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Abstract: Modified atmospheres present a residue-free alternative to fumigants for controlling
postharvest pests of grain during storage. How sub-lethal applications of this method affects
the reproductive fitness of target pests, however, is still not fully understood. We examined
how low levels of ambient oxygen influence the reproduction of the female cowpea bruchid
(Callosobruchus maculatus), a pest of cowpea. We used three low-oxygen atmospheres—2%, 5%
and 10% (v/v) oxygen—and observed their effects on: (1) the number of eggs laid by bruchids
compared to insects held in normoxic (~20% oxygen) conditions; (2) the total number of eggs laid;
and (3) the number of progeny that reached maturity. Low oxygen did not significantly affect
the number of eggs laid during 48 or 72 h of exposure, but 2% and 5% oxygen did negatively
affected total egg production. Increasing the exposure time from 48 to 72 h further depressed lifetime
reproductive output. Maternal and egg exposure to hypoxia reduced the number of progeny that
reached adulthood. Lower adult emergence was observed from eggs laid under low oxygen and
longer exposure times. These data demonstrate that hermetic conditions depress the egg-laying
behavior of cowpea bruchids and the successful development of their progeny.
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1. Introduction

The cowpea bruchid, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae), is a postharvest
pest that feeds primarily on legume seeds as larvae [1]. In Africa, C. maculatus is a serious pest on
cowpea, a major staple and cash crop [2]. Cowpea is infested by C. maculatus in the field [3], but its
populations grow exponentially when the grain is threshed and stored after harvest. This can result in
total loss after a few months of storage [4]. Infested cowpeas lose nutritional value and germination
viability and can be rendered unsuitable for human consumption and planting [5].

Fumigants like methyl bromide and phosphine have been used to keep cowpea free of bruchids
and other arthropod pests in storage. However, the wide use of synthetic insecticides has encouraged
selection for resistant traits among insect pests. This has added to the cost of pest control and increased
environmental pollution [4,6–10]. In sub-Saharan Africa, suitable insecticides are not widely available
nor are farmers trained in their use.

Modified atmospheres (MA) can provide an efficient, residue-free alternative to fumigants and
other chemicals for postharvest pest control [11–14]. MA technologies, like the Purdue Improved Crop
Storage (PICS) bags, have been effective in stopping losses to insects in stored grains including cowpea,
maize, and groundnut [15–18]. The PICS bag consists of two inner liners of high-density polyethylene
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(HDPE) and an outer, woven layer of polypropylene that makes the compound bag durable when
handled [16,19]. PICS bags have been disseminated widely among smallholder farmers in tens of
thousands of villages across West and Central Africa for postharvest storage of cowpea and, more
recently, for other dry grains [20–23].

While PICS bags and other hermetic containers suppress the development of bruchid populations by
depriving them of oxygen, the details of the protective action are still not completely understood [16,24].
By blocking the supply of oxygen, essential both for energy production as well as for the supply
of water required by insects that live in extremely dry environments, PICS bags suppress feeding,
growth, development, and population expansion. One effect of a reduced supply of oxygen is that
reproductive behavior may be impaired when female bruchids lack the necessary metabolic resources
to complete egg development. An effect on reproduction has already been observed in systems with
elevated carbon dioxide [25]. However, few studies have specifically observed the behavior of cowpea
bruchids at oxygen levels between 2% and 10% of the total atmosphere. This range represents the
typical, internal oxygen levels observed in sealed PICS bags after the respiration of the insects has
depleted much of the available oxygen [23].

In the present study, we sought to shed light on the effect of hypoxic atmospheres on the
reproductive behavior of C. maculatus. We sought to determine (1) the effect of lowered oxygen
levels (2%, 5%, and 10% of total atmosphere) on the number of eggs laid by adult female cowpea
bruchids; and (2) the effect of exposure on eventual adult emergence from eggs laid by female bruchids
under hypoxia.

2. Materials and Methods

2.1. Insect Colonies

Colonies of Callosobruchus maculatus originated from insects collected in Niger, West Africa.
They were maintained at the Department of Entomology, Purdue University on California black-eyed
cowpea seeds variety #8046 (Wax Co., Amory, MS, USA) and stored in a ConvironTM Environmental
Chamber (C710, Winnipeg, MB, Canada) at 25 ˝C and 40% R.H.

