Previous Issue

Table of Contents

Insects, Volume 8, Issue 3 (September 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-24
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Monitoring Effect of Fire on Ant Assemblages in Brazilian Rupestrian Grasslands: Contrasting Effects on Ground and Arboreal Fauna
Insects 2017, 8(3), 64; doi:10.3390/insects8030064
Received: 19 April 2017 / Revised: 24 May 2017 / Accepted: 25 May 2017 / Published: 23 June 2017
PDF Full-text (2630 KB) | HTML Full-text | XML Full-text
Abstract
Fire is one of the most relevant ecological disturbances in nature. Little is known about the effects of fire on biodiversity in ecosystems like rupestrian grasslands, which share characteristics with savanna and forest biomes. Brazilian rupestrian grasslands are part of an endangered ecosystem
[...] Read more.
Fire is one of the most relevant ecological disturbances in nature. Little is known about the effects of fire on biodiversity in ecosystems like rupestrian grasslands, which share characteristics with savanna and forest biomes. Brazilian rupestrian grasslands are part of an endangered ecosystem that has been modified by anthropogenic fire events that have become more intense in recent decades. In this study, we evaluated the effects of fire on ground and arboreal ant assemblages through a two-year monitoring program (24 monthly samplings). We found that fire does not change cumulative species richness after 24 months, and that fire does not affect mean ant richness, abundance, and species composition in arboreal ants. On the other hand, fire increased mean ground ant species richness and abundance, and caused a significant change in species composition. Our results indicate a weak and beneficial effect of fire only for ground ant communities, which generally agrees with results from other studies in Brazilian savannas. Taken together, results from these studies may be useful for improvement of fire suppression policy in fire-prone habitats in Brazil. Full article
Figures

Figure 1

Open AccessArticle Microfungi Associated with Pteroptyx bearni (Coleoptera: Lampyridae) Eggs and Larvae from Kawang River, Sabah (Northern Borneo)
Insects 2017, 8(3), 66; doi:10.3390/insects8030066
Received: 17 March 2017 / Revised: 17 June 2017 / Accepted: 20 June 2017 / Published: 4 July 2017
PDF Full-text (1618 KB) | HTML Full-text | XML Full-text
Abstract
Overlooking the importance of insect disease can have disastrous effects on insect conservation. This study reported the microfungi that infect Pteroptyx bearni eggs and larvae during ex-situ rearing project. Two different species of microfungi that infected the firefly’s immature life stages were isolated
[...] Read more.
Overlooking the importance of insect disease can have disastrous effects on insect conservation. This study reported the microfungi that infect Pteroptyx bearni eggs and larvae during ex-situ rearing project. Two different species of microfungi that infected the firefly’s immature life stages were isolated and identified. Penicillium citrinum infected the firefly’s eggs while Trichoderma harzianum infected the firefly during the larval stage. Both microfungi species caused absolute mortality once infection was observed; out of 244 individual eggs collected, 75 eggs (32.5%) were infected by Penicillium citrinum. All 13 larvae that hatched from the uninfected eggs were infected by Trichoderma harzianum. This study was the first to document the infection of Pteroptyx bearni’s eggs and larvae by Penicillium citrinum and Trichoderma harzianum. Full article
Figures

Figure 1

Open AccessArticle Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions
Insects 2017, 8(3), 67; doi:10.3390/insects8030067
Received: 16 August 2016 / Revised: 12 April 2017 / Accepted: 24 April 2017 / Published: 7 July 2017
PDF Full-text (1777 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological
[...] Read more.
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments. Full article
(This article belongs to the Special Issue Biological Control of Invertebrate Pests)
Figures

