
the administration of a xanthine oxidase inhibitor (allopurinol), reduced NF-κB activation in response
to sprinting exercise in rats, [97]. In humans, the exercise-induced increase in JNK phosphorylation,
was blocked by infusion of the ROS scavenger N-acetylcysteine (NAC), while analysis of ROS-sensitive
genes demonstrated a ROS dependent exercise-induced mRNA expression of the antioxidant enzyme
manganese superoxide dismutase (MnSOD), suggesting that inhibition of ROS attenuates some
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skeletal muscle cell signaling pathways and gene expression involved in adaptations to exercise [98].
Furthermore, it has been shown that in the skeletal muscle of rats, peroxisome proliferator-activated γ

receptor coactivator (PGC-1a) signaling pathways are redox sensitive and that non-mitochondrial ROS
play an important role in stimulating mitochondrial biogenesis [99]. Finally, in a recent in vivo human
study and in the absence of any exogenous redox manipulation, the vital role of reactive oxygen and
nitrogen species produced during exercise in adaptations was substantiated for the first time [100].

A commonly used marker of antioxidant status is total antioxidant capacity (TAC), while protein
carbonyls (PC) and thiobarbituric acid reactive substances (TBARS) are markers of protein oxidation
and lipid peroxidation respectively. Although lipid peroxidation has been suggested as a potential
fatigue marker after intense or exhaustive exercise [101], recent studies have criticized TBARS assay
and, therefore care should be taken when interpreting changes in TBARS as an index of lipid
peroxidation in vivo [102]. Periodic monitoring of those redox status indices (among others) is gaining
importance for long term health evaluations, as increased oxidative stress seems to have a role in the
pathophysiology of overtraining syndrome and impaired adaptation to exercise [103]. An increase
in oxidative stress indices in athletes who participate in high-level training programs may reflect the
existence of two or more stressors (high level of physical activity and severe infection) and frequent
monitoring might allow such risk factors to be identified [104]. White blood cell (WBC) activity not
only reflects the status of the immune system but is affected by muscle damaging exercise as well.
Recently, monitoring the redox status of WBC, is emerging as an approach for long-term managing of
elite athletes (to better prevent overtraining or treat an early infection [105]) and further innovations in
this area are expected. Future research should focus in clarifying the links between the redox status of
leukocyte subpopulations with performance, injury and training adaptations, as it has been shown
that training status [106] and antioxidant supplementation [107] alters ROS production by WBC.

TAC: TAC is calculated against a pro-oxidant source, thus it is a non-specific estimation of the
antioxidant capacity of a biological sample (for a discussion see [108]). Still, it is extensively used,
and while it should be interpreted with caution [109] we consider that when some dietary precautions
have been taken, its meaning improves. TAC is measured in mmol DPPH·L−1, and blood levels of
0.93 ± 0.08 mmol DPPH·L−1, are reported in healthy athletes at rest, with post exercise levels ranging
between approximately +20% and −40% of resting values [110].

The magnitude of both acute post-exercise and few hours post-exercise TAC concentration
has been shown to be affected by exercise intensity and modality (HIIT vs. continuous aerobic
exercise) [111]. However, long-term training induced changes in TAC are questionable, since some
studies show improvement of antioxidant defense system while others have shown no change or a
decrease [109], and this discrepancy might reflect lifestyle habits and not training effects. Nevertheless,
antioxidant capacity has been shown to reflect training load fluctuations [112,113] and this has to be
taken into account when interpreting TAC in individuals who are regularly training and whose dietary
and other lifestyle habits are not changing.

PC: Intense exercise causes acute increases in PC [111]. However, aerobic exercise with
an eccentric component (downhill running) has also an effect on both acute and later in time
post-exercise PC increases [114]. Blood levels of ~0.6 nmol·mg−1 protein have been reported in healthy
individuals at rest and ~1.1 nmol·mg−1 protein (83% increase) 24 hours post-eccentric exercise [115];
and ~0.70 nmol·mg−1 protein post-graded exercise [116]. Limited evidence exists on intramuscular
levels of PC with post-exercise blood levels adequately reflecting post-exercise muscle levels [117].

