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Abstract: Kicking strikes are fundamental in combat sports such as Taekwondo, karate, kickboxing,
Muay Thai, and mixed martial arts. This review aimed to explore the measurement methods, kine-
matics such as velocities, kinetics such as impact force, determinants, and injury potential of kicking
strikes in combat sports. Searches of Academic Search Premier, The Allied and Complementary
Medicine Database, CINAHL Plus, MEDLINE, SPORTDiscus, Scopus, and Web of Science databases
were conducted for studies that measured kicking velocity and impact force. A total of 88 studies
were included in the review. Studies most frequently involved only male participants (49%) aged
between 18 and 30 years of age (68%). Studies measuring velocity predominantly implemented
camera-based motion capture systems (96%), whereas studies measuring impact force displayed
considerable heterogeneity in their measurement methods. Five primary strikes were identified
for which foot velocities ranged from 5.2 to 18.3 m/s and mean impact force ranged from 122.6 to
9015 N. Among the techniques analysed, the roundhouse kick exhibited the highest kicking velocity
at 18.3 m/s, whilst the side kick produced the highest impact force at 9015 N. Diverse investigation
methodologies contributed to a wide value range for kicking velocities and impact forces being
reported, making direct comparisons difficult. Kicking strikes can be categorised into throw-style
or push-style kicks, which modulate impact through different mechanisms. Kicking velocity and
impact force are determined by several factors, including technical proficiency, lower body strength
and flexibility, effective mass, and target factors. The impact force generated by kicking strikes is
sufficient to cause injury, including fracture. Protective equipment can partially attenuate these forces,
although more research is required in this area. Athletes and coaches are advised to carefully consider
the properties and potential limitations of measurement devices used to assess impact force.

Keywords: kick; martial arts; kinetics; kinematics; measurement; striking; biomechanics

1. Introduction

In striking-based combat sports, competitors commonly use punches, kicks, knee, and
elbow strikes [1]. When utilising striking techniques, a competitor must deliver strikes
quickly enough to bypass an opponent’s defence or protective reaction [2,3] and impact
with enough force to weaken or incapacitate an opponent [4]. Strikes that meet these criteria
also influence judging decisions [4], increasing the likelihood of victory by decision.

Combat sports athletes have traditionally been profiled based on anthropometry and
physiological capacities such as limb strength and cardiovascular fitness [5–7]. However, the
research on quantification and performance profiling of sport-specific qualities, including
striking velocity and impact force, remains comparatively unexplored [8]. While only
upper limb strikes are permitted in some combat sports like boxing, disciplines such as
Taekwondo (TKD), karate (KA), kickboxing (KB), Muay Thai (MT), and mixed martial
arts (MMAs) allow the use of both upper and lower limb strikes. In disciplines where a
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combination of upper and lower limb strikes is permitted, the frequency at which these
strikes are used varies. In TKD, kicking strikes are the dominant method of striking [9],
whereas in KA, punches occur at a higher frequency than kicking strikes [10]. Nonetheless,
delivering high-velocity kicks is a crucial tactical factor and an essential determinant of
competition success [11–15]. Across disciplines, a range of kicks are employed, including
roundhouse, front, back, side, and axe kicks [16–18]. Specifically in TKD, the roundhouse
kick is the most commonly used [19] and has been reported to be the most frequent cause
of concussion during competition [20]. Furthermore, kicks to the head are considered
tactically important in combat sports, as disrupting an opponent’s ability to compete
through knockout is the most direct route to victory [16].

Various investigations have explored aspects of kicking performance, including the
kinematic stages of kicking [21–25], interdisciplinary performance comparisons [24,26,27],
the effect of training interventions [28–30], and physical determinants of kicking perfor-
mance [31,32]. Furthermore, numerous studies have explored injury and injury prevalence
in combat sports involving kicking [33–35]. Nonetheless, despite the growing popularity of
combat sports, the scope of the scientific literature has not kept pace with this trend [36].
To date, no literature review has investigated the velocity and force characteristics across
the range of kicking strikes used in combat sports or explored the potential injury these
forces may cause. Considering the tactical importance of delivering high-velocity, high-
force strikes, quantifying the variety of kicks performed in combat sports can enhance the
understanding of kicking performance across combat sports and assist in improving safety
practices, training interventions, talent identification, and elite performance [37,38]. There-
fore, this review aimed to summarise the velocities and impact forces reported in studies
on kicking strikes in combat sports. It additionally aimed to explore their measurement
methods, kinematics, kinetics and potential performance determinants and evaluate the
theoretical injury risk associated with such strikes.