Figure 1

Open AccessArticle Systematics of the Ceracis furcifer Species-Group (Coleoptera: Ciidae): The Specialized Consumers of the Blood-Red Bracket Fungus Pycnoporus sanguineus
Insects 2017, 8(3), 70; doi:10.3390/insects8030070
Received: 12 June 2017 / Revised: 8 July 2017 / Accepted: 11 July 2017 / Published: 17 July 2017
PDF Full-text (21003 KB) | HTML Full-text | XML Full-text
Abstract
The Ceracis furcifer species-group (Coleoptera: Ciidae) originally comprised nine species names: Ceracis cornifer (Mellié, 1849); C. cylindricus (Brèthes, 1922); C. furcifer Mellié, 1849; C. hastifer (Mellié, 1849); C. monocerus Lawrence, 1967; C. ruficornis Pic, 1916; C. simplicicornis (Pic, 1916); C. semipallidus Pic, 1922
[...] Read more.
The Ceracis furcifer species-group (Coleoptera: Ciidae) originally comprised nine species names: Ceracis cornifer (Mellié, 1849); C. cylindricus (Brèthes, 1922); C. furcifer Mellié, 1849; C. hastifer (Mellié, 1849); C. monocerus Lawrence, 1967; C. ruficornis Pic, 1916; C. simplicicornis (Pic, 1916); C. semipallidus Pic, 1922 and C. unicornis Gorham, 1898. Ceracis semipallidus was synonymised with C. furcifer and then no further changes were made to the composition of the group. Here, we provide a taxonomic revision of the Ceracis furcifer species-group and new data on the geographic distribution and host fungi of the included species. Lectotypes are designated for C. cornifer, C. furcifer, C. hastifer, C. ruficornis, C. semipallidus and C. unicornis. As results we: (i) synonymise C. cylindricus, C. monocerus, C. simplicicornis, C. unicornis with C. cornifer; (ii) confirm the synonymy of C. semipallidus with C. furcifer; (iii) redescribe C. cornifer, C. hastifer, C. furcifer and C. ruficornis; and (iv) provide an identification key for species in the furcifer group. The frontoclypeal horn and body coloration showed great intraspecific variation. We show that species in the furcifer group have distributions wider than previously known and use mainly Pycnoporus sanguineus as host fungus. Species of the furcifer group are the only animals specialized in feeding on basidiomes of P. sanguineus. Full article
Figures

Figure 1

Open AccessArticle Do Refuge Plants Favour Natural Pest Control in Maize Crops?
Insects 2017, 8(3), 71; doi:10.3390/insects8030071
Received: 29 May 2017 / Revised: 12 July 2017 / Accepted: 13 July 2017 / Published: 18 July 2017
PDF Full-text (2335 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next
[...] Read more.
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. Full article
(This article belongs to the Special Issue Habitat Management in Agroecosystems)
Figures

Figure 1

Open AccessFeature PaperArticle Responses of Crop Pests and Natural Enemies to Wildflower Borders Depends on Functional Group
Insects 2017, 8(3), 73; doi:10.3390/insects8030073
Received: 1 June 2017 / Revised: 12 July 2017 / Accepted: 20 July 2017 / Published: 25 July 2017
PDF Full-text (571 KB) | HTML Full-text | XML Full-text
Abstract
Increased homogeneity of agricultural landscapes in the last century has led to a loss of biodiversity and ecosystem services. However, management practices such as wildflower borders offer supplementary resources to many beneficial arthropods. There is evidence that these borders can increase beneficial arthropod
[...] Read more.
Increased homogeneity of agricultural landscapes in the last century has led to a loss of biodiversity and ecosystem services. However, management practices such as wildflower borders offer supplementary resources to many beneficial arthropods. There is evidence that these borders can increase beneficial arthropod abundance, including natural enemies of many pests. However, this increase in local habitat diversity can also have effects on pest populations, and these effects are not well-studied. In this study, we investigated how wildflower borders affect both natural enemies and pests within an adjacent strawberry crop. Significantly more predators were captured in strawberry plantings with wildflower borders versus plantings without wildflowers, but this effect depended on sampling method. Overall, herbivore populations were lower in plots with a wildflower border; however, responses to wildflower borders varied across specific pest groups. Densities of Lygus lineolaris (Tarnished Plant Bug), a generalist pest, increased significantly in plots that had a border, while Stelidota geminata (Strawberry Sap Beetle) decreased in strawberry fields with a wildflower border. These results suggest that wildflower borders may support the control of some pest insects; however, if the pest is a generalist and can utilize the resources of the wildflower patch, their populations may increase within the crop. Full article
(This article belongs to the Special Issue Habitat Management in Agroecosystems)
Figures

