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Abstract: Background: Interrogation of DNA methylation profiles hold promise for improved
diagnostics, as well as the delineation of the aetiology for common human diseases. However,
as the primary tissue of the disease is often inaccessible without complicated and inconvenient
interventions, there is an increasing interest in peripheral surrogate tissues. Whereas most work
has been conducted on blood, saliva is now becoming recognized as an interesting alternative
due to the simple and non-invasive manner of collection allowing for self-sampling. Results:
In this study we have evaluated if saliva samples are suitable for DNA methylation studies
using methylated DNA immunoprecipitation coupled to next-generation sequencing (MeDIP-seq).
This was done by comparing the DNA methylation profile in saliva against the benchmark profile
of peripheral blood from three individuals. We show that the output, quality, and depth of
paired-end 50 bp sequencing reads are comparable between saliva and peripheral blood and,
moreover, that the distribution of reads along genomic regions are similar and follow canonical
methylation patterns. Conclusion: In summary, we show that high-quality MeDIP-seq data can be
generated using saliva, thus supporting the future use of saliva in the generation of DNA methylation
information at annotated genes, non-RefSeq genes, and repetitive elements relevant to human disease.
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1. Introduction

DNA methylation plays a pivotal role in gene regulation and has been implicated in several human
conditions including cancer, cardiovascular disease, and neuropsychiatric conditions [1–4]. In addition,
numerous epidemiological epigenetic studies investigating associations between environmental
exposures and DNA methylation have found biologically sensible correlations. An example of
such findings is a well-studied change in DNA methylation levels at the AHRR and CYP1A1 loci in
the blood of children in response to maternal smoking [5,6], suggesting an epigenetic role in diseases
as a response to environmental stimuli. The interest in easily-accessible surrogate tissue for epigenetic
epidemiology has resulted in an increased focus on DNA methylation profiling in saliva, buccal, and
blood-derived cell material. Especially in epigenetic studies of mental disorders, where brain tissue
is mostly inaccessible, the use of surrogate tissue is of major interest. Biologically-relevant findings
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in adult blood-based case-control studies of schizophrenia, major depressive disorder, and bipolar
disorder have been made [7–12]. This reinforces the usage of peripheral tissue for biomarker screening
and in the study of disorder-associated environmental insults embedded in the peripheral tissue as
mirror effects. As an example to the latter, childhood maltreatment has shown to be associated with
FKBP5 gene promoter hypomethylation in both brain and blood tissues [13,14].

The ease of use and non-invasive nature of saliva collection makes it an appealing alternative to
peripheral blood, especially where study subjects are children or where the samples are self-collected.
In addition to reducing the costs, this ensures increased convenience and acceptability, all of which are
important in large-scale epidemiological studies. Previous studies have shown that despite the presence
of naturally-occurring bacteria in saliva, which results in lower DNA yield and quality, the tissue
remains suitable for high-throughput genotyping with call rates similar to blood [15–17]. An overall
high correlation in DNA methylation levels between blood, saliva, and the brain, especially at promoter
CpG islands (CGIs), has also been noted, accompanied with a significant over-representation of
differences in intragenic CGIs [18–22]. This is in line with the general notion that tissue-specific DNA
methylation is enriched particularly in the shore and shelf regions of CGIs, as well as in intragenic
CGIs [23–25]. However, on a global level, hardly any intra-individual difference is expected, as most
methylation sites are static and canonical patterns are conserved in terminally-differentiated cells
where, e.g., repetitive elements are epigenetically silenced and promoters of housekeeping genes are
active across tissues [26–28].

DNA from both peripheral blood and saliva originates from a variable composition of leukocytes
and, in the case of saliva, also exfoliated epithelial cells. The variation in the proportion of epithelial
cells in saliva has shown to be particularly high ranging from 3% to 99% (n = 64) [18]. Whereas,
in other studies the leukocyte contribution to saliva DNA, especially from neutrophils, was more
predominate [29,30]. Interestingly, however, counting epithelial cells, which originate from the same
germ layer as the brain, the ectoderm, saliva has a higher correlation to brain tissue than observed
between blood and brain tissue [18,20,31,32]. Yet, the use of saliva for brain-related genome-wide
methylation studies has been limited [33–35].

