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Abstract: Turnovers in the National Football League (NFL) occur whenever a team loses possession
of the ball due to a fumble, or an interception. Turnovers disrupt momentum of the offensive team,
and represent lost opportunities to advance downfield and score. Teams with a positive differential
turnover margin in a given game win 70% of the time. Turnovers are statistically rare events, occurring
apparently randomly. These characteristics make them difficult to predict. This investigation advances
the hypothesis that turnovers are predictable in NFL football. Machine learning models are developed
to learn the concept: At any point within a football game, what is the likelihood that a turnover will be
observed on the next play from scrimmage? NFL play-by-play data for 32 teams spanning seven full
seasons were used to train the models. Results presented suggest evidence to support the working
hypothesis. Under certain conditions, both fumbles and interceptions can be anticipated at low false
discovery rates (less than 15%). When a turnover is predicted on the impending play from scrimmage,
a high degree of confidence is associated with that prediction. The ability to anticipate catastrophic
in-game events may lead to their management and control, ultimately improving the performance
of individual athletes and their teams. This investigation contributes to the sports science literature
by demonstrating the predictability of in-game events often considered to be essentially random
in their occurrence. To the author’s knowledge, direct prediction of turnovers has not previously
appeared in the literature, which has focused on retrospective statistical analyses of turnover margin
in football games.

Keywords: machine learning; unbalanced data; predicting rare events; NFL football; sports analytics;
performance optimization

1. Introduction

Turnovers in the National Football League (NFL) occur whenever a team loses possession of the
ball due to a fumble, or an interception. A fumble is any act other than passing, handoffs, or legally
kicking the ball, which results in a loss of possession from offense to defense. Interceptions occur
when a defender catches a pass or fumble that does not touch the ground [1]. Turnovers disrupt the
momentum of the offensive team, and represent lost opportunities to advance downfield and score.

A positive differential turnover margin in a given game is a significant predictor correlated with
winning that game [2]. One analysis of multi-season game outcomes found that teams having a single
turnover less than their opponent were victorious 70% of the time [3].

Turnovers may be caused by any number of factors, including physical collisions, mistakes in play
execution or lapses in player concentration. In statistical terms, turnovers are rare events. Less than 3%
of passes are intercepted, and less than 1% of run plays end in fumbles being recovered by the defensive
team. Turnovers appear to be random events [4]; previous work concluded that roughly equal parts
chance and talent accounted for year-over-year variations in turnover differential for a given team [3].
Within a season, NFL turnovers are only weakly correlated with prior game performance [5].
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These characteristics—rarity, irregular but recurrent appearance, and costliness in their
effect—suggest a connection with so-called “extreme” events in dynamical systems, which are
inherently difficult to predict [6].

The ability to anticipate turnovers with some degree of statistical confidence potentially offers
significant value for in-game strategies to mitigate their negative consequences.

This investigation tests the hypothesis that turnovers are predictable in NFL football.
Statistical models that predict the likelihood of observing a turnover on a given play from scrimmage
are developed, and evaluated using play-by-play data from seven NFL seasons.

2. Methods

2.1. Gradient Boosted Machine Learning

The concept to be learned in this investigation is this: At any point within a football game, what is
the likelihood that a turnover will be observed on the next play from scrimmage?

The specific objective is to learn an unknown function F that maps explanatory variables
x = {x1, . . . , xd} to the response y, or F : x → y, where x represents the game situation,
and y ∈ {0, 1} is the binary decision (no turnover, turnover). A collection of training examples
T = {(xi, yi), i = 1, . . . N} is used to estimate an approximation to F, or F̂(x) = y, by an adaptive
learning algorithm known as the “gradient boosting machine” [7,8].

Gradient boosting machines (GBMs) are learning algorithms that reconstruct a decision function
F̂ based on the consensus of an ensemble of classification or regression trees. New decision tree models
are sequentially added to the ensemble, in order to increase the estimation accuracy of the response
variable. The numerical optimization minimizes an expected loss F̂(x) = argminF Ey,xL(y, F(x)) of
a group of trees, conditioned over the entire training data set [7]. The loss function can be selected
according to a given learning concept and joint probability distribution f (x, y) under study. Here,
we use a Bernoulli distribution loss function, convert the classification to a continuous value via logistic
regression and estimate the turnover probability p̂(xi) = p(yi = 1|xi), p̂ ∈ [0, 1] .

A useful property of GBMs in applications is interpretability through calculation of the relative
influence of explanatory variables in constructing a consensus decision. The influence of each input
variable xj in a given tree is based on the frequency of its selection for splitting in non-terminal nodes,
and its contribution to successful model classification over the data sample. This influence is averaged
over the ensemble of trees to estimate the variable’s overall importance to the decision function F̂ [7].
In the current investigation, this interpretation may provide insight into the game conditions under
which turnovers might be expected to occur.