2. Materials and Methods
2.1. Literature Search Strategy

A comprehensive electronic database search focused on kicking strikes was conducted
on 30 June 2023. The search encompassed seven databases: Academic Search Premier, The
Allied and Complementary Medicine Database, CINAHL Plus, MEDLINE, SPORTDiscus,
Scopus, and Web of Science. The following combination of search terms was used: “martial
arts” OR “combat sports” OR “combat sport” OR karate OR kickboxing OR kick-boxing OR
“kick boxing” OR “mixed martial arts” OR mma OR taekwondo OR TKD OR “Tae-kwon-
do” AND force OR velocity OR impact AND kick. Truncated versions of the search term
‘kick’ were used to ensure all relevant studies were identified. Search results from each
database were combined, and duplicates were removed. A further search was performed
in the reference lists of included papers for additional relevant articles.

2.2. Eligibility Criteria

The inclusion criteria for articles were (a) reported linear foot velocities or impact force
from kicking strikes delivered by human participants, (b) articles available in the English
language, and (c) articles published in a peer-reviewed journal. The exclusion criteria
included articles that did not involve human participants, reported kinetic or kinematic
qualities other than linear foot velocity or impact kinetics, were in languages other than
English, or were secondary research. Additionally, studies using measurement methods
that reported velocity and impact force in units other than metres per second (m/s) for
velocity and Newtons (N) for force were also excluded.

2.3. Data Extraction

After identification of eligible studies, data including participant characteristics, mea-
surement method, strike measured, and reported value (foot velocity or impact force) were
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extracted into tabular form (See Supplementary Material Tables S3 and S4). When data were
only reported in graphs, values were extracted using WebPlotDigitizer (Version 4.7) [39].

2.4. Literature Quality Assessment

A critical appraisal of all articles included in this review was carried out using the
Appraisal tool for Cross-Sectional Studies (AXIS). The AXIS tool, specifically designed
for cross-sectional studies, consists of 20 domains to determine the quality of individual
investigations [40]. The AXIS tool was modified for this review by removing questions
7, 13, and 14, as non-response was deemed inappropriate for the studies included [17].
Following the assessment of each investigation, AXIS scores were converted to percentages
to reflect the quality of the study [41]. Three scoring brackets for studies were assigned
for the studies as follows: Good quality (≥74%), Fair quality (≥55 to ≤73.9%), and Poor
quality (≤54.9%) [41].

3. Results

The literature search across the seven databases retrieved a total of 776 results. Fol-
lowing the removal of duplicates, subsequent title and abstract screening, and full-text
screening, 79 articles were deemed suitable for inclusion. An additional nine relevant and
eligible texts were identified within the reference sections of the included articles. In total,
88 studies met the inclusion criteria and were included in the final synthesis. Figure 1
details the process of article retrieval and inclusion.
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3.1. Literature Quality

All studies were evaluated and scored according to the 17 criteria of the modified AXIS
assessment. Of the evaluated studies, the majority (n = 68, 77.3%) were rated as ‘Good quality’,
16 (18.2%) as ‘Fair’ quality, and 4 (5.0%) as ‘Poor’ quality. Two studies returned an AXIS score
of 100% [42,43]. Justification of sample size was infrequent among the included studies, with
only 11 studies providing rationale for the sample size used [12,21,25,26,31,42–47]. Likewise,
measures of internal consistency were few, with only 14 studies reporting any measure
of consistency in their results [11,28,31,43,44,48–56]. The modified AXIS assessment for
individual studies is available in the Supplementary Material (Table S2).