Cowpea bruchid colonies were set up by putting ~150 adult bruchids in a 500 mL wide-mouth
glass jar, filled approximately 1

4 full with fresh cowpea seeds. The insects were allowed to lay eggs
for two hours and then removed. Eggs were allowed to develop under the above temperature and
humidity conditions and 12:12 LD cycle to maturity with the time of first adult emergence monitored.

2.2. Baseline Bruchid Reproductive Output

When preparing for the baseline reproductive output study, a colony was set up and monitored
as described above. When adult bruchids were first observed in this jar, all adult insects were removed
via sifting with a No. 10 sieve. After 24 h, we selected female bruchids that subsequently emerged.
Selection was based on the length of the abdomen beyond the elytra. For female bruchids, this length is
greater than 1 mm and gives the insect an ovoid shape, while for males, it is less than 1 mm and gives
the insect a rounded appearance [26–28]. Ten female cowpea bruchids were collected from the colony
jar. Each female was held in the absence of cowpea oviposition sites with two males in a 30 mL glass
bottle for 12 h to ensure mating. Messina et al. [29] observed that male and female cowpea bruchids
mate readily and with great predictability (>74% chance of copulation) within only a few minutes’
time in the same enclosure. This arrangement allowed us to be confident in the female’s mated status
for our trials, even if direct observation of the event was not made. After 12 h, the female bruchid was
transferred via vacuum aspirator into a second, 30 mL glass bottle containing five, fresh cowpea seeds.
Each bottle was sealed with a plastic lid with holes to allow access to fresh air.

After 24 h, the females were transferred to new bottles containing five, fresh cowpea seeds in each.
The eggs laid during the first 24 h were recorded and labeled as Day 1. This process was repeated
every 24 h (Day 2, Day 3, etc.) until all insects had died. Seeds were held as separate cohorts and
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monitored daily for 60 days. We collected data on the length of time that passed before the first adults
emerged from each cohort and the number of adults after 60 days.

2.3. Effect of Reduced Oxygen on Bruchid Egg Production

All adult bruchids were removed from a colony jar three days after the first adults emerged.
The colony jars were held for an additional 24 h. All adults that emerged during this period were
isolated in separate jars for 24 h before being used for the experiment. This step ensured that all
females used in the trial were between 2 and 3 days old. In total, 36 adult females were collected from
these jars for each trial.

The gravid females were placed individually into 30 mL glass vials, each containing 5 cowpea
seeds. Each vial was covered with a silicone cap perforated with air holes to allow gas exchange.
All vials were placed into an airtight, gas chamber. Desired oxygen levels (2%, 5%, and 10%) were
obtained by flushing the chamber with nitrogen from a compressed-gas cylinder. Oxygen levels were
continually monitored using a 5250i Oxysense monitor (OxySense®, Las Vegas, NV, USA) until the desired
concentration was reached, after which it was maintained within ˘1% of the chosen treatment values.

For each trial, female bruchids were exposed to one of three oxygen environments (2%, 5%, or 10%
oxygen) for either 48 or 72 h. Following that exposure, the insects were transferred to new vials, each
containing 5 uninfested cowpea seeds. The vials were held in normoxic (oxygen equals approximately
20% total atmosphere) conditions for another 48 or 72 h period. We repeated the transfer of female
bruchids into a vial with fresh cowpea seeds and held them under normoxic conditions one additional
time. Each treatment cohort contained 12 female bruchids (24 per trial) and after each transfer, we
counted the number of eggs each female laid during that period. The final counts allowed us to
determine the total number of eggs laid during exposure to different oxygen levels as well as over
their adult lifetime.

We also tracked the development of eggs laid by the treated female bruchids. We did this by
monitoring the number of insects that reached adulthood and the length of time required. Eggs from
the same individual female and laid during the same period were isolated from other cohorts using
separate containers. Final assessment of adult emergence from these eggs was performed after 60 days.
For each treatment group, a concurrent control group that had not been exposed to hypoxia was also
set up, with female reproductive output assessed in the same manner as described above.

