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Abstract: Decreased male fertility is a big concern in both human society and the livestock industry.
Sperm DNA methylation is commonly believed to be associated with male fertility. However, due to
the lack of accurate male fertility records (i.e., limited mating times), few studies have investigated
the comprehensive impacts of sperm DNA methylation on male fertility in mammals. In this
study, we generated 10 sperm DNA methylomes and performed a preliminary correlation analysis
between signals from sperm DNA methylation and signals from large-scale (n = 27,214) genome-wide
association studies (GWAS) of 35 complex traits (including 12 male fertility-related traits). We detected
genomic regions, which experienced DNA methylation alterations in sperm and were associated with
aging and extreme fertility phenotypes (e.g., sire-conception rate or SCR). In dynamic hypomethylated
regions (HMRs) and partially methylated domains (PMDs), we found genes (e.g., HOX gene clusters
and microRNAs) that were involved in the embryonic development. We demonstrated that genomic
regions, which gained rather than lost methylations during aging, and in animals with low SCR
were significantly and selectively enriched for GWAS signals of male fertility traits. Our study
discovered 16 genes as the potential candidate markers for male fertility, including SAMD5 and
PDE5A. Collectively, this initial effort supported a hypothesis that sperm DNA methylation may
contribute to male fertility in cattle and revealed the usefulness of functional annotations in enhancing
biological interpretation and genomic prediction for complex traits and diseases.
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1. Introduction

Decreased male fertility is a big concern in both human society and the livestock industry [1,2]. In
mammals, global reprogramming of DNA methylation patterns happens twice during development:
Once during early embryogenesis and once during germ cell development. Because of its crucial role
in the normal embryonic development through regulating gene expression, sperm DNA methylation
is often believed to be associated with male fertility [3–9]. Hammoud et al. (2009) demonstrated the
promoters of developmental genes (e.g., microRNA clusters and HOX gene clusters) were generally
hypomethylated in the human sperm, and the retained nucleosomes in sperm were significantly
enriched at these genes, revealing important contributions of sperm epigenetics to the embryonic
development [9]. Aberrant sperm DNA methylation has been suggested to be associated with decreased
male fertility, low embryo quality, and susceptibility to offspring disorders [10–13]. For instance,
Kenneth et al. (2015) reported that sperm methylation patterns of infertile men were significantly
different from those of fertile ones [11]. Milekic et al. (2015) found that alterations of sperm DNA
methylation during aging were related to abnormal behaviors of offspring, and can be transmitted
to offspring [14]. Lambert et al. (2018) observed that DNA methylation levels in bull sperm went
through a change during puberty and then became stable after the age of 1 year [15]. More recently,
Donkin et al. (2018) reported that alterations of the phenotypes of offspring are partially due to
environmentally-driven sperm-borne methylation [16]. However, due to the lack of accurate large-scale
male fertility records (i.e., limited mating times), few comprehensive studies have investigated the
relationship of sperm DNA methylation with male fertility traits in mammals. DNA methylation has
been studied in multiple contexts, such as global CpGs, CpG islands (CGIs), hypomethylated regions
(HMRs), partially methylated domains (PMDs), etc [17,18]. For example, HMRs often occur both inside
and outside of CGIs, functioning as cell type-specific enhancers. PMDs are large domains of DNA
(often greater than 100 kb) that have lower levels (~40%) of DNA methylation [19–24]. They are often
associated with inaccessible chromatin and inactive histone marks.

Highly-reliable male fertility phenotypes of large-scale Holstein bulls in U.S. provide a valuable
source for understanding the genetics of male fertility in mammals, which are estimated based on the
performance of both themselves and hundreds of thousands of their offspring. We recently conducted
genome-wide association studies (GWAS) for 35 complex phenotypes with a sample size of 27,214
Holstein bulls using imputed sequence variants (~3 millions) to explore their underlying genetic
architecture (e.g., causal variants and their effects), including 12 fertility, 17 body type, and 6 production
traits [25]. Here, we sequenced ten Holstein cattle sperm using the whole-genome bisulfite sequencing
(WGBS) technology, including six samples collected from six age-matched individuals, among which
three had extreme high sire conception rate (SCR) and the remaining ones had extreme low SCR,
and four samples collected from two individuals at young and old ages. We aimed to determine
the alterations of sperm DNA methylation that were associated with aging and SCR first, and then
to explore overlaps of these methylation alterations with GWAS signals of complex phenotypes,
particularly in male fertility traits. We hypothesized that studying DNA methylome in sperm could
contribute to the understanding of these complex traits. Our study revealed that the sperm DNA
methylome might be associated with causal variants underlying male fertility in cattle, and thus
could provide new hypotheses about the genetic and epigenetic basis of male fertility for mammals,
including humans.