Figure 1

Open AccessFeature PaperArticle Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs
Insects 2017, 8(3), 74; doi:10.3390/insects8030074
Received: 23 June 2017 / Revised: 19 July 2017 / Accepted: 20 July 2017 / Published: 25 July 2017
PDF Full-text (534 KB) | HTML Full-text | XML Full-text
Abstract
Zoophytophagous insects can substitute animals for plant resources when prey is scarce. Many arthropods feed on conspecifics to survive in these conditions. An individual’s tendency for cannibalism may depend on its genotype along with its diet specialization, in interaction with the availability of
[...] Read more.
Zoophytophagous insects can substitute animals for plant resources when prey is scarce. Many arthropods feed on conspecifics to survive in these conditions. An individual’s tendency for cannibalism may depend on its genotype along with its diet specialization, in interaction with the availability of alternative food resources. We compared two isogroup lines of the zoophytophagous mullein bug, either specialized on animal or on plant diets, that were generated to improve biocontrol. We predicted that: (1) bugs from the prey-specialized line would show higher levels of cannibalism than bugs from the pollen-specialized line, and (2) both lines would decrease cannibalism levels in the presence of their preferred resource. Under laboratory conditions, large nymphal instars had 24 hours to feed on smaller instars, in the absence of additional resources, or with either spider mites or pollen present. Cannibalism was reduced by the availability of both prey and pollen, although prey had a lower effect than pollen. The intensity of cannibalism was always higher in the prey-specialized line than in the pollen-specialized line, regardless of the availability of supplemented resources. The pollen-specialized line had decreased cannibalism levels only when pollen was available. These results indicate that cannibalism is a potentially regulating force in the prey-specialized line, but not in the pollen-specialized line. Full article
Figures

Figure 1

Open AccessArticle The Bionomics of the Cocoa Mealybug, Exallomochlus hispidus (Morrison) (Hemiptera: Pseudococcidae), on Mangosteen Fruit and Three Alternative Hosts
Insects 2017, 8(3), 75; doi:10.3390/insects8030075
Received: 27 March 2017 / Revised: 1 July 2017 / Accepted: 4 July 2017 / Published: 25 July 2017
PDF Full-text (990 KB) | HTML Full-text | XML Full-text
Abstract
The cocoa mealybug, Exallomochlus hispidus Morrison (Hemiptera: Pseudococcidae) is known to attack mangosteen, an important fruit export commodity for Indonesia. The mealybug is polyphagous, so alternative host plants can serve as a source of nourishment. This study aimed to record the bionomics of
[...] Read more.
The cocoa mealybug, Exallomochlus hispidus Morrison (Hemiptera: Pseudococcidae) is known to attack mangosteen, an important fruit export commodity for Indonesia. The mealybug is polyphagous, so alternative host plants can serve as a source of nourishment. This study aimed to record the bionomics of E. hispidus on mangosteen (Garcinia mangostana L.) and three alternative hosts, kabocha squash (Cucurbita maxima L.), soursop (Annona muricata, L.), and guava (Psidium guajava L.). First-instar nymphs of the E. hispidus were reared at room temperature on mangosteen, kabocha, soursop, and guava fruits until they developed into adults and produced nymphs. Female E. hispidus go through three instar stages before adulthood. The species reproduces by deuterotokous parthenogenesis. Exallomochlus hispidus successfully developed and reproduced on all four hosts. The shortest life cycle of the mealybug occurred on kabocha (about 32.4 days) and the longest was on guava (about 38.3 days). The highest fecundity was found on kabocha (about 100 nymphs/female) and the lowest on mangosteen (about 46 nymphs/female). The shortest oviposition period was 10 days on mangosteen and the longest, 10 days, on guava. These findings could be helpful in controlling E. hispidus populations in orchards. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Testing a Threshold-Based Bed Bug Management Approach in Apartment Buildings
Insects 2017, 8(3), 76; doi:10.3390/insects8030076
Received: 31 March 2017 / Revised: 3 July 2017 / Accepted: 21 July 2017 / Published: 26 July 2017
PDF Full-text (512 KB) | HTML Full-text | XML Full-text
Abstract
We tested a threshold-based bed bug (Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size
[...] Read more.
We tested a threshold-based bed bug (Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size and initial bed bug count, obtained through a combination of visual inspection and bed bug monitors: I- Non-chemical only in apartments with 1–12 bed bug count, II- Chemical control only in apartments with 1–12 bed bug count, III- Non-chemical and chemical control in apartments with >12 bed bug count, and IV- Chemical control only in apartments with ≥11 bed bug count. All apartments were monitored or treated once every two weeks for a maximum of 28 wk. Treatment I eliminated bed bugs in a similar amount of time to treatment II. Time to eliminate bed bugs was similar between treatment III and IV but required significantly less insecticide spray in treatment III than that in treatment IV. A threshold-based management approach (non-chemical only or non-chemical and chemical) can eliminate bed bugs in a similar amount of time, using little to no pesticide compared to a chemical only approach. Full article
(This article belongs to the Special Issue Urban Pest Management)
Figures