2.4. Statistical Analysis

For the baseline reproductive study, the number of eggs laid and percentage of progeny that
develop into adults were compared statistically using Analysis of Variance (ANOVA) to determine if
reproductive rates were different depending on the age of the female bruchid. Comparisons of average
reproductive output and final adult emergence between treatment and control groups was performed
using a Student’s t-test (2-sample, equal variance, p < 0.05). When needed, comparisons between the
two, exposure-time treatments (48 and 72 h) were also compared using Student’s t-test.

3. Results

3.1. Baseline Reproductive Output of Female Bruchids

All female cowpea bruchids remained alive for at least four days, after which we began to observe
mortality, as can be seen in Table 1. All insects were dead by the 9th day. The number of eggs laid
was highest on the first day (15 ˘ 2 per female) after emergence. Reproductive output declined
gradually thereafter.

Average development time for bruchid adults from the eggs laid on Days 1 and 2 was 47 days
and gradually increased with time. Eggs laid on Day 6 needed 54 days to develop to adulthood. No
adults emerged from eggs laid after seven days. The greatest number of adults emerged from eggs
laid on Day 1 and declined with time. Of the eggs laid between Days 1 and 5, the cumulative adult
emergence ranged between 48% and 67% after 60 days. Overall, it appears that eggs laid earlier in
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a female reproductive cycle produce offspring that develop more quickly and with higher rates of
survival than those eggs laid later (ANOVA: F = 13.83, d.f. = 8,89, p < 0.001).

Table 1. Results of daily monitoring of egg laying by female C. maculatus under normoxic conditions.
Female bruchid survival and the daily average number of eggs produced by surviving females
were recorded *.

Day Eggs Number
No. of Parent
Adults Alive

First Adult
Emerged (days)

Total Emerged
Adults (60 days)

Percentage
Emerged (%)

1 14.8 ˘ 1.6 10 47 7.6 ˘ 1.2 51.4 ˘ 6.2
2 10.4 ˘ 1.2 10 47 6.9 ˘ 1.0 66.4 ˘ 5.9
3 8.5 ˘ 1.2 10 48 5.5 ˘ 0.9 64.7 ˘ 3.4
4 6.0 ˘ 1.8 10 49 2.9 ˘ 0.9 48.3 ˘ 9.2
5 3.0 ˘ 1.1 7 49 1.7 ˘ 0.6 56.7 ˘ 11.5
6 2.1 ˘ 1.2 5 54 0.6 ˘ 0.3 28.6 ˘ 7.2
7 0.4 ˘ 0.3 4 NA 0 ˘ 0 0.0 ˘ 0
8 0.2 ˘ 0.1 3 NA 0 ˘ 0 0.0 ˘ 0
9 0.0 ˘ 0.0 0 NA 0 ˘ 0 0.0 ˘ 0

* Egg number, Development Time, Emerged Adults, and Percentage Emerged values are averages of cohorts
laid by ten female bruchids selected for this study.

3.2. Effect of Reduced Ambient Oxygen on Bruchid Egg Production

In Figure 1, we see that none of the treatments significantly reduced the number of eggs laid at
the time they were exposed to reduced levels of oxygen for either 48 or 72 h (48 h: 2% t-test = ´1.65,
d.f. = 22, p = 0.114; 5% t-test = ´0.54, d.f. = 22, p = 0.595; 10% t-test = 1.64, d.f. = 22, p = 0.115; 72 h:
2% t-test = ´1.19, d.f. = 22, p = 0.246; 5% t-test: ´1.82, d.f. = 22, p = 0.085; 10% t-test = ´1.49, d.f. = 21,
p = 0.001). However, the total number of eggs laid over their lifetimes was affected by hypoxia
exposure, as seen in Figure 2. Exposure to two percent oxygen reduced total egg counts after 48 h of
exposure (t-test = ´2.69; d.f. = 18; p = 0.015). Increasing the length of exposure to hypoxia from 48 to
72 h further reduced the number of eggs laid (t-test = 2.69; d.f. = 22; p = 0.0103). Five percent oxygen
reduced total egg count relative to the control groups, but only after 72 h of exposure (t-test = ´2.45;
d.f. = 22; p = 0.023) and not after 48 h (t-test = ´1.75, d.f. = 22, p = 0.094).
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Figure 1. Mean number of eggs laid by female cowpea bruchids during (a) 48 and (b) 72 h of exposure 
to hypoxia. Asterisks represent statistically significant differences between oxygen treatment groups 
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Figure 1. Mean number of eggs laid by female cowpea bruchids during (a) 48 and (b) 72 h of exposure
to hypoxia. Asterisks represent statistically significant differences between oxygen treatment groups
(white) and paired control groups (gray). Bars with no asterisk were not significantly different from the
control group. Oxygen levels had no effect on the number of eggs laid relative to the control groups
with the exception of the 10% treatment group exposed for 48 h.
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Figure 2. Average number of eggs laid by female cowpea bruchids over their lifetimes both during
and following exposure to (a) 48 and (b) 72 h of exposure to hypoxia. Asterisks represent statistically
significant differences between oxygen treatment groups (white) and paired control groups (gray).
Bars with no asterisk were not significantly different from the control group. We observed negative
effects of our treatment oxygen levels on the reproductive output of female bruchids relative to our
control groups.