Gradient boosting machine models were developed and evaluated in R, using the ”gbm”
package [9,10].

2.2. Sample, Segmentation and Features

The population under study consists of NFL season, game, player and play-level data for complete
seasons 2009 through 2015, covering all 32 teams. Game data were downloaded from the site
www.nfl.com using utilities provided by ”nflscrapR” [11]. These data were preprocessed by
(1) sampling by season and team; (2) filtering by play type, to include only plays from scrimmage (run,
pass or sack); (3) annotating by status of turnovers (true, false) observed on each play; (4) constructing
feature vectors using attributes of the play-by-play and game contextual data.

This sample comprised 300,450 plays. Running plays represented 31.7% of all plays, passes 42.1%,
and sacks only 2.9%. Although sack-fumbles lost are significant events (5.1% of sacks produce
turnovers), we decided to exclude sacks from further consideration due to their negligible numbers
relative to run and pass plays. To make this predictive analysis useful in practice, it is prudent to
categorize turnover events in association with scrimmage plays that could reasonably be anticipated
by a defensive team, based on offensive formation.

www.nfl.com
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After excluding sack plays, the sample contained 291,675 plays, with an overall turnover
prevalence of 1.633% for pass and run plays, combined. Pass plays made up 43.4% and runs 32.6% of
the resultant dataset.

Two partitioning schemes were applied to the sample. First, an aggregate sample of all 32 NFL
teams was created to assess whether invariant patterns of turnover predictability could be determined.
Second, individual team samples were assembled to develop team-specific models of turnovers. Seven
full season-long records were used for all sample datasets.

Predictive models were trained and evaluated for each sample. These samples were segmented
by distinct event types—(1) Run plays; (2) Pass plays; and (3) Run or Pass plays combined.

Feature vectors for learning were constructed from available fields in the play-by-play data.
Numeric data were normalized by characteristic length and time scales. Categorical and ordinal
variables were represented as binary valued quantities using one-hot encoding. The features and their
corresponding nominal dimensions upon encoding are summarized in Table 1. Not all dimensions listed
in the table were in model development, due to their low variation across certain limited subsamples.

Table 1. Features used in models to predict National Football League (NFL) turnovers.

Feature Dimension

Drive number 1
Quarter 5
Down 4

Remaining game time 1
Yard line 1

Yards to 1st down 1
Yards on drive, net 1

Play type 14
Score differential 1

Run location 3
Pass location 3

Last run location 3
Last pass location 3
Last pass outcome 3

Last play yards gained 3

2.3. Modeling and Analysis

The incidence of turnovers as a percentage of all plays from scrimmage is very low, around 1.6%.
For this reason, the distribution of class labels yi in a training set T = {(xi, yi), i = 1, . . . N} randomly
sampled from the true population is highly skewed. Learning the parameters of a useful statistical
estimator of turnover probability p̂(xi) = p(yi = 1|xi) suggests the use of specific learning techniques
to avoid trivially predicting “no turnover” on every decision [12].

To address this, the approach taken in this study was to re-balance the distribution of classes in
the training set, over-representing the distribution of the minority class in order to present sufficient
examples to the learning algorithm. During validation of the models, examples closely representative
of the true distribution within the population were used to assess model predictive power when
applied out-of-sample.

The modeling strategy included bootstrap resampling [13], cross validation analysis, and receiver
operating characteristic curve (ROC) analysis [14]. The latter technique enabled error estimation,
model comparison and selection from the large number of hypotheses generated by the gradient
boosting machines during training. ROC curves are often used to tradeoff false positive rate (FPR) and
true positive rate (TPR) for evaluation of classifiers. In this study, the false discovery rate (FDR) was
substituted for FPR for analysis. FDR is the fraction of all positive decisions (i.e., turnover predicted)
made by a model that are incorrect [15]. FDR is a more informative metric than FPR in diagnostic or
predictive applications where confidence in a positive prediction is preferred, especially when the class
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distribution is skewed [16]. FDR is related to the positive predictive value statistic by PPV = 1− FDR.
High PPV (low FDR) values are desirable. TPR denotes the sensitivity of the model, or the likelihood
that actual turnovers events are detected within a testing distribution.