MeDIP-seq is a cost-effective approach for genome-wide DNA methylation profiling, where methylated
genomic fragments enriched by immunoprecipitation are high-throughput sequenced. The method displays
good positive correlation with array-based methods, such as the HumanMethylation450 BeadChip [36,37]
but, importantly, also provides information on non-RefSeq genes and repetitive elements, which have
recently been linked with disease development [38,39], also illustrated in a recent study providing
evidence of proto-oncogene activation in prostate cancer by means of Alu element hypomethylation [40].
In theory MeDIP-seq can cover the total methylome of roughly 28 million CpGs and whereas
the methodology is less suited for CpG-sparse lowly methylated regions [41], ultra-deep sequencing
has shown to cover about 90% of all CpGs with ≥10X coverage [36]. Furthermore, CpGs have shown
to be often cis co-methylated over a range of at least 1 kb [42], thus making it more likely to pick up
changes in CpG-sparse regions. However, it should be noted that heterochromatin, being heavily
methylated, would dominate the library if sequenced below saturation.

The agnostic information provided by MeDIP-seq outside annotated gene bodies and regulatory
elements can, therefore, be used in a broader characterization of cell development and the impact
of environmental exposures. This given, it is important to evaluate if MeDIP-seq analyses of saliva
represents a feasible and cost-effective alternative to analyses based on peripheral blood.

2. Results and Discussion

2.1. High-Quality Sequencing Data Generated by MeDIP-seq Using Saliva-Extracted DNA

DNA extracted from pairwise matched blood and saliva samples from three individuals was
sonicated to a mean fragment length of about 180 bp. Sequencing of the MeDIP-enriched libraries
yielded approximately 67 million clean reads per sample. All samples performed well, with mean
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Phred scores above 30 along the entire read, and the anticipated GC content skewedness of methylated
DNA enriched samples (Supplementary Figure S1). Clean reads were aligned to the human genome
(hg38) using the Burrows-Wheeler aligner (BWA) algorithm and filtered using quality-associated
attributes. The filtering resulted in a final dataset of approximately 64 million reads per library.

As chromosomal abnormalities may lead to incorrect interpretation of the data, an analysis of copy
number variations in the six samples was conducted using only non-CpG fragments, as these are not
enriched. No copy number variations (CNVs) > 1 Mb were found in any of the samples (Supplementary
Figure S2). Pre-analytic quality checks of the mapped libraries (excluding sex chromosomes, as study
subjects have different sexes) displayed a high similarity of fragment size distribution, complexity,
and depth, as well as genomic coverage among samples (Supplementary Figures S3–S6). This clearly
indicated that all libraries had sufficient diversity and depth of reads to saturate the profile of the
reference genome in a reproducible manner.

CpG-site enrichment was visualized by the number of reads interrogated as a function of 500 bp
genomic bins ranked by the number of reads contained within the bin. Furthermore, the enrichment
was measured as the observed/expected ratio of CpGs within the reference genome (Supplementary
Figure S7). This verified that all sample libraries were indeed enriched for CpG sites (score > 1) but also
that, in saliva samples, CpG-site enrichment was more pronounced than in blood samples (mean scores of
1.36 and 1.16, respectively). The enrichment score is somewhat lower than reported elsewhere for human
embryonic stem cells (1.64), human dried blood spots (1.63), and rodent hippocampus (1.4) [43–45].

A pair-wise correlation using all mapped reads in 500 bp windows displayed Pearson correlation
coefficients (PCCs) between 0.896 and 0.984 (Figure 1A).
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Figure 1. Pair-wise Pearson correlation analyses of saliva and blood samples MeDIP-seq methylomes.
(A) The correlation value (r) for each pair-wise correlation is shown. Coefficients typed in green (for
blood) and blue (for saliva) mark within tissue comparisons, whereas coefficients in orange denote
between-tissue comparisons; and (B) unsupervised hierarchical clustering of the analysed six blood
and saliva samples based on correlation coefficients.