The number of eggs laid under 10% oxygen increased relative to the control group after 48 h
(t-test = 2.17; d.f. = 22; p = 0.041). This was confirmed in a follow-up trial. However, no statistical
difference was observed between the 10% treatment and control groups after 72 h of exposure,
suggesting the effect occurs only for shorter periods of exposure (t-test = ´1.07; d.f. = 22; p = 0.297).
There was also no statistical difference in the total number of eggs laid when the female bruchids were
exposed to 10% oxygen for 48 h versus 72 h.

3.3. Adult-Emergence

As seen in Figure 3 and Table 2, fewer adults emerged from eggs laid under 2 and 5% oxygen
after both 48 and 72 h of exposure than in the controls. Increasing exposure time did not change the
number of adults that emerged from eggs exposed to 2% oxygen (t-test = 1.77; d.f. = 22; p = 0.09).
This is probably due to the fact that the numbers of emerged adults in either group were already low.
Increasing exposure time did reduce the number of emerging adults when exposed to 5% oxygen
(t-test = 4.14; d.f. = 22; p < 0.001). The longer exposure time reduced the number of larvae that survived
to adulthood by an average of seven beetles. There was no difference between the number of adults
that emerged under 10% oxygen and controls after either exposure time nor was there any difference
between the time treatments (t-test = 0.51, d.f. = 22, p = 0.62).
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Figure 3. Average number of progeny emerged from bruchid eggs laid by female bruchids exposed to
low oxygen for (a) 48 and (b) 72 h and under normal oxygen. Asterisks represent statistically significant
differences between oxygen treatment groups (white) and paired control groups (gray). Bars with no
asterisk were not significantly different from the control group. The 2% and 5% oxygen treatments
significantly reduced progeny development, while 10% oxygen did not result in the same effect.
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Table 2. Results of statistical comparisons between treatment groups and controls regarding the number
of adults emerged from eggs laid by female cowpea bruchids. Hypoxia below 5% was sufficient to
reduce eventual adult emergence relative to the controls.

Oxygen (%) Exposure (h) t-Value d.f. p

2
48 ´5.18 13 <0.001
72 ´5.18 11 <0.001

5
48 ´5.25 20 <0.001
72 ´9.73 18 <0.001

10
48 1.84 16 0.085
72 0.70 21 0.492

4. Discussion

Two or three days’ exposure to low oxygen during the peak period of female bruchid reproductive
activity did not reduce the number of eggs laid relative to the controls. Yet, exposure to less than
5% oxygen had negative effects on the total number of eggs laid. This, by itself, is not surprising as
several studies have shown that low oxygen can impact several insect physiological systems [30–34].
But the effect of our oxygen treatments wass most evident after the insects return to normoxic
conditions. Depending on the oxygen level and the length of exposure to subnormal oxygen, total
reproductive rates over an insects’ lifespan could fall by 18%–50% compared to controls.

This delay in the onset of reduced egg production hints at a more-complex, physiological response
from the females to exposure to low-oxygen. Hypoxia inducible factor (HIF) is known to suppress
protein synthesis under stressful environmental conditions [35–38]. Such biochemical changes would
typically lag behind the initial stimulus, with their effects continuing well after the stimulus has
been removed. Lum [39,40] and others [41] have shown that stressful environmental conditions can
negatively impact a number of organ systems, including reproduction. Among the effects is the
reabsorption of oocytes for resource recapture, as seen with Plodia interpunctella [39] and reduced
oviposition in Ephestia kuehniella [41].