In ROC space (FDR,TPR), an optimal decision threshold DTopt is determined experimentally for
a given distribution. Our objective is to minimize FDR for tactical reasons. A second pass through the
training data with this fixed threshold is used to train and evaluate model performance. The gradient
boosted model outputs a probability p̂; the turnover prediction algorithm is then [17]

ŷ(x) =

{
1 : if p̂ > DTopt

0 : if p̂ ≤ DTopt

where ŷ(x) = 1 means a turnover will be observed given input x.
Model learning for the aggregate sample used the “bootstrap” [13] to repeatedly draw samples

from the entire training set. Data were partitioned according to the play type segment under
consideration, and a stratified sample was constructed for training. The validation data were sampled
at random from the entire sample, according to the natural distribution of turnovers. A two step
procedure was followed, for each of B=100 bootstrap replicates. The first step estimated the detection
threshold (DT) for optimal FDR and TPR via ROC analysis, training GBMs comprising 1500 trees
(nominally). Secondly, the threshold was held constant such that DT = DTopt and the entire sample
was modeled again.

The learning procedure used for the team-wise samples was notionally similar, differing slightly
in the numerical mechanics. Stratified sampling (with respect to the class labels y) of individual teams
produced untenably small sample counts. This required an alternate sampling strategy. The decision
was made to use 10-fold cross validation, nested within a 10-trial bagging procedure. Prediction rules
were developed by finally averaging the performance results. Modeling therefore included all of
the available instances, and benefited from the variance-reduction properties of bagging for model
performance estimation [18].

Performance statistics FDR(DTopt), TPR(DTopt) were accumulated and finally averaged over
replicates B (or trials/folds k) to estimate the generalization performance of the ensemble of trees.
Sampling distributions of the sample mean and standard error values for FDR and TPR observed in
out-of-sample test were recorded for each sample and segment under investigation.

In this investigation, we define a “good” false discovery rate to be FDR < 0.15. In other words,
a positive prediction made by the model (ŷ(x) = 1) is correct at least 85% of the time to meet this
criterion of model utility. This means that when a turnover is predicted on the impending play from
scrimmage, a high degree of confidence can be associated with that prediction.

A pseudo-code outline of the model training and evaluation procedure appears in the Appendix,
as Algorithm A1.

3. Results

The main predictive modeling results of this paper are presented in Tables 2–5. These tables list
the sampling distributions of the sample mean and standard errors for observed false discovery (FDR)
and true positive rates (TPR) on predicting turnovers for the sample data segments and event types
considered. These are the primary statistics used to evaluate turnover prediction acuity. The results
tables also include observed values for prevalence of actual turnovers (Prev.) and corresponding
out-of-sample instance counts (Noos).

We define a “good” false discovery rate to be FDR < 0.15. Tabulated results are annotated in
green to highlight predictions meeting or exceeding this threshold for low FDR. True positive rates
observed, where TPR > 0.60, are similarly noted in the tables.

Team-aggregated performance results are found in Table 2. Model predictions by individual team
and segment appear in Tables 3–5 .
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A synopsis of the important input variables contributing to the ensemble prediction for one of the
samples studied is presented in Table 6.

3.1. Turnover Prediction Results—Aggregated

Table 2 summarizes performance of models for the aggregate sample, for each of the three turnover
event types considered. Low values of FDR are seen for each segment (6.4%, 8.3%, and 3.9% for Run or
Pass, Pass and Run, respectively). For Run plays, the sensitivity TPR is seen to be 0.65, making this
segment the most successfully predicted turnover event type in the sample.

The results shown in Table 2 lend support to our hypothesis that turnovers are predictable in NFL
football. Given an educated guess as to the expected play type from scrimmage, the GBM models have
excellent positive predictive value in estimating turnover likelihood.

Table 2. Aggregate prediction performance: false discovery rate (FDR) and true positive rate (TPR) of
models. A total of 32 teams, seasons 2009–2015. B=100.

Segment FDR (±se) TPR (±se) Prev. NB
oos

Run or Pass 0.064 (0.026) 0.417 (0.023) 0.0164 22,183
Pass 0.083 (0.031) 0.381 (0.028) 0.024 12,653
Run 0.039 (0.035) 0.650 (0.064) 0.006 9514

3.2. Turnover Prediction Results—Team-Wise

Prediction results for team-wise samples of the Run or Pass segment are found in Table 3.
These statistics show that 20 of the 32 team models (62.5%) are observed to have FDR rates below the
0.15 goodness criterion as defined here. The best performing team model in terms of false discovery
rate was for the New England Patriots (NE), where the sample mean FDR was 2.1%. Cleveland (CLE),
Buffalo (BUF), San Diego (SD), Minnesota (MIN), Tennessee (TEN) and Seattle (SEA) each had FDR’s
of less than 10%. San Francisco (SF) produced the most frequent rate of false positives, at 26.9%.

Table 3. Team-wise prediction performance, Run or Pass segment, seasons 2009–2015. k = 10.