Carbonylation tags proteins for degradation (catabolism) or carbonylated proteins may form
aggregates that can become cytotoxic; these have been associated with a large number of age-related
disorders [118] and it is not yet known if they are formed in young and healthy muscle. In the context
of sports practice, one could monitor muscle mass (absolute and relative) and use PC levels in order to
flag up possible muscle loss.

TBARS: High levels of resting TBARS values in the blood have been related with lower aerobic
capacity and impaired skeletal muscle energy metabolism in patients with metabolic syndrome [119]
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and sedentary women [120]. In athletes, although different long-term training strategies establish
influence basal lipid peroxidation levels, TBARS level cannot be predicted by maximal oxygen
uptake [121]. Although sodium bicarbonate resulted in lower post-exercise TBARS in the blood,
when compared with a placebo group, it had no effect on a repeated sprint test performance, suggesting
no relationship between blood TBARS and fatigue [122].

Overall, despite the fact that muscle redox status disturbances have been associated with muscle
fatigue in vitro, a causal effect between fatigue resistance and oxidative stress indices has not yet been
established in humans. This may be because of the extreme complexity of the in vivo redox biology
and thus more sophisticated research on redox specificity in relation to muscle fatigue needs to be
done [123]. Moreover, it can’t be assumed that blood redox indices reflect their intramuscular levels.
In the majority of human studies redox status indices have been evaluated in blood and results were
then extrapolated in tissues. Another issue emerging from the literature is that temporal considerations
may be underestimated [124]. For the markers mentioned here, changes in their levels following
muscle damage seem to peak at 48h with TBARS remaining elevated in 72 h as well [125].

Limited work has concurrently examined blood and skeletal muscle levels. Recent work from
our group (Poulianiti, personal communication) on an animal model of disease has shown no clear
correlation between resting blood and resting muscle levels of these indices. However, Veskoukis et al.
(2009) [117] reported that some redox status indices in blood (including PC) adequately reflected the
oxidative stress changes that happened in healthy rat gastrocnemius after exercise and/or xanthine
oxidase inhibition. Rodriguez et al. (2012) [126] however found that only PC concentrations were
moderately correlated between blood and skeletal muscle (vastus lateralis) levels in patients with
chronic obstructive pulmonary disease.

It thus appears that blood PC levels may reflect the exercise effect on muscle’s carbonylation status
and perhaps can help in the estimation of muscle’s redox status following exercise. More attention
may be needed on the interplay between the exercise-induced redox response and the overall immune
status of an athlete to assess their recovery from injury. Whichever marker one uses allowances might
be necessary for repeated blood sampling over a period of time, or on a time point not immediately
post-exercise, as various markers may peak at different time points, depending also on an athletes
overall training, immune and nutritional status.

7. Conclusions

Exercise-induced muscle fatigue is a complex phenomenon, with several experimental approaches
and categorizations with advantages and disadvantages in each approach. Regarding functional
monitoring of muscle performance, one should consider the time course of fatigue development and
be clear on defining fatigue based on testing parameters that are relevant to the sport activity. Acidosis
as well as redox balance disruptions in working muscles may contribute to or reflect the reduction of
muscle performance, especially in intense or sprint type exercise, and thus monitoring such related
biomarkers can assist in the interpretation of the fatigue phenomenon.

Blood lactate measurements are used as a practical method of estimating acid–base status and
metabolic contributions but solid testing procedures such as standardized testing protocols in terms of
exercise intensity progression and stage duration, as well as controlled nutrition prior to testing are
needed. Monitoring redox disturbances needs careful consideration, including immune and nutritional
status, and poses some practical challenges as different factors may peak at different time points. A new
direction in monitoring the immune status via the redox assessment of WBC may hold promise in
preventing overtraining.

Both lactate and protons and oxidative stress factors, also act as intracellular messengers that
regulate physiological adaptations. Thus, apart from their use as markers of fatigue their role in certain
domains of muscle function as in bioenergetics (e.g., mitochondrial respiration), muscle contraction
(e.g., inhibition of actomyosin interaction), muscle damage (e.g., exercise induced muscle inflammation)
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and fatigue resistance need further investigation, to shed light to the interplay between cell signaling
induced by these molecules and adaptations to a chronic exercise stimulus.
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