Cheng et al. [38] observed that female bruchids slow down or halt oviposition below 2% oxygen,
but recover their normal rate of egg laying after 96 h in normoxic conditions. These changes mirror
shifts in the insects’ transcriptional and proteolytic activities [38]. Our study is consistent with these
observations. We show that while female bruchids can recover from exposure to low oxygen, there is a
long-term cost in their overall reproductive output that continues even when the insects are returned
to normal oxygen.

The effect of hypoxia on egg survival is also important for hermetic storage. Previously, Ofuya
and Reichmuth [42] demonstrated that 100% nitrogen environments are lethal to bruchid eggs.
Cheng et al. [38] observed that even exposure to 2% oxygen over a two day period leads to 100% egg
mortality. This agrees well with our own observations. Our results indicate that the minimum oxygen
level needed for an effect on reproductive success is 5% oxygen when the exposure period is three
days. These same negative effects may also occur with higher oxygen levels if the exposure time is
increased, but additional research is needed.

The high egg mortality we observed is likely tied to the size and structure of insect eggs.
Like many insects, bruchid eggs have a high surface area to volume ratio, which favors water loss [43].
Increased demand for oxygen under hypoxic conditions causes the egg’s spiracles to open wider,
which leads to rapid water loss. Given that hypoxia can limit water availability [16], hypoxia-induced
desiccation could contribute to egg death. Eggs laid by females exposed to 2%–5% oxygen saw between
57% and 100% fewer adults eventually emerge than those laid by paired control insects living in normal
oxygen conditions.

For hermetic storage containers like PICS triple-bags, these data suggest that successful control
of postharvest pests involves more than simply killing the insects. For cowpea bruchids, low
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oxygen, (5% of the atmosphere and below) may be enough to slow the rate of oviposition and
embryonic development. The result would be slower growth for the insect population stored with
the grain. This negative effect on reproduction would increase with the length of exposure to hypoxia.
Over longer storage times, this reduced reproduction and survival would result in differences in
the quality of stored grain, as slow population growth would translate to fewer seeds damaged by
developing bruchid larvae. This effect works well for hermetic products like the PICS bag, which
is principally used for long-term storage. In short, moderate hypoxia contributes to pest control in
hermetic containers.

5. Conclusions

Our study demonstrates that low oxygen (2%–5%) can suppress egg laying behavior and adult
emergence of cowpea bruchids. These data support the hypothesis that hypoxia in hermetic storage
can effectively control the reproductive performance of pests and so contribute to the protection of
grain. However, this reproductive effect is enhanced when hypoxia is maintained for relatively long
periods. Field observations in Niger show that levels of oxygen in PICS bags used to store cowpea
often reach the 5–10 percent level and are maintained for weeks or months at a time [44].

Acknowledgments: We acknowledge the PICS3 project for funding this study and the contribution by the Chinese
Scholarship Council to support Yan for her work in the PICS Laboratory at Purdue University.

Author Contributions: Yan Yan, Dieudonne Baributsa, and Larry Murdock conceived and designed the experiment.
Yan Yan performed the experiment. Yan Yan and Scott Williams analyzed the data. Yan Yan, Scott Williams,
Dieudonne Baributsa, and Larry Murdock all contributed to the writing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

MA Modified Atmosphere
PICS Purdue Improved Crop Storage
HDPE High-density polyethylene
ANOVA Analysis of Variance
HIF Hypoxia Inducible Factor

References

1. Cheng, C.; Yang, R.; Cheng, I.; Horng, S. Egg dumping: A strategy for host range expansion in
Callosobruchus maculatus (Coleoptera: Bruchidae). Ann. Entomol. Soc. Am. 2008, 101, 950–954. [CrossRef]

2. Langyintuo, A.S.; Lowenberg-DeBoer, J.; Faye, M.; Lambert, D.; Ibro, G.; Moussa, B.; Kergna, A.; Kushwaha, S.;
Musa, S.; Ntoukam, G. Cowpea supply and demand in West and Central Africa. Field Crops Res. 2003, 82,
215–231. [CrossRef]