The intra-individual correlation rate was lower than expected but, interestingly, highest amongst
saliva samples. This may partly be explained by the lower enrichment observed in the blood samples
or differences in cell-type composition, which is known to vary substantially in buffy coat as a function
of season, age, and sex [46–48]. However, a high correlation, per se, is still expected, even without
correction for cell composition and sex, as methylation status at most CpGs is conserved across
tissues [49–53]. This is also illustrated in a methylation array based pilot study where, at 70% of
CpGs, methylation positively correlated between saliva and blood even when cell composition was
uncorrected for [54]. Moreover, only a minority of CpGs were statistically differently methylated
between the two tissues and the number did not change upon correction for cell heterogeneity.
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Notably, in the between-tissue comparison, a higher-end correlation was always found
inter-individually, suggesting that genotype-associated methylation (methylation quantitative trait loci,
mQTLs, or CpG-SNPs) or early life environmental exposures explain the intra-individual difference.
Unsupervised hierarchical clustering based on all uniquely-mapped reads indicated that the saliva or
peripheral blood origin of the DNA is the main factor in sample differentiation (Figure 1B).

Characterizing the samples in greater detail by the spread and distribution of reads using genomic
bins of 300 bp with 150 bp overlap showed that both the median and the interquartile ranges (IQRs)
between the samples were comparable (Figure 2A). It is anticipated that even with significant differently
methylated regions (DMRs) present, the global distribution of reads should be comparable between
samples. Therefore, the sum of reads from the lowest covered percentile of the genome to the highest
should followed similar trajectories in samples to be compared. This is indeed the case in the current
sample set (Figure 2B). Performing a principle component analysis showed that the first component
explained 24% of the common variation, dividing the samples by tissue type. The second component
stratifies the samples by individual (Figure 2C).
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plots of filtered sequencing reads in 300 bp genomic bins displaying the median, 25th, and 75th
percentile, and whiskers (mediumplus/minus interquartile range ×2); (B) cumulative distribution
plot showing the accumulation of sequencing reads in 300 bp genomic bins from the lowest covered
percentile of the genome to the highest; and (C) Principal Component Analysis (PCA) plot of PC1 and
PC2 using all quality filtered and mapped sequencing reads.

Taken together, this indicates that no major technical differences exist between the blood and
saliva MeDIP-seq datasets.

2.2. Few Differently-Methylated Windows are Detected between Saliva and Blood

To further characterize the MeDIP-seq dataset, we computed library size normalized 100 bp
differently-methylated windows (DMWs) between the pairwise matched blood and saliva samples,
excluding sex chromosomes. Setting a threshold of significance at p < 0.05 (Bonferroni corrected)
the intra-individual comparison returned 322, 608, and 349 DMWs for individuals 2022, 2023, and
2025, respectively (Supplementary Figure S8). Only a minimal overlap of DMWs existed between
the three datasets, again indicating that no consistent technical variation was introduced during
processing of the saliva samples. Importantly, this does not imply that no biological difference exists.
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We next computed the DMWs between the concatenated saliva (S2022, S2023, and S2025)
and blood (B2022, B2023, and B2025) dataset excluding sex chromosomes.Depicted in an MA plot
of the methylation difference as log ratio (“Minus”) against the mean methylation (“Average”),
the analyses showed a general tendency of higher methylation in saliva and that all significant
DMWs were, indeed, hypermethylated in saliva (Supplementary Figure S9A). This appears in contrast
to previous findings [19], but may be due to differences in cell composition and technical variation.
Most of the DMWs were located in intergenic regions, and fewer in intragenic regions and exons
(Supplementary Figure S9B).

2.3. Comparable DNA Methylation Patterns between Blood and Saliva at Defined Genomic Regions

With the intent to inspect the methylation profile at genomic regions with a known canonical
profile, mean read counts in the saliva and blood samples were calculated for CGIs (±4 kb), the first
exon (±2 kb), thereby including transcription start sites (TSS), and Alu repeats (±2 kb) (Figure 3A–C).
The expected low level of DNA methylation at CGIs with a step increase in the flanking shore
regions was evident. Moreover, the DNA methylation profiles of saliva and blood were almost
indistinguishable. Likewise, the methylation trajectories overlapping the TSS and the first exon were
in concordance with previous observed profiles, with a sharp drop in methylation at the TSS and
a lower methylation level in the first exon compared to downstream parts of the gene body [55–60].
Notably, the mean read-count level appeared slightly lower in saliva, which is in agreement with
previous findings [19,54,61,62]. CpG sites within repetitive elements such as L1 and Alu are normally
hypermethylated to prevent their expression. Especially, Alu repeats tend to accumulate in gene-rich
regions and span roughly one quarter of all CpG dinucleotides in the human genome [63–65].
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Figure 3. Canonical methylation patterns at genomic features. Read count in 300 bp sliding genomic
windows with 150 bp overlap across genetic regions corresponding to (A) CGI (CpG Island) ±4 kb
flanking regions; (B) the first exon of RefSeq genes ±2 kb flanking regions; and (C) Alu repeat elements
±2 kb flanking regions. TSS: transcription start sites.
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In line with this, plotting the read count over Alu elements showed a considerable increase
compared to the flanking regions. Interestingly, within Alu elements the methylation profile of
saliva and blood, although following the same trajectory, differs, with a read count higher in saliva
(p < 0.0001, Welch t-test). Depending on the subtype of the Alu element analysed, both saliva hypo- and
hypermethylation has been reported [62,66]. Importantly, however, a consistent low correlation of Alu
methylation levels between saliva and blood was observed, which is indicative of high intra-individual
variation in methylation across cell types and tissues.