2. Results

2.1. Analyses of Global Methylome in Cattle Sperm

In total, our WGBS data for all ten samples (Table S1) had an average mapping rate of 71.47% with
a methylation level of approximately 75% across all CpG loci in the genome. Averages of 8,265,108
and 31,326,325 GpG loci on both strands were covered by at least 10 and 5 reads, respectively, across
all ten samples. Methylation rates in CHG and CHH contexts were approximately 0.69% and 0.67%,
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respectively. Details of the raw data profiling are provided in Table S2. In general, we found that
overall methylation levels of aged animals were significantly (p = 0, t-test) higher than those of young
animals, revealing that aging could lead to a significant gain of DNA methylation in sperm globally
(Figure 1A). We also found that overall methylation levels of low-SCR animals were slightly but
significantly (p = 0, t-test) higher than those of high-SCR animals (Figure 1B). Together, these findings
were generally consistent with previous observations in humans [26,27], which suggested that aging
might lead to increased DNA methylation level and decreased male fertility.
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Figure 1. Global alterations of sperm methylation during aging and between animals with low and
high sire-conception rates (SCR). (A) Global alterations of sperm methylation between aged and
young animals. (B) Global alterations of sperm methylation between animals with low and high sire
conception rate (SCR). The p-values are calculated, using the t-test, across all the common CpG loci of
methylation information between groups.

2.2. Alterations in Sperm Hypomethylated Regions (HMRs) and Partially Methylated Domains (PMDs)

We subsequently explored the hypomethylated regions (HMRs) and partially methylated domains
(PMDs) in sperm as previously described [17], due to their potential roles in the gene and chromatin
activation and regulation [28–30]. Totally, we detected 128,842 (covering ~1.69% of the cattle genome),
154,019 (~2.22%), 124,505 (~2.00%) and 127,751 (~1.73%) HMRs for aged, young, low-SCR, and high-SCR
animals, respectively. We also detected 78 (~1.48%), 90 (~1.85%), 95 (~1.85%), and 98 (~2.09%) PMDs
for aged, young, low-SCR, and high-SCR animals, respectively. HMRs and PMDs overlapped with
many genomic features. HMRs highly intersected promoters and CGIs, while PMDs were enriched at
repeated elements, such as SINE and sample repeats (SR) (Figure 2A).
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Figure 2. Characteristics of hypomethylated regions (HMRs) and partially methylated domains (PMDs)
in sperm. (A) The enrichment of HMRs and PMDs across different genomic elements. (B) The Venn
diagram (left) shows the comparison of HMRs at aged vs. young, while the dot plot (right) shows
the functional enrichment results for genes whose promoters overlapped with corresponding HMR
groups. (C) The Venn diagram (left) shows the comparison of HMRs at low-SCR vs. high-SCR, while
the dot plot (right) shows the functional enrichment results for genes whose promoters overlapped
with corresponding HMR groups.

HMRs: Most HMRs were shared among aged and young animals, and genes whose promoters
intersected these shared HMRs were significantly (FDR < 0.05) engaged in translation, peptide
biosynthetic, and metabolic processes (Figure 2B). Of note were genes whose promoters intersected
young-specific HMRs, which were significantly involved in cell and tissue development (Figure 2B),
while no significant biological processes were detected for genes with promoters which intersected
aged-specific HMRs. For comparison between low-SCR and high-SCR animals, we found that genes
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whose promoters intersected the shared HMRs were also significantly engaged in translation, peptide
biosynthetic, and metabolic processes, while genes with promoters intersected low-specific HMRs
were significantly involved in regulation of transcription and phosphorylation, and kinase activity.

PMDs: Most PMDs were shared among animals in both comparisons (Figure 3A,C). Genes located
in the shared PMDs were significantly engaged in chromatin and nucleosome assembly, consistent
in both aged vs. young and low-SCR and high-SCR comparisons. Interestingly, genes located in
young-specific PMDs and low-specific PMDs were highly enriched in the embryonic development
(Figure 3B,D), including multiple HOX genes, microRNAs, and ZNF genes. Of note, young-specific
PMDs mainly harbored HOXA genes, such as HOXA2 and HOXA3 (Table S3), while low-SCR-specific
PMDs mainly contained HOXC and HOXD genes, such as HOXC5 and HOXD9 (Table S4). Genes
located in high-SCR-specific PMDs significantly participated in monooxygenase activity and heme
binding (Figure 3D). These findings were in line with a hypothesis that alterations of certain sperm
PMDs and HMRs could be involved in male fertility through the regulation of embryonic development,
despite of the first wave of DNA methylation reprogramming during the early embryogenesis.
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Figure 3. Comparisons of partially methylated domains (PMDs) in sperm. (A) Comparisons of PMDs
between aged vs. young samples. (B) Functional enrichment results for genes located in common
and young-specific PMDs. No significant enrichment of biological processes was found for genes
located in aged-specific PMDs. (C) Comparisons of PMDs between low-SCR vs. high-SCR samples.
(D) Functional enrichment analysis for genes located in low-specific, common, and high-specific PMDs.
Values within the bar plot are the number of genes that are located in both the corresponding PMD
group and biological process.