3. Cheng, W.N.; Lei, J.X.; Ahn, J.E.; Wang, Y.; Lei, C.; Zhu-Salzman, K. CO2 enhances effects of hypoxia on
mortality, development, and gene expression in cowpea bruchid, Callosobruchus maculatus. J. Stored Prod. Res.
2013, 59, 1160–1168. [CrossRef] [PubMed]

4. Zhu-Salzman, K.; Murdock, L.L. Cowpea: Insects, ecology and control. In The Encyclopedia of Pest Management;
Taylor & Francis Group: New York, NY, USA, 2006; pp. 1–3.

5. Boeke, S.J.; Baumgart, I.R.; van Loon, J.J.A.; van Huis, A.; Dicke, M.; Kossou, D.K. Toxicity and repellence
of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus.
J. Stored Prod. Res. 2004, 40, 423–438. [CrossRef]

6. Fields, P.G.; White, N.D.G. Alternatives to methyl bromide treatments for stored-product and quarantine
insects. Annu. Rev. Entomol. 2006, 47, 331–359. [CrossRef] [PubMed]

7. Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects
collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2006, 40, 241–249. [CrossRef]

http://dx.doi.org/10.1603/0013-8746(2008)101[950:EASFHR]2.0.CO;2
http://dx.doi.org/10.1016/S0378-4290(03)00039-X
http://dx.doi.org/10.1016/j.jinsphys.2013.08.009
http://www.ncbi.nlm.nih.gov/pubmed/24001922
http://dx.doi.org/10.1016/S0022-474X(03)00046-8
http://dx.doi.org/10.1146/annurev.ento.47.091201.145217
http://www.ncbi.nlm.nih.gov/pubmed/11729078
http://dx.doi.org/10.1016/S0022-474X(03)00012-2


Insects 2016, 7, 26 8 of 9

8. Pimentel, M.A.G.; Faroni, L.R.D.; Guedes, R.N.C.; Sousa, A.H.; Totola, M.R. Phosphine resistance in Brazilian
populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 2009, 45,
71–74. [CrossRef]

9. Zettler, J.L.; Cuperus, G.W. Pesticidal resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and
Rhysopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Entomol. 1990, 83, 1677–1681. [CrossRef]

10. Silver, P. Alternatives to methyl bromide sought. Pestic. News 1994, 24, 12–27.
11. Banks, H.J.; Annis, P.C. Comparative advantages of high CO2 and low O2 types of controlled atmospheres for

grain storage. In Food Preservation by Modified Atmospheres; Calderon, M., Barkai-Golan, R., Eds.; CRC Press:
Boca Raton, FL, USA, 1990; pp. 93–122.

12. Fleurat-Lessard, F. Effect of modified atmospheres on insects and mites infesting stored products. In Food
Preservation by Modified Atmospheres; Calderon, M., Barkai-Golan, R., Eds.; CRC Press: Boca Raton, FL, USA,
1990; pp. 21–38.

13. Navarro, S. Modified atmospheres for the control of stored-product insects and mites. In Insect Management
for Food Storage and Processing; Heaps, J.W., Ed.; AACC International: St. Paul, MN, USA, 2006; pp. 105–146.

14. Navarro, S.; Timlick, B.; Demianyk, C.J.; White, N.D.G. Controlled and modified atmospheres. In Stored
Product Protection; Hagstrum, D., Phillips, T., Cupperus, G., Eds.; Kansas State Research and Extension:
Manhattan, KS, USA, 2012; pp. 1–25.

15. Abdolmaleki, A.; Safavi, S.A.; Safaralizadeh, M.H.; Allahvaisi, S.; Sadeghi, G.R. Lethal effects of low
atmosphere pressures on various developmental stages of Tribolium castaneum (Herbst) and Ephestia kuehniella
(Zeller) under Laboratory Conditions. Egypt. J. Biol. Pest Control 2011, 21, 159–163.