3.2. Study Participants and Characteristics

Of the 88 studies identified, participant sample sizes ranged from 1 to 49 participants.
The mean, median, and mode for sample sizes across all studies was 15.5, 14, and 6,
respectively. One investigation did not report a sample size [57]. Approximately half of the
studies identified recruited only male participants (n = 43, 49%). Fewer studies recruited
male and female participants (n = 25, 28%), and a very small proportion recruited only
female participants (n = 2, 2%). The remainder of investigations failed to report the specific
sex breakdown of their participant group (n = 18, 20%). Regarding mean participant age,
four categories were identified: <18, 18–30, 30–50, and >50 years of age. The majority of
the studies (n = 60, 68%) used participants aged 18 to 30. Studies involving participants
<18 and 30–50 were less common (n = 6, 7%, and n = 4, 5%, respectively). A small number
(n = 8, 9%) of studies involved participants from multiple age brackets, and only one study
involved participants >50 years of age [58]. Three categories of mean participant training
experience were identified: <4, 4–10, and >10 years of training experience. The 4–10 and
>10 years categories were the most frequently reported (n = 24, 27%, and n = 20, 23%,
respectively). Studies involving participants of <4 years or experience were fewer (n = 7,
8%), and studies involving multiple categories were slightly less still (n = 6, 7%). Studies
that did not report experience in years were more prevalent (n = 31, 35%). Detailed study
characteristics, including sample size, participant sex, age, and training experience, are
available in the Supplementary Material (Tables S3 and S4).

3.3. Measurement of Kicking Velocity and Impact kinetics

Among the studies included in the review, 56 reported velocity values, 21 reported
impact force values, and 11 reported both velocity and impact force. The measurement
of velocity was predominantly performed using camera-based motion capture systems
(n = 64, 96%), followed by ground sensor and racket systems (n = 2, 3%) and dual-beam
laser systems (1%, n = 1). The measurement of impact forces was most frequently per-
formed using various force sensors (n = 14, 44%), followed by force plates (n = 7, 22%),
accelerometers (n = 5, 16%), strain gauges (n = 3, 9%), calculation from motion capture
(n = 2, 6%), and spring balance (n = 1, 3%). The reliability of velocity and impact force
measurement, as indicated by the intraclass correlation coefficient (ICC) and Cronbach’s
alpha, was reported in 13 studies [11,28,43,44,48–56].

3.4. Kicking Velocity and Impact Force

Velocity and impact force values from the literature search are presented in Figures 2 and 3.
The velocity of kicks was reported in 31 instances for the roundhouse kick [2,12,21,26,28,29,31,
32,42–44,46,47,53,57,59–74], 10 for the roundhouse kick to the head [24,59,66,67,75–80], 8 for the
side kick [13,25,28,57,65,71,72,81,82], 19 for the front kick [11,45,55,57,58,78,83–95], 11 for the
back kick [23,47,57,64,65,71,72,75,76,96,97], and 7 for the axe kick [75,76,98–102]. Impact force
was reported in 13 instances for the roundhouse kick [22,44,49,52,56,66,67,72,103–107], 6 for the
roundhouse kick to the head [24,44,48,51,66,67], 11 for the front kick [11,27,30,55,84,88,107–111],
9 for the side kick [13,27,30,72,81,82,105,107,112], 5 for the back kick [54,72,103,104,112], and 1
for the axe kick [113]. Participants from eight combat sports disciplines were reported. TKD
was the most frequently reported discipline (n = 69), followed by KA (n = 12), MT (n = 3) and



Sports 2024, 12, 74 5 of 17

KB (n = 2). Krav Maga, Nihon-Kempo, Silat, and Yongmudo were each reported singularly.
Interdisciplinary comparison was conducted in four studies [24,26,27,66], and five studies did
not specify the training disciplines of participants. Detailed characteristics of these studies,
including participant sample, measurement method, type of strikes measured, and reported
values, are available in the Supplementary Material (Tables S3 and S4).

Across all disciplines, kicking variations, and techniques, foot velocities ranged from
5.2 to 18.3 m/s. Amongst papers reporting impact force, the values reported ranged from
122.6 N to 9015 N. Kicks, including those of similar styles, demonstrated a range of foot
velocities. Roundhouse kicks produced velocities ranging from 6.9 to 18.3 m/s; side kicks
produced velocities ranging from 5.6 to 12.7 m/s; back kicks produced velocities ranging
from 6.0 to 12.2 m/s; front kicks produced velocities ranging from 5.2 to 16.7 m/s; and
axe kicks produced velocities ranging from 6.5 to 10.9 m/s. In terms of impact force,
roundhouse kicks’ impact force ranged from 172.0 to 6400 N; side kicks ranged from 461.8
to 9015 N; back kicks ranged from 562.4 to 8569 N; front kicks ranged from 466.6 to 7790 N;
and axe kicks were reported at 122.6 N. Of the studies included in this review, the kick with
the highest foot velocity was the roundhouse kick (18.3 m/s), and the kick with the highest
impact force was the side kick (9015 N).