2.3. Genome-Wide Differentially Methylated Regions (DMRs)

To further illustrate the associations of methylation alterations with male fertility, we subsequently
performed genome-wide detection of DMRs in the comparisons of aged vs. young and low-SCR vs.
high-SCR, respectively, and analyzed their associations with male fertility traits in cattle by integrating
large-scale GWAS results of 35 complex traits.

Age-induced DMRs: We detected a total of 16,565 DMRs (q < 0.01 and difference in methylation
>5%), which highly intersected CGIs (Figure 4A). DMR-set enrichment analysis revealed that
age-induced DMRs were significantly (FDR < 0.05) enriched in aging- and fertility-related biological
processes, including multicellular organism aging, telomere maintenance, inner dynein arm assembly,
cilium-dependent cell motility, and flagellated sperm motility (Figure 4B). Similar results held for
DMC (i.e., differentially methylated cytosine) (Table S5). GWAS signal enrichment analysis revealed
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that age-induced DMRs based on five different q-value cut-offs (i.e., 0.05, 0.01, 1 × 10−5, 1 × 10−8, and
l × 10−10) were significantly and selectively enriched for fertility-related traits. Of specific note were
DMRs that gained methylation during aging, which showed a significantly (p = 2.8 × 10−10; Wilcoxon
test) higher enrichment than those that lost methylation (Figure 4C).
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Figure 4. Aging-induced sperm DNA methylation alterations impact male fertility in cattle. (A)
The enrichment of age-induced differentially methylated regions (DMRs) across genomic elements.
(B) Significantly enriched Gene Ontology (GO) terms for age-induced DMRs. (C) GWAS signal
enrichment for age-induced DMRs that were defined by different q (SLIM adjusted p) and difference in
methylation (diff.meth) cutoffs: Whole represents DMRs with the absolute value of diff.meth > 5% and
q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively; Gain represents DMRs with diff.meth > 5%
in the comparison of aged vs. young, and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively;
Loss represents diff.meth < −5% in the comparison of aged vs. young, and q < 0.05, 0.01, 1 × 10−5,
1 × 10−8 and 1 × 10−10, respectively.

SCR-associated DMRs: In total, we detected 11,663 SCR-associated DMRs (q < 0.01 and difference in
methylation >5%) by analyzing the age-matched animals with extreme phenotypes, which preferred to
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intersect with CGIs similar to age-induced DMRs (Figure 5A). DMR-set enrichment analysis revealed
that SCR-associated DMRs were significantly enriched in two sperm-activity relevant biological
processes, i.e., inner dynein arm assembly and cilium-dependent cell motility (Table S6), and both
of them were shared with age-induced DMRs. Similar to age-induced DMRs, we also found that
SCR-associated DMRs were significantly and selectively enriched for GWAS signals of reproductive
traits, and DMRs that gained methylation in low-SCR group had a significantly higher enrichment
than DMRs that lost methylation (Figure 5B).

Epigenomes 2019, 3, 10 7 of 16 

relevant biological processes, i.e., inner dynein arm assembly and cilium-dependent cell motility 
(Table S6), and both of them were shared with age-induced DMRs. Similar to age-induced DMRs, we 
also found that SCR-associated DMRs were significantly and selectively enriched for GWAS signals 
of reproductive traits, and DMRs that gained methylation in low-SCR group had a significantly 
higher enrichment than DMRs that lost methylation (Figure 5B). 