Next we examined genome-wide variation between the saliva and blood sample sets in genomic
regions annotated to the following features: proximal promoters (2 kb upstream of RefSeq genes),
RefSeq genes, coding sequences (CDS), LINEs (L1 and L2), SINEs (Alu), previously reported mental
disorder-associated genes found by DNA methylation studies using peripheral tissue (BDNF, SLC6A4,
CACNA1C, HTR1A, COMT, ST6GALNAC1, DRD2, and GAD1) [8,67–75], and the above described
DMWs. A box whisker plot of read counts in the grouped datasets at each genomic feature and
a matching line graph for the individual datasets (normalized and summarized) showed a very similar
profile with little variability and inter-individual difference, with DMWs as the natural exception
(Figure 4A,B).
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Figure 4. Equal coverage and read spread at specific genomic features for saliva and blood MeDIP-seq
results. (A) Box whisker plots of filtered reads overlapping six different genomic features in 300 bp
genomic bins. Displayed are the median, 25th and 75th percentile, whiskers (median plus/minus
interquartile range ×2); and (B) normalized and summarized line graphs of filtered reads matching
the six specified genomic features for all saliva and blood samples.
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We next examined intragenic and intergenic CGIs, as well as the associated upstream and
downstream shores (±2 kb of CGI) (Figure 5A,B). Notably, saliva displayed a slightly larger variability,
as judged by the IQR, which is in concordance with previous findings [18]. Taken together, the overall
similar profiles between peripheral blood and saliva emphasize the validity of MeDIP-seq results
based on saliva.
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Figure 5. Equal coverage and spread at CGIs and shores for saliva and blood MeDIP-seq results.
(A) Box whisker plots of filtered reads overlapping intergenic or intragenic CGIs or shores (±2 kb
from CGI) in 300 bp genomic bins. Displayed are the median, 25th, and 75th percentile, whiskers
(median plus/minus interquartile range ×2); and (B) normalized (to the genomic window with highest
magnitude of difference) and summarized (mean value with 95% confidence interval) line graphs of
filtered reads for all saliva and blood samples overlapping intergenic or intragenic CGIs or shores.

Tissue-specific DNA methylation is known to be enriched in gene bodies, and especially at intragenic
CGI shores [31,55,76]. Focusing on such intragenic CGI shores we found a clear tissue-specific distinction,
as judged by hierarchical and principal component clustering (Supplementary Figure S10A,B). From
300 bp genomic windows overlapping downstream intragenic CGI shores (Figure 6), overlapping genes
restricted to a within-tissue PCC above 0.95 and a same directional deviation from the mean were
selected, generating a list of 577 genes (Figure 6).
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read count (x-axis) in the complete dataset restricted to downstream intragenic CGI shores against fold
difference (y-axis) between the two tissues; (B) MA plot from (A) overlayed with hypermethylated
regions in blood (red dots) and saliva (green dots) defined as 300 bp regions displaying within-tissue
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Gene ontology (GO) analyses using the 577 genes returned two pathways significant after
Bonferroni correction (p < 0.05), being B-cell and T-cell activation (Table 1).

Table 1. GO enrichment analysis. PANTHER overrepresentation test using PANTHER pathways and
a significance threshold of p < 0.05 (Bonferroni corrected). Of 577 genes featuring differently-covered
downstream intragenic CGI shores, 549 genes were uniquely mapped to the database. The pathways
of B-cell and T-cell activation were enriched above four-fold and passed correction for multiple testing.