4. Discussion

This review identified the velocities and impact force of common combat sports
kicking strikes. Five commonly measured kicking strikes across eight disciplines were
identified: the roundhouse kick, front kick, side kick, back kick, and axe kick. Additionally,
various kicks unique to individual combat sports were identified, including the ‘Tornado’
kick [65], the ‘Thrashing’ kick [47], several spinning kicks [71,76], and variations of the axe
kick [75,76,101]. Of all the kicks identified in this review, the side kick generated the highest
impact force (9015 N) [112], and the roundhouse kick generated the highest peak foot
velocity (18.3 m/s) [66]. Participants in the studies identified were predominantly male,
with 49% of studies reporting only male participants. Studies with only female participants
studies were rare (2%). Participants were most frequently aged between 18 and 30 (68%),
with the 4–10 and >10 years of training experience categories encompassing 50% of all
participants. TKD was the most frequently studied discipline, followed by KA, MT, and KB.
Krav Maga, Nihon-Kempo, Silat, and Yongmudo were reported in single instances. When
compared with upper limb strikes, the side kick produced a force 158% greater than that of
the reported highest force upper limb strike, the straight punch (5358 N) [114]. Similarly,
the roundhouse kick, the most common kick identified, generated 119% of straight punch
force at 137% of its velocity (18.3 m/s compared to 13.4 m/s) [115]. Considering that the
lower limb mass in combat sports practitioners is often more than 2.5 times greater than that
of upper limb mass [116], it may be surprising that the velocities of some kicking strikes
were higher than those of common upper limb strikes. This effect is likely attributable
to the summative involvement of the large lower limb segments, including the pelvis,
hip, and thigh [24]. Furthermore, the mass of these segments may also explain the larger
magnitudes of impact force seen in kicking strikes [66]. When interdisciplinary studies
were conducted, KB displayed higher impact force than KA [27] and KA demonstrated
significantly higher kicking velocity than TKD and MT [26]. However, other comparative
studies found no significant differences in velocity and impact force between TKD, KA, and
MT [24], or between TKD and Yongmudo [66]. The limited number of comparative studies
and varied results within these studies restricted the ability to draw definitive conclusions
regarding interdisciplinary differences.

4.1. The Measurement of Kicking Velocity and Impact Force

The measurement of velocity in the reviewed studies was primarily conducted us-
ing camera-based motion capture systems, considered the ‘gold standard’ for kinematic
analysis [117]. Conversely, impact force measurement showed considerable variety, with
studies using accelerometers, force plates, force sensors, motion capture, a spring balance,
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and strain gauges. This variation in measurement devices may explain the disparities in
the force values reported across different investigations. Previous studies exploring upper
limb striking have suggested that diverse results in striking force may be explained by
differences in padding applied to striking surfaces [118] or by the increased rigidity of a
device (i.e., force plates) inflating impact force values [119]. A previous review into combat
sports striking proposed that devices used to measure impact force should be categorised
based on the following properties: those that measure force either directly (i.e., force plate)
or indirectly (i.e., accelerometer) and those that are inertially relevant or irrelevant, meaning
they mimic or do not mimic the movement of human structure on impact [8]. Among
the studies that measured force (n = 32), only 13 used inertially-relevant devices during
testing [44,48,49,51,52,56,65,66,72,103–105,113].

Regarding the reliability of the measurement methods, while both direct and indirect
methods have demonstrated good reliability in measuring striking impact forces [8], only
15% (n = 13) of studies identified in this review reported any measure of reliability for
their impact force or velocity measurements, raising concerns about the consistency and
repeatability of the reported findings. ICC was the most commonly reported statistic for
assessing measurement reliability. The reported ICC values ranged from 0.53 to 0.97 for
foot velocity [11,28,43,50,53,55] and from 0.61 to 0.98 for impact force [11,44,48,51,52,54,55].
These ranges indicate moderate to excellent reliability when reported [120]. The variability
in ICC values, coupled with the limited number of studies reporting them, presents a
substantial barrier regarding the standardisation of measurements within the field. This
inconsistency hinders the comparison and in-depth analysis between studies [66,105,112],
underscoring the requirement for more uniform measurement methodologies.