We also compared age-induced DMRs with SCR-associated DMRs. Among a total of 145,173 
commonly tested tiles, we found 4906 and 7866 SCR-associated DMRs and age-induced DMRs, 
respectively. Among those DMRs, 755 were shared by SCR and age groups, which was more often 
than expected (p = 3.48 × 10−151; Fisher exact test) (Figure 5C). Out of the 775 shared DMRs, 458 gained 
methylation in both aged and low-SCR groups, which were associated with 66 genes (i.e., overlapped 
with the promoter and gene body) (Table S7). Out of the 66 genes, 16 harbored suggestive significant 
(p < 1 × 10−5) SNPs of reproductive traits in cattle (Table 1), suggesting their potential roles in male 
fertility. We showed DMRs within SAMD5 and PDE5A genes as examples in Figure 5D, which gained 
methylation during aging and in animals with low-SCR compared to those with high-SCR, and 
contained suggestively significant GWAS hits of SCR. SAMD5 is the target of EGR4, which has a well-
established role in male infertility but no female infertility due to the arrested spermatogenesis [31]. 
The PDE5A affects erectile dysfunction, causing the male sub-fertility [32,33]. Our results provided 
additional evidence that aging might have an impact on male fertility, potentially through mediating 
the sperm DNA methylation. 

 
Figure 5. Sperm DNA methylation alterations associated with the sire-conception rate (SCR). (A) 
Enrichment of SCR-associated differentially methylated regions (DMRs) across genomic elements. (B) 
GWAS signal enrichment for SCR-associated DMRs that were defined by different q (SLIM adjusted 
p) and difference in methylation (diff.meth) cutoffs: Whole represents DMRs with the absolute value 
of diff.meth > 5% and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively; Gain represents DMRs 
with diff.meth > 5% in the comparison of low vs. high, and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, 
respectively; Loss represents DMRs with diff.meth <−5% in the comparison of low vs. high, and q < 
0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively. (C) The intersection of SCR-associated DMRs and 
age-induced DMRs, and the p-value is calculated using the Fisher exact test. (D) DMRs in SAMD5 
and PDE5A genes gain methylation in aged and low sir-conception-rate (SCR) groups compared to 
young and high SCR groups, respectively. 

Figure 5. Sperm DNA methylation alterations associated with the sire-conception rate (SCR). (A)
Enrichment of SCR-associated differentially methylated regions (DMRs) across genomic elements. (B)
GWAS signal enrichment for SCR-associated DMRs that were defined by different q (SLIM adjusted
p) and difference in methylation (diff.meth) cutoffs: Whole represents DMRs with the absolute value
of diff.meth > 5% and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively; Gain represents
DMRs with diff.meth > 5% in the comparison of low vs. high, and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8

and 1 × 10−10, respectively; Loss represents DMRs with diff.meth <−5% in the comparison of low
vs. high, and q < 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10, respectively. (C) The intersection of
SCR-associated DMRs and age-induced DMRs, and the p-value is calculated using the Fisher exact test.
(D) DMRs in SAMD5 and PDE5A genes gain methylation in aged and low sir-conception-rate (SCR)
groups compared to young and high SCR groups, respectively.

We also compared age-induced DMRs with SCR-associated DMRs. Among a total of 145,173 commonly
tested tiles, we found 4906 and 7866 SCR-associated DMRs and age-induced DMRs, respectively. Among
those DMRs, 755 were shared by SCR and age groups, which was more often than expected (p = 3.48 ×
10−151; Fisher exact test) (Figure 5C). Out of the 775 shared DMRs, 458 gained methylation in both aged
and low-SCR groups, which were associated with 66 genes (i.e., overlapped with the promoter and gene
body) (Table S7). Out of the 66 genes, 16 harbored suggestive significant (p < 1 × 10−5) SNPs of reproductive
traits in cattle (Table 1), suggesting their potential roles in male fertility. We showed DMRs within SAMD5
and PDE5A genes as examples in Figure 5D, which gained methylation during aging and in animals
with low-SCR compared to those with high-SCR, and contained suggestively significant GWAS hits of
SCR. SAMD5 is the target of EGR4, which has a well-established role in male infertility but no female
infertility due to the arrested spermatogenesis [31]. The PDE5A affects erectile dysfunction, causing the
male sub-fertility [32,33]. Our results provided additional evidence that aging might have an impact on
male fertility, potentially through mediating the sperm DNA methylation.
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Table 1. Genes (gene body and promoter) bearing both age- and SCR-associated differentially methylated regions (DMR) and suggestive significant SNPs (p < 1 × 10−5) of
reproduction traits in cattle.

CHR DMR Start DMR End q (Age) Meth. Diff.
(Age) q (SCR) Meth. Diff.