GO Enrichment
Analysis

Number of Genes
in Reference Number of Genes in Input List Fold

Enrichment
Bonferroni

Corrected p-Value

B-cell activation
(P00010) 72

9

4.54 3.4 × 10−2NFATC1, ITPR2, AC037459.4,
MAPK8, CALM1 (+isoforms),

NFATC2, MAP2K2

T-cell activation
(P00053) 96

11

4.16 1.5 × 10−2NFATC1, AC037459.4, MAPK8,
CALM1 (+isoforms), NFATC2,

MAP2K2, PIK3R1, PLCG1, CD247

We also performed a DAVID functional annotation using either default settings or restricted to
tissue expression. Five functional terms were significant after Benjamini-Hochberg (BH) correction
(p < 0.05) (Supplementary Table S1) using default settings. We acknowledge that the small sample
set calls for extreme caution in the interpretation of the functional enrichment analysis results.
Nevertheless, the enriched terms related to cellular processes involved in alternative splicing and
post-transcriptional processing. Utilizing only databases on tissue of expression in the functional
annotation of the 577 genes, the top three significant tissues were brain, peripheral lymphocytes, and
epithelium (Supplementary Table S2). Whereas only brain tissue survived correction for multiple
testing, this finding still indicates that the methylation differences observed are a function of the tissue
of origin and, thus, associated with phenotypic differences.

In a reverse approach we looked for specific patterns in the downstream intragenic CGI shores
based on cell-type-specific expressed genes. For this we extracted a gene list from the GeneCardsSuite
specific for neutrophils, monocytes, hepatocytes, and oral cavity squamous epithelial cells and
overlapped it with the downstream intragenic CGI shores (Figure 6C). No specific patterns were
observed, however, it should be noted that, in contrast to promoter CpG methylation, no unidirectional
relationship between gene body methylation and expression exists [77–79].
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With the intent to compare to other MeDIP-seq datasets we included GEO-available datasets
on foetal brain, peripheral blood mononuclear cells (PBMCs), and breast epithelial cells. Restricting
the analysis to previously identified blood-brain tissue-specific DMRs (TS-DMRs) (n = 50) within
CGIs or regions with high inter-individual difference (n = 43) [20] the samples clustered according to
tissue or individual of origin, respectively (Figure 7). In the former comparison the linear correlation
between foetal brain and saliva (R = 0.173) was, furthermore, larger than between foetal brain and
blood (R = −0.06) whereas PBMCs and blood was more correlated (R = 0.639) than PBMCs and saliva
(R = 0.558) (Supplementary Figure S11). Notably, in the latter comparison the matched blood-saliva
samples clustered together, whereas only the related brain samples clustered closely together.
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coefficients restricted to (A) 50 TS-DMRs; and (B) 43 individual differentiating DMRs.

Taken together, the presented data suggests that even in a suboptimal matched and small
sized sample set where up to 74% of the DNA may originate from the same tissue, white blood
cells [29], samples can be separated by tissue using MeDIP-seq. A previous study has measured
the inter-individual saliva and blood methylation profile to be at a positive correlation for 88.5% of
CpGs [18]. Limitations to this study include a small sample size and the inability to correct for cell
heterogeneity, making a replication study warranted. However, although tissue, age, and sex specific
methylation are well described—on a global level, inter-individual correlation remains high [80–85],
justifying the comparison described herein. A further limitation is the presence of bacterial DNA in
saliva samples. However, with the collection kit used in the current study the content has been shown
to be low (median 11.8%) compared to mouthwashes and buccal swabs (median 60–90%) [86].

3. Materials and Methods

3.1. Biological Samples

As part of the CHANGE project [87], peripheral blood (10 mL) and saliva (2 mL) samples were
collected in EDTA tubes (BD, Franklin Lakes, NJ, USA) and Oragene saliva collection tubes for DNA
extraction (OG-500, DNA Genotek, Ottawa, ON, Canada), respectively, from adult individuals. Blood
samples were stored <6 months at −20 ◦C and saliva samples 6–12 months at ambient temperatures
before extraction. Genomic DNA (gDNA) from peripheral blood was extracted using Maxwell
(Promega, WI, USA) and from saliva with the prepIT-L2P kit (DNA Genotek) and stored at −80 ◦C.
Matched saliva and blood samples from three individuals were used in the study; individual 2022
(male, age 54), 2023 (female, age 45), and 2025 (female, age 33). Concentration of the extracted genomic
DNA (gDNA) was measured using the Nanodrop 1000 instrument (Thermo Scientific, Waltham, MA,
USA). Additionally, a MeDIP-seq input control (blood) from an unrelated study was included in
the enrichment analysis.