Figure 1

Open AccessFeature PaperArticle Host Specificity of Epiplema albida: A Potential Biological Control Agent for Sri Lankan Privet in the Mascarene Islands
Insects 2017, 8(3), 77; doi:10.3390/insects8030077
Received: 19 June 2017 / Revised: 20 July 2017 / Accepted: 24 July 2017 / Published: 28 July 2017
PDF Full-text (423 KB) | HTML Full-text | XML Full-text
Abstract
Epiplema albida (Hampson) (Lepidoptera: Uraniidae, Epipleminae) from Sri Lanka, was studied to assess its safety for use as a biological control agent for Sri Lankan privet, Ligustrum robustum subsp. walkeri (Oleaceae) in La Réunion and other Mascarene Islands. Larval no-choice feeding tests using
[...] Read more.
Epiplema albida (Hampson) (Lepidoptera: Uraniidae, Epipleminae) from Sri Lanka, was studied to assess its safety for use as a biological control agent for Sri Lankan privet, Ligustrum robustum subsp. walkeri (Oleaceae) in La Réunion and other Mascarene Islands. Larval no-choice feeding tests using newly hatched larvae, larval development tests, and multiple choice oviposition tests were used. Adult females of E. albida are shown to have highly selective oviposition behaviour and the species is physiologically restricted to very few hosts for feeding and development. The risk to key test plants in La Réunion is minimal, so this species can be considered for use as a biological control agent there, but would need further evaluation for potential use elsewhere. Full article
Figures

Open AccessArticle Sublethal Effects in Pest Management: A Surrogate Species Perspective on Fruit Fly Control
Insects 2017, 8(3), 78; doi:10.3390/insects8030078
Received: 29 May 2017 / Revised: 14 July 2017 / Accepted: 25 July 2017 / Published: 29 July 2017
PDF Full-text (651 KB) | HTML Full-text | XML Full-text
Abstract
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co-occur in
[...] Read more.
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co-occur in orchards/cultivated areas, especially in mixed-cropping schemes, their responses to pesticides may be highly variable. Furthermore, predictive efforts about toxicant effects are generally based on acute toxicity, with little or no regard to long-term population effects. Using a simple matrix model parameterized with life history data, we quantified the responses of several tephritid species to the sublethal effects of a toxicant acting on fecundity. Using a critical threshold to determine levels of fecundity reduction below which species are driven to local extinction, we determined that threshold levels vary widely for the three tephritid species. In particular, Bactrocera dorsalis was the most robust of the three species, followed by Ceratitis capitata, and then B. cucurbitae, suggesting individual species responses should be taken into account when planning for area-wide pest control. The rank-order of susceptibility contrasts with results from several field/lab studies testing the same species, suggesting that considering a combination of life history traits and individual species susceptibility is necessary for understanding population responses of species assemblages to toxicant exposure. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Open AccessArticle Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers
Insects 2017, 8(3), 79; doi:10.3390/insects8030079
Received: 31 May 2017 / Revised: 20 July 2017 / Accepted: 28 July 2017 / Published: 1 August 2017
PDF Full-text (1978 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation
[...] Read more.
The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250) regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees. Full article
(This article belongs to the Special Issue Habitat Management in Agroecosystems)
Figures