(SCR) Gene Associated Traits Top SNP
Position p-Value

9 85957501 85958000 1.11 × 10−7 31.92 1.24 × 10−3 14.72 SAMD5 SCR 85988014 4.74 × 10−7

6 7012001 7012500 1.41 × 10−6 5.51 9.38 × 10−12 5.42 PDE5A SCR 6880354 6.44 × 10−6

5 117709001 117709500 4.88 × 10−3 8.90 5.96 × 10−3 7.10 GTSE1
SCR 117689528 6.19 × 10−6

Sire_Calv_Ease 117691137 4.89 × 10−6

27 30563001 30563500 1.13 × 10−4 6.98 1.22 × 10−6 6.73 UNC5D SCR 30756178 5.71 × 10−6

1 147329501 147330000 3.92 × 10−5 34.09 1.09 × 10−7 25.52 PCBP3 AFC 147188444 6.37 × 10−6

22 30725501 30726000 4.05 × 10−3 27.20 5.19 × 10−3 12.16 FOXP1 Sir_Calv_Ease 30678479 4.86 × 10−6

8 92536501 92537000 2.03 × 10−5 6.15 4.82 × 10−6 5.22 PLPPR1
Dtr_Still_Birth 92354263 5.14 × 10−7

Sire_Still_Birth 92503882 9.70 × 10−7

28 7153001 7153500 9.68 × 10−3 19.49 4.03 × 10−3 22.46 SLC35F3 Sir_Still_Birth 6894934 5.02 × 10−10

6 115334001 115334500 8.21 × 10−3 31.99 4.58 × 10−3 10.88 C1QTNF7 Dtr_Calv_Ease 115292546 1.24 × 10−7

28 29788001 29788500 3.99 × 10−4 5.53 1.64 × 10−3 5.07 MYOZ1 Cow_Conc_Rate 29798384 2.92 × 10−6

6 89203501 89204000 6.86 × 10−3 6.41 8.49 × 10−3 5.38 ADAMTS3
CFI 89297757 9.55 × 10−9

Dtr_Preg_Rate 89436001 1.04 × 10−7

Dtr_Still_Birth 89227960 6.15 × 10−7

9 50054001 50054500 2.51 × 10−3 8.90 1.86 × 10−3 8.68 ASCC3
AFC 49838161 2.18 × 10−6

Sire_Calv_Ease 49839702 5.74 × 10−6

13 26858001 26858500 8.21 × 10−3 20.41 2.55 × 10−3 8.13 MYO3A Sire_Still_Birth 26887898 1.52 × 10−6

19 12575001 12575500 9.96 × 10−11 31.08 4.82 × 10−6 16.16 BCAS3
Heifer_Conc_Rate 12459490 1.18 × 10−9

Sire_Calv_Ease 12432636 5.06 × 10−7

Sire_Still_Birth 12432710 3.56 × 10−7

3 101902501 101903000 4.66 × 10−3 16.05 1.77 × 10−3 8.81 C1orf228 CFI 10191696 7.16 × 10−6

Sire_Still_Birth 101936626 7.16 × 10−6

4 57398001 57398500 3.21 × 10−7 5.68 7.47 × 10−10 5.25 IMMP2L Sire_Still_Birth 57140432 3.90 × 10−7

Note: SCR: Sire conception rate; Sire_Calv_Ease: Sire calving ease; AFC: Age at first calving; Dtr_Still_Birth: Daughter stillbirth; Dtr_Calv_Ease: Daughter calving ease; Cow_Conc_Rate:
Cow conception rate; CFI: Interval from calving to first insemination; Dtr_Preg_Rate: Daughter pregnancy rate; Sire_Calv_Ease: Sire calving ease; Heifer_Conc_Rate: Heifer conception rate.
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3. Discussion

In this study, we for the first time explored the associations of sperm methylation with male
fertility traits in cattle by overlapping signals of a large-scale GWAS of 35 complex phenotypes with
sperm DNA methylomes. We demonstrated that multiple sperm methylation features of biological
importance were associated with aging and SCR, such as HMR and PMD. We speculated that genes in
the young-specific HMRs and PMDs (e.g., HOX gene clusters and microRNAs) could play significant
roles in embryonic development, similar for genes in the low-SCR-specific PMDs. These findings
were consistent with previous human studies in which sperm methylation patterns were essential
for embryonic development [9,10,12,14,16]. For instance, promoters of development genes (e.g.,
microRNA clusters and HOX gene clusters) were generally hypomethylated in sperm, and the retained
nucleosomes in sperm were enriched at these genes [9]. Although most of DNA methylation were
reprogramed during early embryonic development and sperm maturing, some marks are maintained,
such as imprinted genes, as a prime example. Additionally, Wang et al. (2014) reported that the
methylation levels of a fraction (~6.8%) of GpG sits in mouse sperm retained across embryonic
developmental stages [34]. More recently, Aston et al. (2015) and Jenkins et al. (2016) showed that the
sperm DNA methylation state influences male fertility and embryo quality in humans [11,13], consistent
with our findings in cattle that DNA methylation alterations (i.e., DMRs) associated with aging and
SCR were significantly and selectively enriched with GWAS signals of male fertility traits. Additionally,
Jenkins et al. (2014) showed that sperm DNA methylation alterations in aged fathers might contribute
to the increased incidence of neuropsychiatric and other diseases in their offspring [10]. Atsem et al.
(2016) also demonstrated that the methylation changes of FOXK1 and KCNA7 in sperm induced by
aging can be transmitted to the next generation [12]. These are consistent with our findings that several
human-homologous neurodevelopmental genes experienced methylation alterations during aging in
cattle, such as FOXP1 and FOXN1 (Table 1. Together, we speculated that the sperm DNA methylome
not only can facilitate mature gamete function, but also can guide the early embryogenesis and even
influence the later life and offspring.