Numerous pitfalls in striking measurement technologies have been identified, suggesting
that these technologies require specific methodological requirements to produce accurate data
and overcome inherent limitations. Researchers and practitioners using these technologies
must be aware of and adept at addressing various issues. These include aberrant movements
of kinematic markers [53,100], differences in protective layers applied on devices that dampen
impact force [111,112], and variabilities or errors in sensor positioning [68]. These nuances,
coupled with the absence of a universally recognised ‘gold standard’ methodology for measur-
ing striking performance, especially regarding impact force [4,8], pose a significant challenge
in standardising the assessment of striking performance.
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Figure 2. Means and standard deviations of peak linear foot velocity (m/s) for kicking strikes
in combat sports: (a) roundhouse kick, (b) roundhouse kick to the head; (c) side kick, (d) front
kick, (e) back kick, (f) axe kick. Where an error bar is absent, only a maximum velocity value was
reported [2,11–13,21,23–26,28,29,31,32,42,43,45–47,50,52,55,57–102].

4.2. Kinematics and Impact Kinetics of Kicking Strikes

Kicking strikes in combat sports possess distinct kinematic patterns that influence
their velocity and impact characteristics. The individual kinematic patterns for each kicking
strike explored in this review are detailed in Table 1. Kicking strikes can be categorised into
two kinematic groups: throw-style kicks (such as the roundhouse kick) or push-style kicks
(such as the front, side, and back kick) [47]. These two categories are also known as ‘swing’-
or ‘thrust’-style kicks [71]. Throw-style kicks involve a sequence of hip flexion followed by
rapid knee extension [47], striking the target with the foot instep [71]. A vital aspect of the
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throw-style kick is the proximal-to-distal movement pattern, in which movement begins
at the hip and progresses sequentially distal, with each segment attaining higher velocity
than the previous segment [26,43,62,74]. This sequential motion results in a ‘whip’- or
‘flail’-like action [69,91], transferring forces down the lower limb, resulting in high impacts
on collision. Conversely, push-style kicks are characterised by a more synchronous motion,
in which both the hip and the knee extend almost simultaneously on impact [47], striking an
opponent with the plantar surface of the heel [71]. Axe kicks and other discipline-specific
strikes, such as the thrashing kick, appear to incorporate elements of both categories,
potentially in an attempt to overcome the lower velocity typically associated with push-
style kicks [47,102].

Table 1. Kinematic patterns of kicking strikes.

Roundhouse kick Initiates with forward movement towards an opponent with pelvic rotation, followed by hip abduction, hip flexion, and
knee flexion, finishing with knee extension of the striking leg to strike the opponent with the instep of the foot [24,77].

Front kick Initiates with hip and knee flexion to a near parallel position, followed by rapid extension of the hip and knee horizontally
toward the target, striking with the foot [11,89,91,109].

Side kick Initiates with striking leg lifting off the ground and pelvic tilt away from the target, accompanied by simultaneous hip
flexion, abduction, and knee flexion, followed by hip and knee extension to strike the target with the heel [13,25,81,82].

Back kick Initiates with body rotation away from the target, combined with simultaneous hip flexion, abduction, and knee flexion,
finishing with hip and knee extension to strike the target with the heel [64,96].

Axe kick Initiates with lifting the striking leg into flexion with simultaneous knee extension as the leg ascends, followed by a rapid
hip extension to strike the target with the heel [98,99,102].