Epigenomes 2017, 1, 14 10 of 17

3.2. MeDIP-seq

Extracted gDNA was sonicated in a Pico Bioruptor (Diagenode, Seraing, Belgium) at 10 ng/µL
for 13 cycles of 30 s on 30 s off to a mean fragment size of about 180 bp. Fragment length distribution
was assessed by microelectrophoresis using the Qiaxcel instrument and a high-resolution gel cartridge
(Qiagen, Hilden, Germany). Five-hundred nanograms of sonicated gDNA was subsequently used
for end-repair and adaptor ligation employing the NEBNext Ultra DNA Library Prep Kit for
Illumina (New England Biolabs, MA, USA). The reaction mix was purified using Ampure XP beads
(Beckman-Coulter, CA, USA) after which MeDIP was set up on the SX-8G-IP-Star Compact robot
(Diagenode) according to manufacturer’s instructions applying the Auto MeDIP kit (Diagenode) and
including unmethylated and methylated spike-in controls. Effectively 415 ng of adaptor ligated
DNA was used in the MeDIP process. Antibody incubation was performed at 4 ◦C for 15 h.
Immunoprecipitated samples were magnetically purified on the robot using the Auto iPure v2 kit
(Diagenode) according to the manufacturer’s instructions. Recovery and enrichment was evaluated
by qPCR using primer sets specific for the spike-in controls. Minimum criteria were set to 10%
recovery and 25-fold enrichment [88]. Based on the recovery rate samples were PCR-amplified at
13 cycles using multiplex oligos (New England Biolabs). Samples were size-selected with Ampure
XP beads on the SX-8G-IP-Star Compact robot (Diagenode) using a total of 90 µL beads per sample
and eluted in 25 µL DNase-free H2O. Purity and fragment length distribution was evaluated on
the Qiaxcel instrument. Post-amplification enrichment was verified by qPCR using primer pairs
targeting the endogenous hypermethylated promoter region of testis specific histone 2B (TSH2B)
(Diagenode, cat. no. C17011041) or the hypomethylated transcription start site (TSS) of glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (Diagenode, cat. no. C17011047).

3.3. Sequencing and Bioinformatics

Samples were PE50 sequenced in two lanes on a HiSeq2000 instrument (Illumina, San Diego, CA,
USA), generating around 68 million reads per sample. The reads were cleaned using Soapnuke 1.5.0
(BGI, Shenzhen, China) applying the following filters; remove reads with adaptors, remove reads
with >10% unknown reads, and remove reads with >50% low quality bases (Q score < 5). Clean reads
only qualify if Q 20% > 85%. Quality control of the cleaned fastq files was performed using FastQC.
Utilizing the Galaxy platform [89], the pair-end reads were aligned to the human genome (hg38)
using BWA [90]. SAM files were converted to BAM files and filtered to include only de-duplicated,
uniquely-mapped reads resulting in 58–67 million clean reads per sample. BAM files were imported to
R and SeqMonk v0.32.1 (Barbraham Institute, Cambridge, UK). In SeqMonk segments were generated
by quantitation of read counts in genetic windows of 300 bp (150 bp overlap) corrected for total read
counts (reads per million). Duplicates were ignored. The R package MEDIPS was used for quality
control, genomic coverage estimation, and differential coverage analysis in bin sizes of 100 or 500
bp [91]. Differential coverage was calculated with an exact test using trimmed mean of M-values (TMM)
corrected libraries with a variance estimated by the quantile-adjusted conditional maximum likelihood
(qCML) method. The p-values were corrected for multiple testing using the Bonferroni procedure.
CNV analysis was performed using the QSEA and HMMcopy bioconductor packages, using a genomic
window size of 1 × 106 bp. Annotation was performed using the DAVID bioinformatics and The Gene
Ontology Consortium database [92–95]. Publicly-available GEO MeDIP-seq datasets on breast luminal
epithelium cells (GSM493615 and GSM613843), PBMCs (GSM543023), and foetal brain (GSM669615,
GSM707019, and GSM669614) (methylated fragments enriched using antibody from Diagenode) were
downloaded and lifted over to the hg38 build. Blood and brain tissue and inter-individual specific
DMRs were obtained from [20].
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3.4. Ethics Statement

All procedures were performed in accordance with relevant regulation and approved by
the Danish health research ethical committee (license no.: H-4-2012-051) and the Danish Data Protection
Agency (license no.: 01689 RHP-2012-007)

3.5. Availability of Data and Materials

The saliva-blood MeDIP-seq dataset is available upon request.