Alterations in epigenome have been proposed to capture and mediate the effects of genetic
and environmental factors on complex phenotypes [19]. Mounting evidence supports that the
comprehensive functional annotations play a central role in understanding gene expression, cellular
differentiation, and complex phenotypes. For instance, the Roadmap Epigenomics Consortium (2015)
characterized the epigenome maps for 127 somatic tissues and cell types in humans, and demonstrated
that genomic variants of complex traits and diseases were enriched in epigenetic marks of trait-relevant
tissues [35]. Here, we provided new insights into the genetic and biological basis underlying male
fertility in cattle by overlapping sperm methylation information with GWAS signals. For example, age-
and SCR-associated DMRs in sperm were significantly and selectively enriched for GWAS signals of
fertility traits rather than those of production and body conformation traits.

Limitations and future directions: It is noted that our sample size of sperm DNA methylome was
relatively small and our threshold used for methylation difference (5%) was relatively low. However,
Teschendorff et al. (2018) reviewed that DNA methylation alterations associated with complex
phenotypes are often much small (~5%) [36], such as many smoking-associated DMRs detected in
whole blood [37], which were not like cancer DMRs (~30%) [36]. Additionally, we tried the 20%
threshold and/or applied different corrected p-values for multiple tests (i.e., 0.05, 0.01, 1 × 10−5, 1 ×
10−8 and 1 × 10−10). All their GWAS enrichment results were similar. We detected 16 candidate genes
for male fertility, and 4 of them were directly associated with SCR, while the others were associated
with other male fertility traits (Table 1). This is mainly because of the low heritability of SCR, and
SCR was genetically correlated with other fertility traits that tended to have higher heritability [25].
Technical validation of these results, using independent technologies and more samples, is warranted
for a future investigation. Additionally, further functional studies are required to estimate the rate of
conservation of differential DNA methylation during embryonic development and the extent through
which these preserved changes are able to influence gene expression leading to a modification of
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phenotypic outcomes. It could also be interesting to further explore whether mutations within DMR
directly control complex traits or indirectly affect methylation state and then act on such complex
traits. A large-scale epiGWAS focused on such regions can help us answer such questions. We did not
consider non-CpG methylation in the present study, because we only observed a very small fraction
(less than 1%) of non-CpG methylation in cattle sperm. However, it could be of interest to investigate
the specific functions of non-CpG methylation in sperm and their associations with complex traits in
offspring in the future study.

4. Materials and Methods

4.1. Sample Description and Whole-Genome Bisulfite Sequencing (WGBS)

No animal experiments were performed in this study, and ethics committee approval was therefore
not required. We collected ten semen straws from eight healthy and representative Holstein bulls,
including six samples collected from six age-matched individuals, among which three had extreme
high sire conception rate (SCR) and another three with extreme low SCR, and four samples collected
from another two individuals at young and old ages (Table S1). We isolated genomic DNA by using
QIAamp DNA Mini Kit protocol (QIAGEN, Valencia, CA, USA), and evaluated the quality of isolated
DNA by using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). We constructed
the whole-genome bisulfite sequencing libraries using all the qualified genomic DNA (details in
Reference [17]), and then sequenced using HiSeq X Ten (Illumina, San Diego, CA, USA) with a 150 bp
paired-end technology.

4.2. Raw Data Profiling and DNA Methylation Calling

We applied FastQC v 0.11.2 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
Trim Galore v 0.4.0 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to evaluate the
raw data quality and to filter the low-quality data, respectively [17]. Generally, the adapters were
removed, and reads with low quality (Q < 20) and shorter than 20 bp were removed. We aligned the
filtered data (i.e., clean data) to the cattle reference genome UMD 3.1 using bowtie2 [38]. We then
employed Bismark software to extract methylcytosine information [39]. Details have been described
previously [17]. Averages of 8,265,108 and 31,326,325 CpG loci on both strands were covered by at
least 10 and 5 reads, respectively, across all ten samples (Table S1).