Team FDR (±se) TPR (±se) Prev. Nk
oos

NE 0.021 (0.073) 0.449 (0.112) 0.008 6545
CLE 0.087 (0.109) 0.467 (0.133) 0.018 6117
CHI 0.134 (0.124) 0.359 (0.125) 0.019 5974

HOU 0.177 (0.168) 0.453 (0.138) 0.014 6475
NYJ 0.193 (0.162) 0.431 (0.105) 0.019 6378
BUF 0.097 (0.097) 0.461 (0.151) 0.020 6072
WAS 0.117 (0.138) 0.420 (0.097) 0.017 6161
JAC 0.132 (0.116) 0.429 (0.118) 0.018 6042
STL 0.146 (0.110) 0.531 (0.108) 0.016 5527
ARI 0.135 (0.119) 0.408 (0.120) 0.020 6081
SD 0.063 (0.111) 0.493 (0.074) 0.014 6222
TB 0.164 (0.124) 0.472 (0.113) 0.019 5940

OAK 0.113 (0.120) 0.453 (0.146) 0.019 6112
DEN 0.174 (0.126) 0.491 (0.143) 0.015 6454
DAL 0.180 (0.151) 0.412 (0.112) 0.015 6108
ATL 0.177 (0.171) 0.433 (0.139) 0.015 6403
SF 0.269 (0.194) 0.446 (0.208) 0.010 5802
KC 0.195 (0.194) 0.539 (0.203) 0.014 6073

CAR 0.189 (0.147) 0.425 (0.134) 0.016 6164
PIT 0.116 (0.124) 0.498 (0.125) 0.016 6111
NO 0.189 (0.208) 0.463 (0.141) 0.015 6584
MIN 0.068 (0.110) 0.451 (0.086) 0.016 6031
CIN 0.128 (0.113) 0.507 (0.141) 0.018 6272
NYG 0.103 (0.092) 0.480 (0.147) 0.021 6291
PHI 0.124 (0.110) 0.478 (0.131) 0.019 6398
GB 0.188 (0.185) 0.485 (0.176) 0.010 6142

IND 0.140 (0.131) 0.431 (0.125) 0.017 6360
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Table 3. Cont.

Team FDR (±se) TPR (±se) Prev. Nk
oos

TEN 0.091 (0.102) 0.473 (0.112) 0.020 5876
BAL 0.126 (0.116) 0.531 (0.102) 0.015 6321
MIA 0.113 (0.126) 0.493 (0.121) 0.017 6089
SEA 0.097 (0.171) 0.551 (0.191) 0.013 6000
DET 0.113 (0.121) 0.452 (0.075) 0.019 6574

Team abbreviations: NE: New England Patriots; CLE: Cleveland Browns; CHI: Chicago Bears; HOU: Houston
Texans; NYJ: New York Jets; BUF: Buffalo Bills; WAS: Washington Redskins; JAC: Jacksonville Jaguars; STL:
St. Louis Rams; ARI: Arizona Cardinals; SD: San Diego Chargers; TB: Tampa Bay Buccaneers; OAK: Oakland
Raiders; DEN: Denver Broncos; DAL: Dallas Cowboys; ATL: Atlanta Falcons; SF: San Francisco 49ers; KC:
Kansas City Chiefs; CAR: Carolina Panthers; PIT: Pittsburgh Steelers; NO: New Orleans Saints; MIN: Minnesota
Vikings; CIN: Cincinnati Bengals; NYG: New York Giants; PHI: Philadelphia Eagles; GB: Green Bay Packers; IND:
Indianapolis Colts; TEN: Tennessee Titans; BAL: Baltimore Ravens; MIA: Miami Dolphins; SEA: Seattle Seahawks;
DET: Detroit Lions.

Note that the standard errors of the sample mean of the FDR statistic are a significant proportion
of the sample mean value. This behavior is seen in nearly all of the turnover prediction results obtained
in this study. Model sensitivity TPR is moderate in general, ranging from 40% to 50%. This statistic is
considered less vital here than FDR, but is still important.

Details of modeling performance for Pass plays from scrimmage are presented in Table 4. For this
segment, 10 of 32 teams (32%) were associated with good turnover predictability as measured by FDR.
The best precision was observed for Tennessee, where FDR = 0.077. New England had the highest
false positive rate at 30%. The true positive rate of the method is seen to be generally low, in the 30% to
low 40% range.

Table 4. Team-wise prediction performance, Pass segment, seasons 2009–2015. k = 10.