4. Conclusions

We compared MeDIP-seq profiles of saliva and blood from three individuals. The methylation
profile of blood has previously been analysed by MeDIP-seq and follows a pattern also observed
in other cell types [20,36,56]. On a global level the data quality and methylation profiles described
herein are highly similar between saliva and peripheral blood, suggesting that the use of MeDIP-seq
on DNA extracted from saliva is a feasible and valid approach for methylome studies. The use of
saliva-derived DNA could alleviate logistic challenges, thereby increasing the number of participants
in future epigenetic epidemiology studies.

Supplementary Materials: Supplementary Figure S1: Representative FastQC outputs. Quality of sequence data
exemplified by the output of the B2022 sense and antisense sequencing reactions. (A) Sequencing quality (Phred)
score across the PE50 reads; (B) GC content in the MeDIP enriched samples (red line) compared to the theoretical
distribution (blue line). Supplementary Figure S2: CNV analysis for existence of chromosomal copy number
abnormalities in the blood and saliva samples. Based on the HMMcopy R package and ≥1 Mb genomic windows.
Supplementary Figure S3: Normal distribution of sequencing read length. Length distribution of all filtered
and mapped reads in the grouped saliva and blood sample sets. Supplementary Figure S4: Saturation plots
depicting comparable complexity and depth among all samples. Saturation plot showing adequate complexity
and reproducibility of mapped reads in the six samples compared to the reference genome. Supplementary
Figure S5: Whole-genome CpG coverage for each sample. Genome-wide CpG coverage and depth depicted as
the percentage and coverage level of the 28 million CpGs covered by the sequence reads. Reads are extended
to length 180 bp (library mean length) and only one read mapped to same genomic location is kept (avoiding
PCR duplicates). Supplementary Figure S6: CpG density dependent immunoprecipitation of DNA fragments.
Calibration plot showing the CpG density dependent immunoprecipitation of DNA fragments in blood and
saliva samples with normalization of number of reads per window. For illustrative purposes only chromosome 1
results are shown. Supplementary Figure S7: Enrichment of CpG. (A) Fingerprint plot depicting read count
as a function of ranked genomic bins for saliva and blood samples and an input control (peripheral blood
sample); (B) Enrichment score for CpG sites shown as the ratio of CpGs in MeDIP enriched DNA from saliva
and blood samples compared to the reference genome. Supplementary Figure S8: Intra-individual DMWs. Venn
diagram presenting the number of DMWs found in each intra-individual comparison and the overlap. Also
included are bar charts of the pair-wise overlap of DMWs segregated by direction and genomic annotation.
Supplementary Figure S9: Hypermethylated regions in saliva compared to blood. (A) MA plot depicting the
average methylation level (x-axis) in the complete dataset against methylation difference (y-axis) between tissues.
Yellow dots represent differentially methylated windows at p < 0.001 and red crosses significant DMWs with
Bonferroni adjusted p < 0.05. A general tendency of a higher methylation rate in saliva is indicated from the cloud
of orange dots with a downward trajectory, deviating from the mean; (B) Genomic annotation of DMWs within
the three genomic features: intragenic (including pseudogenes), intronic, and exonic. Supplementary Figure S10:
Improved within-tissue clustering at downstream intragenic CGI shores. (A) Dendrogram of saliva and blood
samples; (B) PCA plot of PC1 and PC2 using only sequencing reads overlapping downstream intragenic CGI
shores. Supplementary Figure S11: Correlation was larger between related tissues compared to unrelated tissues.
The correlation was based on 50 TS-DMRs. Supplementary Table S1: DAVID functional annotation. Employing
default databases, terms passing Benjamini-Hochberg correction of the 577 genes featuring differently covered
downstream intragenic CGI shores. UP; Uniprot. Supplementary Table S2: DAVID functional annotation restricted
to tissue expression. Using only Uniprot tissue (up_tissue) annotation database the 10 most significant terms
applying the list of 577 genes featuring differently covered downstream intragenic CGI shores are displayed.
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