Figure 1

Open AccessArticle Oviposition, Life Cycle, and Longevity of the Leaf-Cutting Ant Acromyrmex rugosus rugosus
Insects 2017, 8(3), 80; doi:10.3390/insects8030080
Received: 24 April 2017 / Revised: 16 July 2017 / Accepted: 18 July 2017 / Published: 4 August 2017
PDF Full-text (1580 KB) | HTML Full-text | XML Full-text
Abstract
Studies related to the demography of individual members from ant colonies have received little attention, although they are the basis to understanding the population dynamics of colonies. Thus, the objective of this work was to study the queen oviposition rate and the duration
[...] Read more.
Studies related to the demography of individual members from ant colonies have received little attention, although they are the basis to understanding the population dynamics of colonies. Thus, the objective of this work was to study the queen oviposition rate and the duration of the life cycle and longevity of Acromyrmex rugosus rugosus workers. To determine the oviposition rate, queens from three colonies were individually placed in plastic containers, and the eggs laid were quantified over a 96 h period. The development of the immature forms was observed every 24 h, with which the duration of each stage of development was determined. To verify the longevity of workers, the newly emerged adults were marked and daily observations were made. According to the results, there is variation in the development time of immature forms within the colony itself and between colonies. In addition, the number of eggs deposited was also inconstant in the three colonies, ranging from 5 to 119 eggs per day, while the longevity of workers varied from 3 to 7 months. Occasionally, it was found that the workers feed on the eggs produced by the queen; besides, there was a disappearance of larvae and pupae during the research, indicating a possibility of the practice of cannibalism in this species. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest
Insects 2017, 8(3), 81; doi:10.3390/insects8030081
Received: 19 June 2017 / Revised: 31 July 2017 / Accepted: 31 July 2017 / Published: 4 August 2017
PDF Full-text (240 KB) | HTML Full-text | XML Full-text
Abstract
Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated
[...] Read more.
Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson’s diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment. Full article
Open AccessArticle Behavioral Responses of the Common Bed Bug, Cimex lectularius, to Insecticide Dusts
Insects 2017, 8(3), 83; doi:10.3390/insects8030083
Received: 2 July 2017 / Revised: 30 July 2017 / Accepted: 3 August 2017 / Published: 8 August 2017
PDF Full-text (834 KB) | HTML Full-text | XML Full-text
Abstract
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods
[...] Read more.
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods used for bed bug control; however, insecticide resistance limits the efficacy of treatments. Desiccant dusts have emerged as a good option to provide a better residual effect for bed bug control. Several studies have focused on determining the efficacy of dust-based insecticides against bed bugs. However, behavioral responses of bed bugs to insecticide dusts could influence their efficacy. The behavioral responses of bed bugs to six insecticide dusts commonly used in the United States were evaluated with an advanced video tracking technique (Ethovision). Bed bugs took longer to make first contact with areas treated with the diatomaceous earth (DE)-based products MotherEarth D and Alpine than pyrethroid, pyrethrins or silica gel based products, DeltaDust, Tempo 1% Dust and CimeXa, respectively. Lower visitation rates of bed bugs were recorded for areas treated with MotherEarth D, Alpine and CimeXa than that of DeltaDust, Tempo 1% Dust, and Tri-Die Silica + Pyrethrum Dust. Bed bugs spent less time in areas treated with Tri-Die Dust, CimeXa, Alpine, and MotherEarth D than DeltaDust and Tempo 1% Dust, and they exhibited a reduction in locomotor parameters when crawling on areas treated with CimeXa and Alpine. The implications of these responses to bed bug control are discussed. Full article
(This article belongs to the Special Issue Urban Pest Management)
Figures