Team FDR (±se) TPR (±se) Prev. Nk
oos

NE 0.305 (0.222) 0.469 (0.168) 0.011 3807
CLE 0.119 0.115) 0.445 (0.146) 0.026 3527
CHI 0.191 (0.147) 0.385 (0.134) 0.030 3404

HOU 0.174 (0.183) 0.376 (0.155) 0.020 3558
NYJ 0.205 (0.170) 0.339 (0.109) 0.032 3254
BUF 0.169 (0.146) 0.427 (0.176) 0.032 3327
WAS 0.229 (0.162) 0.415 (0.101) 0.026 3561
JAC 0.156 (0.134) 0.409 (0.138) 0.027 3485
STL 0.183 (0.189) 0.430 (0.165) 0.022 3400
ARI 0.134 (0.137) 0.400 (0.134) 0.028 3682
SD 0.120 (0.159) 0.447 (0.097) 0.021 3605
TB 0.204 (0.154) 0.449 (0.129) 0.027 3434

OAK 0.184 (0.168) 0.429 (0.143) 0.027 3535
DEN 0.149 (0.180) 0.428 (0.177) 0.022 3685
DAL 0.177 (0.161) 0.411 (0.111) 0.024 3603
ATL 0.176 (0.173) 0.434 (0.131) 0.021 3877
SF 0.269 (0.288) 0.345 (0.222) 0.016 3035
KC 0.196 (0.208) 0.433 (0.241 0.021 3183

CAR 0.246 (0.232) 0.377 (0.151) 0.026 3172
PIT 0.137 (0.139) 0.384 (0.130) 0.022 3545
NO 0.179 (0.192) 0.431 (0.157) 0.021 4119
MIN 0.198 (0.182) 0.420 (0.109) 0.025 3269
CIN 0.116 (0.122) 0.439 (0.150) 0.029 3427
NYG 0.164 (0.153) 0.378 (0.151) 0.029 3679
PHI 0.178 (0.138) 0.415 (0.117) 0.027 3698
GB 0.129 (0.161) 0.507 (0.190) 0.014 3504

IND 0.187 (0.156) 0.395 (0.118) 0.024 3936
TEN 0.077 (0.099) 0.455 (0.104) 0.029 3362
BAL 0.162 (0.150) 0.480 (0.104) 0.021 3599
MIA 0.150 (0.175) 0.408 (0.149) 0.024 3510
SEA 0.146 (0.204) 0.540 (0.206) 0.021 3127
DET 0.118 (0.116) 0.393 (0.080) 0.026 4133
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Large standard errors of the predicted sample mean FDR are apparent in these results.
Statistical performance of models trained on Run segment data is compiled in Table 5.

These models are seen to be less precise than observed for other segments, as 7 of 32 team models
produced sample mean FDR’s of less than 15%. It is clear that the overall sensitivity of the Run
turnover predictions is very good, as 69% of the models (22/32) show true positive rates exceeding
60%. This observation is consistent with the “rolled-up” results shown in Table 2, where the overall
Run segment produces TPR = 0.65.

It is interesting to note that the lowest turnover prevalence by play type in the population
(for run plays) is associated with the highest degree of model sensitivity in out-of-sample predictions.
The disparity in realized false positive rates between Tables 2 and 5 could be, in part, explained by
the absolute number of training observations available in the aggregate case versus the team-wise
samples, where fewer examples in the latter may be insufficient to learn the joint distribution between
input and output variables.

Table 5. Team-wise prediction performance, Run segment, seasons 2009–2015. k = 10.

Team FDR (±se) TPR (±se) Prev. Nk
oos

NE 0.945 (0.151) 0.119 (0.321) 0.003 2537
CLE 0.230 (0.325) 0.657 (0.429) 0.006 2589
CHI 0.918 (0.195) 0.181 (0.375) 0.004 2569

HOU 0.196 (0.336) 0.762 (0.362) 0.006 2917
NYJ 0.119 (0.209) 0.778 (0.441) 0.006 2895
BUF 0.500 (0.343) 0.683 (0.404) 0.006 2744
WAS 0.335 (0.454) 0.236 (0.319) 0.005 2600
JAC 0.777 (0.287) 0.463 (0.442) 0.005 2557
STL 0.106 (0.195) 0.901 (0.161) 0.007 2565
ARI 0.571 (0.362) 0.591 (0.378) 0.008 2351
SD 0.143 (0.339) 0.665 (0.344) 0.005 2617
TB 0.317 (0.373) 0.660 (0.400) 0.008 2506

OAK 0.306 (0.353) 0.668 (0.394) 0.007 2577
DEN 0.389 (0.332) 0.603 (0.362) 0.007 2769
DAL 0.107 (0.289) 0.138 (0.328) 0.004 2505
ATL 0.337 (0.353) 0.293 (0.230) 0.005 2527
SF 0.550 (0.415) 0.728 (0.405) 0.004 2721
KC 0.279 (0.370) 0.827 (0.248) 0.007 2890