4.3. Detection of Differentially Methylated Regions (DMRs) and Differentially Methylated Cytosines (DMCs)

We employed methylKit to conduct DMR/DMC analysis [40]. For DMR, we first tiled the whole
genome with non-overlapping windows (500 bp in length), and then summarized the methylation
levels on those tiles. We then applied a logistic regression model, implemented in calculateDiffMeth
function, to detect DMRs. p-values were obtained by comparing the model fitness of alternative
models to null models, and were adjusted to q-values for multiple testing using the SLIM method [41].
Since DNA methylation alterations associated with age and complex phenotypes are generally much
weak [36,42], we used the absolute value of difference in methylation >5% and different q cutoffs
(i.e., 0.05, 0.01, 1 × 10−5, 1 × 10−8 and 1 × 10−10) to define DMRs for the downstream analyses. We
detected DMC with the same procedure. In the following analyses, we focused on DMR. The desirable
reasons for analyzing DMRs instead of DMCs have been reviewed in detail [36]. Briefly, (1) DNA
methylation tends to be highly correlated within approximate 500 bp due to the processivity of DNA
methyltransferases [42,43], and alterations in DNA methylation that are associated with age and
complex traits often exhibit such spatial correlation patterns [42], thus DMRs are more functionally
important than DMCs. (2) Detecting DMR helps remove some of the spatial redundancy, thus reducing
the burden for multiple testing and improving statistical robustness, particularly in the context of
WGBS data with limited coverage [44,45].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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4.4. PMD and HMR Identification

All the CGs with at least 5× coverage were used for PMD and HMR detection, as described by
our earlier study [17]. For PMD detection, we first calculated the average methylation level for each
of the nonoverlapped 20-kb windows. The windows with methylation level greater than 60% were
assigned a 1 and the windows with methylation level less than 60% were assigned a 0. Then, we
applied a hidden Markov model using HMM (one R package) to detect the windows assigned with
continuous 0 for each sperm sample. The sperm PMDs used in this study had to meet the following
criteria: Supported by at least three sperm samples and combined from at least three windows.

To identify the contiguous HMRs for sperm cells and somatic cells, we used a sliding window
approach with a window size of 200 bp and extended the window by 50-bp steps until it contained
less than 80% hypomethylated (methylation level <20%) CpGs. Only the HMRs with at least 5 CGs
detected with more than 5 × coverage were used for analysis. The GenomicRanges package in R was
used to calculate statistics of the overlapped HMRs in different tissues or sperm.

4.5. GWAS Summary Statistics

Details of the GWAS analysis for the 35 complex traits in cattle were described previously [25].
Briefly, we employed a linear mixed model, implemented in MMAP (https://mmap.github.io/), to
conduct single-marker GWAS analysis for each complex trait with the sample size of 27,214 Holstein
bulls and imputed sequence variants (~3 million SNPs). The model measured additive effects
of genetic variants while accounting for the population structure and individual relatedness with
a genomic relationship matrix. All the phenotypes of bulls (i.e., de-regressed breeding values)
used in the current study were carefully calculated based on the performance of many offspring,
while accounting for known systematic effects. Details are described in the CDCB website (https:
//www.uscdcb.com/what-we-do/genetic-evaluations/). We have classified the 35 complex traits into
three phenotypic categories [25], including 17 body type, 12 fertility, and 6 production traits.

4.6. GWAS Signal Enrichment Analysis for Differentially Methylated Regions (DMRs)

We employed the following sum-based marker-set test approach to examine the enrichment of
GWAS signals in genomic features (i.e., age-induced DMRs) due to the fact that the complex phenotypes
being studied are highly polygenic or even omnigenic [46]. Previous studies demonstrated that this
method exhibited higher or at least equal power compared to other commonly used marker-set
test methods (e.g., count-based, score-based and covariance-based) in humans [47], Drosophila
melanogaster [48] and livestock [49–51], particularly in the highly polygenic traits context.