Kinetically, throw- and push-style kicks are suggested to generate impact forces
through different mechanisms [105]. Throw-style kicks are proposed to rely on the proximal-
to-distal movement pattern [105], with one study reporting a moderate to good correlation
between foot segment velocity and impact force [24]. Subsequently, higher strike velocity
would likely result in higher impact force. However, this correlation varied across studies,
with one investigation finding an insignificant correlation between strike velocity and im-
pact in males but a significant correlation in females [72]. As throw-style kicks are complex
movements requiring coordination between multiple body segments, they likely rely on
practitioner skill to utilise proximal-to-distal sequencing effectively to modulate impact
forces [51]. In contrast, push kicks appear to modulate impact forces by increasing the
body mass involved in the strike, with multiple investigations correlating body mass with
impact force [11,110,112]. Since involving more mass in strikes is simpler than enhancing
technical skill, push-style kicks have demonstrated improved impact force in untrained
participants following a single instructional session [84]. A similar pattern of increasing
body mass involved in a strike to improve impact force has been suggested in throw-style
kicks. Falco et al. [49] found a significant correlation between body mass and impact force
in the roundhouse kick. However, this correlation was only identified in novices, leading
the authors to conclude that less skilled practitioners may increase body mass involved in
a strike to compensate for technical deficiency.

4.3. Determinants of Kicking Velocity and Impact Force

The determinants of kicking velocity and impact force can be categorised into four
domains based on the studies identified in this review: technical proficiency, lower body
strength and flexibility, effective mass, and target factors. Studies exploring the effect of
technical efficiency have noted that those of higher skill qualification can generate higher
foot velocity [12,21,45,68,92,102] and impact force [49,55,110] than those of lower skill.

Suggested mechanisms include superior utilisation of proximal-to-distal motion [49],
effective use of body mass [110], higher muscular activation [42,92], and enhanced coordi-
nation [45,58]. Lower body strength and flexibility also affect kicking performance, with hip
muscular strength [11,31,103], jumping performance [31,32,54], and flexibility [102,108] all
being identified as factors influencing kicking performance. Lower body strength likely ex-
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erts its effect by increasing an athlete’s ability to create ground reaction forces, potentiating
final foot velocity and impact force [12,60], whereas flexibility potentiates length–tension
relationships of musculature, increasing kicking effectiveness [102]. However, as athletes
fatigue, both the speed [87] and kinematic quality of the kick reduces [83], indicating that
athlete endurance also plays a role in kicking performance.

When discussing mass in the context of striking kinetics, it is essential to differentiate
between body mass and the effective mass of a strike. As entire body mass cannot be
involved in a strike, the portion that actively contributes is termed the ‘effective mass’ [107].
Multiple studies have demonstrated a correlation between kicking impact force and body
mass [72,112]. While the correlation between total body mass and effective mass has not
been reported in kicking strikes, and a study on punching strikes found only a slight
association between the two factors [115]. Only one study identified in this review specif-
ically explored effective mass and its relationship to kicking strikes, reporting on the
magnitudes to which effective mass contributed to front, side, and roundhouse kicks [107].
The amount of effective mass involved in a strike is suggested to depend on an athlete’s
skill level, with skilled athletes able to time stiffening of the striking limb to occur on
or immediately before impact, thereby increasing effective mass and subsequent impact
force [97,107]. The neuromuscular action believed to create this stiffening has been referred
to as a “contraction-relaxation-contraction strategy” [92]. This strategy involves an initial
contraction to start the kicking motion, a relaxation as the limb accelerates, and a final
contraction to create limb stiffness on impact [92]. Studies on this stiffening effect in kicking
are limited. However, research investigating the roundhouse kick found increased ankle
joint rigidity and heightened hamstring activation on impact when comparing high- and
low-impact kicks [106]. The authors proposed that increased hamstring activation could
serve to stiffen the knee joint and enhance impact force [106]. This stiffening function is
important in athlete testing contexts, as without a target necessitating this stiffening effect
on impact, athletes tend to produce higher kicking velocities [70,90,93–95], raising concerns
about the ecological validity of these measurements [79].