CAR 0.266 (0.278) 0.707 (0.326) 0.005 2943
PIT 0.285 (0.348) 0.913 (0.219) 0.008 2566
NO 0.937 (0.111) 0.321 (0.417) 0.004 2465
MIN 0.182 (0.274) 0.733 (0.244) 0.006 2761
CIN 0.085 (0.170) 0.770 (0.329) 0.006 2844
NYG 0.131 (0.185) 0.867 (0.201) 0.010 2611
PHI 0.357 (0.326) 0.642 (0.433) 0.009 2700
GB 0.981 (0.055) 0.119 (0.267) 0.004 2638

IND 0.224 (0.389) 0.711 (0.392) 0.007 2424
TEN 0.155 (0.218) 0.650 (0.255) 0.009 2514
BAL 0.177 (0.266) 0.858 (0.271) 0.006 2722
MIA 0.274 (0.318) 0.807 (0.331) 0.007 2578
SEA 0.658 (0.365) 0.302 (0.400) 0.004 2874
DET 0.126 (0.202) 0.750 (0.253) 0.008 2441

3.3. Variable Influence

The relative importance of variables in the feature vector is estimated by gradient boosted
machines [7]. This estimate is based on the increase in log likelihood of a decision tree as determined
by non-terminal splits made on each variable; this likelihood improvement is summed over all trees in
the ensemble to apportion that variable’s contribution to the plurality decision.
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The most and least influential variables for turnover predictions made for the aggregate
sample are summarized in Table 6. The most important features are last_pass_complete and
last_pass_incomplete. These are boolean valued features describing the outcome of the last pass
from scrimmage. The remaining highly influential variables make intuitive sense, describing the
current game situation (time remaining, score differential, yards to go for a first down or score).
Two seemingly trivial variables (is_pass and is_run) are consistent with the composition of the Run or
Pass segmentation, and strongly influence the splitting pattern of the constituent trees.

Non-important variables include the quarter of the game (subsumed by time_left), the direction
of a current run play, and plays immediately following special teams activity.

Table 6. Most and least influential variables. Aggregate sample, Run or Pass segment.

(a) Most Influential (b) Least Influential

Variable Avg. Rank Variable Avg. Rank

last_pass_complete 1 qtr2 27
last_pass_incomplete 2 qtr4 28

is_last_pass 3 is_last_punt 29
time_left 4 is_run_left 30

last_yards_gained 5 qtr1 31
dwn1 6 is_run_right 32

yds_drive 7 is_run_middle 33
is_run 8 is_last_ex_pt 34
is_pass 9 is_ot 35

score_diff 10 is_last_fld_goal 36
yds_togo 11 is_last_qb_kneel 37
yrds100 12 is_last_os_kick 38

4. Discussion

The hypothesis motivating this study was that turnovers in NFL professional football are
predictable. Statistical models were trained to predict the likelihood of observing a turnover on
a given play from scrimmage. Empirical data representing seven complete NFL seasons (2009–2015)
were used to train, test and evaluate the models.

Our machine learning results suggest evidence to support the hypothesis. Under certain
conditions, both fumbles and interceptions can be anticipated at low false discovery rates (less than
15%). This means that when a turnover is predicted on the impending play from scrimmage, a high
degree of confidence can be associated with that prediction.

The operational premise from the defender’s perspective is that the impending play type (Run,
Pass, Run or Pass) can be reliably estimated, using statistics (e.g., [19]) or intuition, in advance of the
ball snap. These three play type categories are the basis for data segmentation, and predictive models
are developed for each in turn.

For coaching purposes, this approach may be useful during development of game plans, or to
inform in-game strategies to mitigate the negative consequences of turnovers by an offensive team, or
to maximize their probability by a defensive squad.

Turnovers occur for many reasons, both physical and mental. Interceptions are caused by many
factors—tipped balls and errant passes miss their destination due to the pressure of a defensive
pass rush; misreading the defensive scheme prior to the ball snap; excellent coverage downfield by
defensive backs; lack of spatial awareness of players on the field. Fumbles can be produced by violent
physical collisions; insufficient ball protection by the runner; defensive “stripping” of the ball during
tackling; or quarterback sacks resulting in fumbles.

This investigation contributes to the sports science literature by demonstrating the predictability
of in-game events often considered to be essentially random in their occurrence. To the author’s
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knowledge, direct prediction of turnovers has not previously appeared in the literature, which has
focused on retrospective statistical analyses of turnover margin in football games.

4.1. Quantitative Results and Observations

Two data samples were modeled to assess turnover predictability: an aggregate of all NFL teams,
and 32 individual team samples. Seven full season-long records were used for all datasets. We define a
“good” false discovery rate to be FDR < 0.15. A positive prediction made by a model (ŷ(x) = 1) is
correct at least 85% of the time.