Tsum =

m f∑
i=1

t2 (1)

in which m f is the number of genetic variants within a genomic feature (e.g., age-induced DMRs), and
t2 is the square of t that was computed as the variant effect (b) divided by the corresponding standard
error. Here, different elements (e.g., individual DMRs) within a genomic feature (e.g., age-induced
DMR list) were often not in linkage disequilibrium (LD), as they scattered distantly or even on
different chromosomes. This method investigated the genome-wide polygenic signals rather than a
subset of variants that passed a certain significance threshold, like linkage disequilibrium (LD) score
regression [52]. It took account for LD patterns among variants and variant-set sizes through applying
the following cyclical permutation strategy, as described previously in References [47,48]. In brief, we
first ranked the test statistics (i.e., t2) for all variants according to their physical positions (i.e., t2

1, t2
2, · · ·

t2
m−1, t2

m). We randomly selected one test statistic (i.e., t2
k) from this vector as the first, and then shifted

the remaining test statistics to new positions, while maintaining their original orders (i.e., t2
k , t2

k+1,· · ·
t2
m, t2

1,· · · t2
k−1). Therefore, we uncoupled associations of variants with a genomic feature while retaining

https://mmap.github.io/
https://www.uscdcb.com/what-we-do/genetic-evaluations/
https://www.uscdcb.com/what-we-do/genetic-evaluations/
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the correlation patterns among test statistics of variants. We computed a new summary statistic for a
particular genomic feature being analyzed according to its original chromosome position. We repeated
this permutation procedure 10,000 times for each genomic feature and obtained an empirical p-value
using one-tailed tests of the proportion of random summary statistics greater than that observed. The
current marker-set test method together with multiple quantitative genomic tools are implemented in
the QGG package (http://psoerensen.github.io/qgg/).

4.7. DMR/DMC-Set Enrichment Analysis Based on GO Database

We used Bboconductor package “org.Bt.eg.db” v. 3.3.0 (https://bioconductor.org/packages/release/

data/annotation/html/org.Bt.eg.db.html) to link genes to GO terms. Here we focused on biological
processes terms that comprised of at least 10 directly evidenced genes. We used the following
count-based approach to test whether a GO term enriched for DMR or DMC.

Tcount =

m f∑
i=1

I(pi < p0) (2)

where m f is the total number of 500 bp-windows being tested that overlaps with genes in a GO term,
pi is the p-value for the ith tested window, p0 is an arbitrary chosen threshold, and I is an indicator
function that takes one when pi < p0 is satisfied, otherwise it takes zero. Here we arbitrarily used
p0 = 0.01, and extended gene regions 10 kb up- and down-stream to include the regulatory regions.
Under the null hypothesis (i.e., DMR or DMC are distributed randomly in the genome), we assumed
that Tcount follows a hypergeometric distribution: Tcount~Hyper(m, mg, mf), where m is the total
number of windows being tested in the whole genome, mg is the total number of DMR in the whole
genome, and mf is the number of windows being tested in a GO term. Here, we considered a window
belonging to a GO term if the window overlapped with genes (± 10 kb up and down-stream) in the
GO term. We used the same procedure for DMC-set enrichment analysis.

4.8. Gene-Set Functional Enrichment Analysis

We conducted functional enrichment analyses for gene lists using R package clusterProfiler [53],
where a hypergeometric test, based on the current GO database, was employed. We focused on
Biological Processes in the GO database. We adjusted p-values for multiple testing using the FDR
method [54].

4.9. Availability of Data and Materials

The ten cattle sperm methylomes have been submitted to NCBI under GEO accession ID GSE106538
and GSE119263. All genomic annotation files are available for download from Ensembl database
(https://uswest.ensembl.org/index.html). The GO annotation database can be publicly accessed
(https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html).

5. Conclusions

By integrating sperm methylation with a large-scale GWAS of complex traits in cattle, we
demonstrated that alterations in sperm DNA methylation were significantly associated with male
fertility traits. Our results supported a hypothesis that genes in certain young-specific HMRs and
PMDs might play significant roles in embryonic development. We detected 16 genes that gained
DNA methylation in sperm during aging and in low-SCR animals, as well as harbored suggestively
significant genetic variants of male fertility traits. Our current study provided new hypotheses about
the genetic and biological mechanisms underlying male fertility, which will benefit other species,
including humans. As functional annotations improve dramatically, such integrative analysis will
become more interesting and useful in the near future to better understand the molecular mechanisms
underlying diverse complex traits and diseases.

http://psoerensen.github.io/qgg/
https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html
https://uswest.ensembl.org/index.html
https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html
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Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4655/3/2/10/s1:
Table S1: Summary information of the 10 sperm samples studied. Table S2: Summary statistics of the raw data
mapping for the 10 sperm methylomes. Table S3: Genes located in young-age-specific partially methylated domain
(PMD) regions. Table S4: Genes located in low-SCR-specific partially methylated domain (PMD) regions. Table S5:
(A) The enrichment analysis for age-induced differentially methylated regions (DMRs); (B) The enrichment
analysis for age-induced differentially methylated cytosines (DMCs). Table S6: The enrichment analysis for
SCR-associated differentially methylated regions (DMRs). Table S7: Summary of the shared age-induced DMRs
and SCR-associated DMRs and their associated genes.
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