When evaluating target-related factors, both the distance from and size of the target
appear to affect kicking impact and velocity. A reduction in target size is associated
with a decrease in kicking velocity, a modification likely made to accommodate increased
accuracy demands [78,79,93]. This phenomenon, known as the ‘speed-accuracy trade-
off’, has been reported in multiple studies [78,93,94]. This effect may explain why kicks
aimed at the head tend to produce lower impact force and velocity than those targeting
the trunk [66,67], likely due to the need for more precise targeting, which necessitates a
reduction in absolute velocity. In assessing distance from a target, numerous studies have
shown that adjusting stance angle, thereby changing the distance of the striking limb from
the target, can influence velocity and impact force. Several studies demonstrated this effect,
showing that body angulation of 45–90 degrees relative to the target yielded higher kicking
velocities than square-to-target orientations [2,46,50,53,62]. These findings were noted to
be minimal in some instances [2,53]. The influence of stance angle is likely attributable to
the increased summation of body segment rotations that contribute to the kicking action,
an effect that is less potent at lower angles of attack [46]. Additionally, in scenarios where
practitioners could choose their preferred striking distance, they achieved higher velocities
than when the distance was predetermined [62]. Concerning impact force, it has been
suggested that an increased distance from a target allows more time for the striking limb to
accelerate before impact, potentially increasing impact force [105]. However, the interplay
between distance and impact appears to be more complex. While certain studies have
shown that individuals of a higher skill level can maintain impact force across multiple
distances [44,49], other research has reported different findings relating to kicking distance
and skill level. One study observed lower kicking impact forces at a longer distance for
higher-skill athletes only [52], while another found no significant difference in impact
force between skill levels at an intermediate kicking distance [51]. Interestingly, a study
analysing impact force across weight classes revealed that heavyweight and lightweight
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athletes produced lower impact force from longer distances, while welterweight athletes
maintained similar force across multiple distances [48]. This finding suggests that body
mass may interact with distance to influence impact force. Although varying methodologies
between these studies may account for the contrasting results, these findings indicate that
while skill level may diminish the effect of distance on impact force to a certain extent, the
absolute effect remains unclear.
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4.4. Injury Potential from Kicking Strikes

Injury is a common occurrence in combat sports, with some disciplines reporting
that 28.6 per 100 bouts result in injury to a competitor [122]. Common injuries include
contusions, lacerations, soft tissue injuries, concussions, fractures, and dislocations [35].
As the head is a tactically important target in striking sports, facial fractures have been
reported to account for a large portion of head and neck injuries in sports involving kicks
to the head [35]. Considering the force tolerances of the facial bones [123], the highest
reported impact force from a roundhouse kick to the head could potentially fracture the
nasal bone, maxilla, mandible, zygoma, and the lateral and temporoparietal regions of the
skull. As competitors adjust their stance to defend their facial structures with their arms
during an opponent’s attack, this can lead to upper limb fractures [124]. For example, the
impact of a roundhouse kick well exceeds the reported tolerance range of the forearm bones
(670–3550 N [125]). If a competitor can bypass an opponent’s upper limb defences, the ribs
become a common impact area, resulting in the third most common fracture site behind the
head and upper limbs in certain disciplines [33]. Studies on motor vehicle accidents report
that rib fractures can result from forces between 1200 and 5900 N [126], indicating that a
well-placed roundhouse, side, or back kick can generate impact forces equivalent to those
in a severe motor vehicle accident. Fractures of the lower extremity occur at a much lower
prevalence than those of the upper extremity and head [127]; however, kicks targeting the
leg would need to generate impact at forces between 4110 and 8450 N and 5000 and 8230 N
to fracture the tibia or femur, respectively, as indicated by cadaver studies [128].

Given the potential for injury from striking impacts, protective equipment has been
made mandatory in some disciplines involving kicking strikes [129,130]. Despite this,
injury prevalence research has indicated that only a limited proportion of participants
(26.15%) reported using protective equipment during training sessions in which injury
occurred [34]. The use of protective equipment such as hand protection and headgear
likely aids in preventing common injuries such as lacerations and fractures, although their
effect on concussions is less conclusive [131]. Research into the force-attenuating effects of
protective equipment has demonstrated that implementing gloves and head protection can
reduce impact forces by up to 67% during simulated head strikes [132]. However, beyond
head protection, few studies have examined the force-attenuating effects of other protective
equipment used in combat sports, such as body, forearm, foot, or shin protection. One study
exploring this effect demonstrated that a body protector reduced impact force by 31.9–75.3%
during simulated kicking strikes [133]. This study also found that the attenuation effect
decreased as impact forces increased, supporting the suggestion that protective equipment
may require enhanced absorption capabilities relative to the expected impact magnitude
to improve athlete safety [134]. A similar study investigated the force-attenuating effect
of forearm, shin, hand, and foot protection during simulated strikes [135]. The study
found varying levels of force attenuation among different brands of protective equipment
and reported that under high-impact conditions, the equipment did not reduce impact
force below theoretical thresholds for fracture or soft tissue injury. The authors further
suggested that improvements in protective equipment are necessary to reduce impact force
to <2000 N to prevent severe injuries from striking impact [135]. These findings suggest
that kicking strikes generate impact forces sufficient to fracture various bony structures
and protective equipment appears to offer a degree of force attenuation during impact.
However, further research and development of this equipment is essential to improve the
safety of participants involved in combat sports and to reduce injury prevalence.