The GBM models to predict turnovers generally are characterized by high positive predictive
value, and moderate sensitivity.

Predictive results for the aggregated sample (Table 2) exhibit low false discovery rates (FDR)
for each play type segment (6.4%, 8.3%, and 3.9% for Run or Pass, Pass and Run, respectively).
These measures reflect outstanding positive predictive value in estimating turnover likelihood.
Run plays displayed the greatest sensitivity, with TPR = 0.65%.

Team-wise turnover predictions are summarized in Tables 3–5.
For the Run or Pass play segment, three-fifths of the team models (62.5%) have FDR rates below

the stated 15% goodness criterion. Sensitivities were moderate for all team models. This exemplifies
the essential tradeoff between FDR and TPR in ROC space [14], and follows from the present objective
of minimizing FDR for strategic utility of the method.

Pass play results showed that one-third of team models (32%) had false discovery rates below the
goodness threshold. TPR is in the 30%–40% range.

For Run plays, 22% of the team results displayed FDR < 0.15. Sensitivity of the turnover
predictions is good, as 69% of the models (22/32) had true positive rates greater than 60%.

It is interesting to note that the lowest turnover prevalence by play type in the population
(for Run plays) is associated with the highest degree of model sensitivity in out-of-sample predictions.
The disparity in realized false positive rates between Tables 2 and 5 could, in part, be due to the
absolute number of training observations available in the aggregate case versus the team-wise samples.
Fewer examples in the latter may be insufficient to learn the joint distribution between input and
output variables.

4.2. Extreme Events Modeling and Sports

Turnovers have a number of characteristics in common with “extreme” events produced by
complex dynamical systems, which are inherently difficult to predict [6]. These attributes include
the following:

(a) Low occurrence frequency. Previous estimates found an average 2.9% of passes by NFL quarterbacks
were intercepted [4]; fumbles were turned over to the opposing team in 0.83% of all run and pass
plays [20]. The present study covering years 2009–2015 shows average turnover rates of 2.4% and
0.6% for pass and run plays, respectively.

(b) Intermittency. Turnovers appear to be random events. In one study, nearly equal parts luck and
talent were proposed to account to year-over-year variations in turnover differential for a given
team [3]. Within a season, NFL turnovers correlate weakly with prior game performance . A team
with a strong season-to-date record of winning the turnover battle is likely to regress to the mean;
conversely, teams losing in turnover margin at a point within a season tend to improve on this
statistic moving forward [5].

(c) Costliness. A positive turnover margin in a given game is a significant predictor correlated with
winning that game [2]. Teams with a unit valued positive turnover margin with respect to the
opponent win the game 70% of the time [3].

The methods developed here are informed by the nonlinear geophysical dynamics literature by
framing the prediction as a classification task (e.g., [21]), using game state and its recent history as
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precursors to learn the turnover event. A related investigation from the sports scientific literature
suggested the predictability of within-game events and associated outcomes using dynamical process
modeling [22]. In that study, researchers found patterns of tempo and in-game scoring that were
common to many different sports (American football, hockey, and basketball). They suggest that these
cross-cutting themes may provide insight into psychological processes that affect teams’ performance
in a general manner.

4.3. Standard Errors of Predictions

The statistics used to evaluate predictive performance reflect the sampling distribution of sample
means and their standard errors, averaged over numerous replicates, folds and trials. It is observed
that the standard errors for FDR are a significant fraction of the sample mean value. This holds true
for most results obtained in this study. The standard error of the sample mean will decrease as 1/

√
n,

where n is the sample size, according to the Central Limit Theorem.

4.4. Sampling Notes

This study centered on macro-level game data, to test the hypothesis “turnovers are predictable”
in NFL football. Our samples aggregated over teams, and over players for team-level predictive
models. In extensions to this work, player-level data could be included to build individual player
models; such models may provide additional insights beyond descriptive statistical summaries of
turnovers in current usage.

Turnovers related to sacks were excluded from consideration, mainly due to their negligible
sample size relative to run and pass plays. Only 5.1% of sacks produce turnovers.

Author Contributions: Joel R. Bock conceived and performed the numerical experiments, analyzed their results,
and wrote the paper.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Model Training Algorithms

The algorithm used to train and evaluate GBM models for NFL turnover prediction is sketched in
the pseudo-code listing in Algorithm A1. This procedure was used for the aggregate sample (all teams,
seasons 2009–2015). The scheme used for the teamwise samples is notionally similar. Details are
described in Section 2.3.

Algorithm A1 Pseudo-code for aggregate modeling procedure.