Figure 1

Open AccessArticle Effects of Oxalic Acid on Apis mellifera (Hymenoptera: Apidae)
Insects 2017, 8(3), 84; doi:10.3390/insects8030084
Received: 12 June 2017 / Revised: 18 July 2017 / Accepted: 2 August 2017 / Published: 7 August 2017
PDF Full-text (3273 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: Oxalic acid dihydrate is used to treat varroosis of Apis mellifera. This study investigates lethal and sublethal effects of oxalic acid dihydrate on individually treated honeybees kept in cages under laboratory conditions as well as the distribution in the colony.
[...] Read more.
Abstract: Oxalic acid dihydrate is used to treat varroosis of Apis mellifera. This study investigates lethal and sublethal effects of oxalic acid dihydrate on individually treated honeybees kept in cages under laboratory conditions as well as the distribution in the colony. After oral application, bee mortality occurred at relatively low concentrations (No Observed Adverse Effect Level (NOAEL) 50 µg/bee; Lowest Observed Adverse Effect Level (LOAEL) 75 µg/bee) compared to the dermal treatment (NOAEL 212.5 µg/bee; LOAEL 250 µg/bee). The dosage used in regular treatment via dermal application (circa 175 µg/bee) is below the LOAEL, referring to mortality derived in the laboratory. However, the treatment with oxalic acid dihydrate caused sublethal effects: This could be demonstrated in an increased responsiveness to water, decreased longevity and a reduction in pH-values in the digestive system and the hemolymph. The shift towards stronger acidity after treatment confirms that damage to the epithelial tissue and organs is likely to be caused by hyperacidity. The distribution of oxalic acid dihydrate within a colony was shown by macro-computed tomography; it was rapid and consistent. The increased density of the individual bee was continuous for at least 14 days after the treatment indicating the presence of oxalic acid dihydrate in the hive even long after a treatment. Full article
Figures

Figure 1

Open AccessCommunication Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma
Insects 2017, 8(3), 85; doi:10.3390/insects8030085
Received: 24 May 2017 / Revised: 18 July 2017 / Accepted: 5 August 2017 / Published: 15 August 2017
PDF Full-text (587 KB) | HTML Full-text | XML Full-text
Abstract
Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting
[...] Read more.
Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae’s diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Minimal Pruning and Reduced Plant Protection Promote Predatory Mites in Grapevine
Insects 2017, 8(3), 86; doi:10.3390/insects8030086 (registering DOI)
Received: 25 July 2017 / Revised: 9 August 2017 / Accepted: 15 August 2017 / Published: 18 August 2017
PDF Full-text (1071 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Improving natural pest control by promoting high densities of predatory mites (Acari: Phytoseiidae) is an effective way to prevent damage by pest mites (e.g., Eriophyidae, Tetranychidae) and other arthropod taxa that can cause serious damage to vineyards. Here, we investigate the influence of
[...] Read more.
Improving natural pest control by promoting high densities of predatory mites (Acari: Phytoseiidae) is an effective way to prevent damage by pest mites (e.g., Eriophyidae, Tetranychidae) and other arthropod taxa that can cause serious damage to vineyards. Here, we investigate the influence of innovative management on predatory mite densities. We compare (i) full versus reduced fungicide applications and (ii) minimal pruning versus a traditional trellis pruning system in four fungus-resistant grapevine varieties. As predatory mites also feed on fungus mycelium, we assessed fungal infection of grapevine leaves in the experimental vineyard. Predatory mites were significantly more abundant in both minimal pruning and under reduced plant protection. Increases in predatory mites appeared to be independent of fungal infection, suggesting mostly direct effects of reduced fungicides and minimal pruning. In contrast to predatory mites, pest mites did not increase under innovative management. Thus, conditions for natural pest control are improved in fungus-resistant grapevines and under minimal pruning, which adds to other advantages such as environmental safety and reduced production cost. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Figure 1