4.5. Strengths and Limitations

This review paper demonstrates several strengths in examining the velocities and
impact forces of kicking strikes in combat sports. It presents a comprehensive summary of
these values, encompassing a wide range of studies, and offers a thorough overview of the
existing literature. This review offers readers a holistic understanding of the velocity and
impact outcomes associated with kicking strikes in combat sports. Additionally, it provides
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valuable insight into the participant cohorts studied and the varied methodologies em-
ployed to measure velocity and impact force values within these cohorts. By summarising
the diverse measurement approaches found in the literature, this review offers valuable
insight into the range of methods used in combat sports research. This review enables
researchers and practitioners to understand the various measurement methodologies and
the kinematic and impact determinants involved in kicking strikes.

While this review summarises the velocity and impact force of kicking strikes in
combat sports, caution is advised in comparing or analysing across studies, as the het-
erogeneity of methodologies often prohibits direct comparison [66,105,112]. Additionally,
few studies included in this review reported justification for their sample size (which was
often small) or the consistency of measures in their assessment methodologies, raising
concerns about the internal validity of these investigations. The external validity of the
values reported within this paper are also contentious, as males and females were analysed
jointly in this review. Furthermore, as participant testing was primarily conducted in a
laboratory environment, translation into live competition may be limited. This issue of
ecological validity has been previously noted, as no laboratory test can fully replicate a real
competition scenario [2,11,46,62,63,85,106]. Careful consideration should be taken when
applying these findings to general populations, as participants were most frequently male,
aged 18–30, with 4–10 years of training experience. Additionally, some studies reviewed
involved elite practitioners whose performance outputs may exceed that of less skilled
participants [59,61]. The potential for injury from kicking strikes is theoretical in nature,
and injury, including fracture, depends on more than force alone and is also contingent on
other factors including strike vector direction, velocity, and contact time [136]. Finally, the
authors acknowledge that excluding non-peer-reviewed publications, which may poten-
tially include eligible studies, was a necessary criterion to maintain the quality standards
of this review process.

5. Conclusions

Kicking strikes in combat sports are commonly evaluated by measuring foot velocity
and impact force. Kicks commonly measured included the roundhouse, front, side, back,
and axe kick. The roundhouse kick was the most frequently measured, likely due to its
high velocity and high-impact force. Combat sports kicks can generally be categorised into
two types: throw-style kicks, which likely modulate impact force through effective use
of the proximal-to-distal movement pattern, and push-style kicks, which modulate force
through increased use of body mass. The determinants of kicking velocity and impact force
include technical proficiency, lower body strength and flexibility, effective mass, and target
factors. The impact force from kicking strikes has the potential to cause injury, including the
fracture of several bony structures. Protective equipment can attenuate impact force during
kicking strikes and should be considered for athlete safety. However, further research is
needed to ensure that this equipment can sufficiently attenuate the forces from high-impact
kicks to prevent injury.

While this review has provided valuable insights, the heterogeneity of measurement
methodologies presents a major limitation within the literature, particularly the measure-
ment of impact force. This diversity is demonstrated by the wide variation in reported
values of kicking velocities and impact forces among different kicking strikes, posing
considerable challenges for direct comparison. Further research is needed to validate and
standardise striking measurement methodologies to deepen the understanding of factors
that contribute to high-velocity and high-force kicking strikes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sports12030074/s1. Table S1: Search strategy, Table S2: Appraisal
tool for Cross-sectional Studies (AXIS) assessment for included studies, Table S3: Summary of studies
that reported kicking strike velocity, Table S4: Summary of studies that reported kicking strike
impact force.
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