Z ← load_data()
B← 100
V ← 0.10
F ← 3.0
seg← select_one(Both, Pass, Run)
ntree← 1500
DT ← 0.97
Per f [:, B]← 0

for b← 1, B do
[Z_oos, Z_mdl]← partition(Z)
o ← sample(Z, V ∗ nrow(Z), seg)
Z_oos← Z[+o, :]
Z_mdl ← Z[−o, :]
s < −strat_sample(Z_mdl, F, seg)
Z_mdl ← Z_mdl[s, :]
mdl ← gbm(Z_mdl(ntree, . . .))
ŷ← predict(mdl, Z_oos)
[FDR, TPR]← roc(ŷ, y, DT)
Per f [:, b]← accum(FDR, TPR, . . .)

end for



Sports 2017, 5, 1 11 of 11

References

1. Goodell, R. Official Playing Rules of the National Football League; National Football League: New York, NY,
USA, 2016.

2. Magel, R.C.; Childress, G. Examining the Outcome Effects of the Turnover Margin in Professional Football.
Int. J. Sports Sci. Eng. 2012, 6, 147–152.

3. Ryan, J. Examining Luck in NFL Turnovers. Available online: http://harvardsportsanalysis.org/2014/10/
how-random-are-turnovers/ (accessed on 28 September 2016).

4. Burke, B. How Random Are Interceptions? Available online: http://archive.advancedfootballanalytics.com/
2010/11/how-random-are-interceptions.html (accessed on 28 September 2016).

5. Beuoy, M. NFL Turnover Differential and the Point Spread. Available online: http://www.inpredictable.com/
2012/02/nfl-turnover-differential-and-point.html (accessed on 10 October 2016).

6. Kantz, H.; Altmann, E.G.; Hallerberg, S.; Holstein, D.; Riegert, A. Dynamical interpretation of extreme events:
Predictability and predictions. In Extreme Events in Nature and Society; AlbKantz, S.E.A., Ed.; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 69–93.

7. Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232.
8. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 10th ed.; Springer Series in Statistics;

Springer: New York, NY, USA, 2013.
9. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2013.
10. Greg Ridgeway. GBM: Generalized Boosted Regression Models; R Package Version 2.1.1, 2015. Available online:

https://CRAN.R-project.org/package=gbm (accessed on 28 December 2016).
11. Horowitz, M. nflscrapR: R Package for Scraping NFL Data off Their JSON API. Available online:

https://github.com/maksimhorowitz/nflscrapR (accessed on 2 October 2016).
12. Provost, F. Machine learning from imbalanced data sets 101. In Proceedings of the AAAI-2000 Workshop

on Imbalanced Data Sets, American Association for Artificial Intelligence, Austin, TX, USA, 31 July 2000;
pp. 1–3.

13. Efron, B.; Tibshirani, R. Boostrap methods for standard errors, confidence intervals, and other measures of
statistical accuracy. Stat. Sci. 1986, 1, 54–75.

14. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874.
15. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to

multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.
16. Bleakley, K.; Biau, G.; Vert, J. Supervised reconstruction of biological networks with local models.

Bioinformatics 2007, 23, i57–i65.
17. Caruso, F.; Kantz, H. Prediction of extreme events in the OFC model on a small world network. Eur. Phys. J. B

2011, 79, 7–11.
18. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140.
19. Goldberg, M.; Gilfix, A.; Rachesky, S.; Steeg, N.V. Predicting Offensive Play-Calling in the NFL.

Available online: http://harvardsportsanalysis.org/2016/03/predicting-offensive-play-calling-in-the-nfl/
(accessed on 12 October 2016).

20. Burke, B. Fumble Rates by Play Type. Available online: http://archive.advancedfootballanalytics.com/
2010/01/fumble-rates-by-play-type.html (accessed on 20 September 2016).

21. Hallerberg, S.; Bröcker, J.; Kantz, H. Prediction of Extreme Events; Lecture Notes in Earth Sciences, Chapter
Nonlinear Time Series Analysis in the Geosciences; Springer: Berlin/Heidelberg, Germany, 2008; pp. 35–59.

22. Merritt, S.; Clauset, A. Scoring dynamics across professional team sports: Tempo, balance and predictability.
EPJ Data Sci. 2014, 3, 4.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Gradient Boosted Machine Learning
	Sample, Segmentation and Features
	Modeling and Analysis

	Results
	Turnover Prediction Results—Aggregated
	Turnover Prediction Results—Team-Wise
	Variable Influence

	Discussion
	Quantitative Results and Observations
	Extreme Events Modeling and Sports
	Standard Errors of Predictions
	Sampling Notes

	Model Training Algorithms