Open AccessArticle Wavelength and Polarization Affect Phototaxis of the Asian Citrus Psyllid
Insects 2017, 8(3), 88; doi:10.3390/insects8030088 (registering DOI)
Received: 7 July 2017 / Revised: 15 August 2017 / Accepted: 16 August 2017 / Published: 19 August 2017
PDF Full-text (1867 KB) | HTML Full-text | XML Full-text
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a primary pest of citrus due to its status as a vector of the citrus disease, huanglongbing. We evaluated the effects of light of specific wavelength and polarization on phototactic behavior of D.
[...] Read more.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a primary pest of citrus due to its status as a vector of the citrus disease, huanglongbing. We evaluated the effects of light of specific wavelength and polarization on phototactic behavior of D. citri using a horizontal bioassay arena. Wavelength-associated positive phototaxis was associated with short wavelength UV (350–405 nm) targets whereas little or no responses were seen in longer wavelength targets in the visible spectrum from green to orange (500–620 nm). Distance walked towards the visual target was greater for UV/blue wavelengths (350–430 nm) than for longer wavelengths. Distances walked towards 365 nm light were greater than to white light, and distances travelled to green, yellow and orange light were similar to those in darkness. A reduced light intensity decreased responses to white and UV (365 nm) light. Polarized light was discriminated and D. citri travelled greater distance in response to white vertically polarized light than to horizontally polarized or unpolarized light of equal intensity. Responses to polarized 405 nm light were greater than to unpolarized light, although without an effect of polarization plane. For 500 nm light, there was no difference between responses to polarized or unpolarized light. There was no effect of age on responses to 405 nm light although 1 day old psyllids travelled faster in the presence of 500 nm green compared to 4–7 day old psyllids. Movement in response to UV and relative stasis in response to longer wavelength light is consistent with observed behaviors of settling on foliage for feeding and dispersing out of the canopy when flush needed for reproduction is scarce. Full article
(This article belongs to the collection Integrated Pest Management)
Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview Ecosystem-Based Incorporation of Nectar-Producing Plants for Stink Bug Parasitoids
Insects 2017, 8(3), 65; doi:10.3390/insects8030065
Received: 31 May 2017 / Revised: 17 June 2017 / Accepted: 20 June 2017 / Published: 24 June 2017
PDF Full-text (688 KB) | HTML Full-text | XML Full-text
Abstract
Adult parasitoids of pest insects rely on floral resources for survival and reproduction, but can be food-deprived in intensively managed agricultural systems lacking these resources. Stink bugs are serious pests for crops in southwest Georgia. Provisioning nectar-producing plants for parasitoids of stink bugs
[...] Read more.
Adult parasitoids of pest insects rely on floral resources for survival and reproduction, but can be food-deprived in intensively managed agricultural systems lacking these resources. Stink bugs are serious pests for crops in southwest Georgia. Provisioning nectar-producing plants for parasitoids of stink bugs potentially can enhance biocontrol of these pests. Knowledge of spatial and temporal availability and distribution of stink bugs in host plants is necessary for appropriate timing and placement of flowering plants in agroecosystems. Stink bugs move between closely associated host plants throughout the growing season in response to deteriorating suitability of their host plants. In peanut-cotton farmscapes, stink bugs develop in peanut, and subsequently the adults disperse into adjacent cotton. Parasitism of Nezara viridula (L.) adults by Trichopoda pennipes (F.) at the peanut-cotton interface was significantly higher in cotton with a strip of milkweed or buckwheat between the two crops than in cotton alone. Milkweed and buckwheat also provided nectar to a wide range of insect pollinators. Monarch butterflies fed on milkweed. When placed between peanut and cotton, a strip of soybean was an effective trap crop for cotton, reducing economic damage. Incorporation of buckwheat near soybean enhanced parasitism of Euschistus servus (Say) eggs by Telenomus podisi Ashmead in cotton. In conclusion, nectar provision enhances biocontrol of stink bugs, acts together with other management tactics for stink bug control, and aids in conservation of natural enemies, insect pollinators, and the monarch butterfly. Full article
(This article belongs to the Special Issue Habitat Management in Agroecosystems)
Figures

Figure 1

Open AccessFeature PaperReview Jamaica’s Critically Endangered Butterfly: A Review of the Biology and Conservation Status of the Homerus Swallowtail (Papilio (Pterourus) homerus Fabricius)
Insects 2017, 8(3), 68; doi:10.3390/insects8030068
Received: 21 June 2017 / Revised: 5 July 2017 / Accepted: 7 July 2017 / Published: 10 July 2017
PDF Full-text (8383 KB) | HTML Full-text | XML Full-text
Abstract
The Homerus swallowtail, Papilio (Pterourus) homerus Fabricius, is listed as an endangered species and is endemic to the Caribbean island of Jamaica. The largest butterfly in the Western Hemisphere, P. homerus once inhabited seven of Jamaica’s 14 parishes and consisted of
[...] Read more.
The Homerus swallowtail, Papilio (Pterourus) homerus Fabricius, is listed as an endangered species and is endemic to the Caribbean island of Jamaica. The largest butterfly in the Western Hemisphere, P. homerus once inhabited seven of Jamaica’s 14 parishes and consisted of at least three populations; however, now only two stronghold populations remain, a western population in the rugged Cockpit Country and an eastern population in the Blue and John Crow Mountains. Despite numerous studies of its life history, much about the population biology, including estimates of total numbers of individuals in each population, remains unknown. In addition, a breeding program is needed to establish an experimental population, which could be used to augment wild populations and ensure the continued survival of the species. Here, we present a review of the biology of P. homerus and recommendations for a conservation plan. Full article
(This article belongs to the Special Issue Butterfly Conservation)
Figures

Figure 1

Open AccessFeature PaperReview Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population
Insects 2017, 8(3), 72; doi:10.3390/insects8030072
Received: 28 April 2017 / Revised: 9 July 2017 / Accepted: 19 July 2017 / Published: 21 July 2017
PDF Full-text (495 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading
[...] Read more.
Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Full article
(This article belongs to the Special Issue Edible Insects—Future Prospects for Food and Feed Security)
Figures

Figure 1

Open AccessReview In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems
Insects 2017, 8(3), 82; doi:10.3390/insects8030082
Received: 31 May 2017 / Revised: 15 July 2017 / Accepted: 31 July 2017 / Published: 5 August 2017
PDF Full-text (257 KB) | HTML Full-text | XML Full-text
Abstract
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground
[...] Read more.
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators. Full article
(This article belongs to the Special Issue Habitat Management in Agroecosystems)

Other

Jump to: Research, Review

Open AccessCase Report Successful Community-Based Conservation: The Story of Millbank and Pterourus (Papilio) homerus
Insects 2017, 8(3), 69; doi:10.3390/insects8030069
Received: 28 March 2017 / Revised: 29 May 2017 / Accepted: 13 June 2017 / Published: 14 July 2017
PDF Full-text (213 KB) | HTML Full-text | XML Full-text
Abstract
The literature on community-based environmental management is very extensive and the discussion of the pros and cons is continuing. Presented here is an example of a successful interaction between university-based entomologists and a local rural community, detailing the change in the attitude of
[...] Read more.
The literature on community-based environmental management is very extensive and the discussion of the pros and cons is continuing. Presented here is an example of a successful interaction between university-based entomologists and a local rural community, detailing the change in the attitude of the town of Millbank, Jamaica, from a Giant Swallowtail Butterfly collecting site to a model for community protection of a species and its environment. A review of some of the research work on community-based conservation efforts is included. These linkages take a considerable time to establish and the efforts spent by scientific personnel, governmental representatives and eco-tourists are itemized to emphasize how specific conservation activities have inspired confidence in the local community, thus engendering trust and mutual respect between the two groups. Reviews of the developed legislative support from both international and state entities also must be in place, and these are included in chronological detail as much as possible. Finally, a review of the long-term funding of educational and other local programs providing a level of stability to the conservation effort, until the local community can take over the protection of the species and/or habitat, is provided. Of utmost importance is a comprehensive educational campaign to not only sensitize the community, but the larger society, so that there can be buy-in from all stakeholders. Full article
(This article belongs to the Special Issue Butterfly Conservation)

Journal Contact

MDPI AG
Insects Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Insects Edit a special issue Review for Insects
logo
loading...
Back to Top