16. Murdock, L.L.; Margam, V.; Baoua, I.; Balfe, S.; Shade, R.E. Death by desiccation: Effects of hermetic storage
on cowpea bruchids. J. Stored Prod. Res. 2012, 49, 166–170. [CrossRef]

17. Baoua, I.B.; Amadou, L.; Ousmane, B.; Baributsa, D.; Murdock, L.L. PICS bags for post-harvest storage of
maize grain in West Africa. J. Stored Prod. Res. 2014, 58, 20–28. [CrossRef]

18. Sudini, H.; Ranga Rao, G.V.; Gowda, C.L.L.; Chandrika, R.; Margam, V.; Rathore, A.; Murdock, L.L.
Purdue Improved Crop Storage (PICS) bags for safe storage of groundnuts. J. Stored Prod. Res. 2015,
64, 133–138. [CrossRef]

19. Williams, S.B.; Baributsa, D.; Woloshuk, C. Assessing Purdue Improved Crop Storage (PICS) bags to mitigate
fungal growth and aflatoxin contamination. J. Stored Prod. Res. 2014, 59, 190–196. [CrossRef]

20. Baributsa, D.; Lowenberg-DeBoer, J.; Murdock, L.; Moussa, B. Profitable chemical-free cowpea storage
technology for smallholder farmers in Africa: Opportunities and challenges. In Proceedings of the 10th
International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010;
pp. 1046–1052.

21. Baributsa, D.; Tahirou, A.; Lowenberg-DeBoer, J.; Dabiré, C.; Moussa, B.; Coulibaly, O.; Baoua, I.
Market building for post-harvest technology through large-scale extension efforts. J. Stored Prod. Res.
2014, 58, 59–66. [CrossRef]

22. Murdock, L.L.; Shade, R.E.; Kitch, L.W.; Ntoukam, G.; Lowenberg-Deboer, J.; Huesing, J.E.; Moar, W.;
Chambliss, O.L.; Endondo, C.; Wolfson, J.L. Postharvest storage of cowpea in sub-Saharan Africa. In Advances
in Cowpea Reseach; Singh, B.B., Ed.; Co-publication of IITA and JIRCAS: Ibadan, Nigeria, 1997; pp. 302–312.

23. Murdock, L.L.; Seck, D.; Ntoukam, G.; Kitch, L.; Shade, R.E. Preservation of cowpea grain in Sub-Saharan
Africa-bean/cowpea CRSP contributions. Field Crops Res. 2003, 82, 169–178. [CrossRef]

24. Bailey, S.W. Air-tight storage of grain: Its effect on insect pests-IV Rhyzopertha dominica (F.) and some other
Coleoptera that infest stored grain. J. Stored Prod. Res. 1965, 1, 25–33. [CrossRef]

25. Dawson, C. The effect of carbon dioxide induced anaesthesia on fecundity of Callosobruchus maculatus
(Coleoptera: Bruchidae). J. Stored Prod. Res. 1995, 31, 49–54. [CrossRef]

26. Van der Meer, J.M. The specification of metameric order in the insect Callosobruchus maculatus Fabr.
(Coleoptera). J. Embryol. Exp. Morphol. 1979, 51, 1–26. [PubMed]

27. Dobie, P.; Haines, C.P.; Hodges, R.J.; Prevett, P.F.; Rees, D.P. Insects and Arachnids of Tropical Stored Products:
Their Biology and Identification; Natural Resources Institute: Chatham Maritime, UK, 1991.

28. Arnold, S.E.; Stevenson, P.C.; Belmain, S.R. Odour-mediated orientation of beetles is influenced by age, sex
and morph. PLoS ONE 2012, 7, e49071. [CrossRef] [PubMed]

29. Messina, F.J.; Bloxham, A.J.; Seargent, A.J. Mating compatibility between geographic populations of the seed
beetle Callosobruchus maculatus. J. Insect Behav. 2007, 20, 489–501. [CrossRef]

http://dx.doi.org/10.1016/j.jspr.2008.09.001
http://dx.doi.org/10.1093/jee/83.5.1677
http://dx.doi.org/10.1016/j.jspr.2012.01.002
http://dx.doi.org/10.1016/j.jspr.2014.03.001
http://dx.doi.org/10.1016/j.jspr.2014.09.002
http://dx.doi.org/10.1016/j.jspr.2014.08.003
http://dx.doi.org/10.1016/j.jspr.2014.02.012
http://dx.doi.org/10.1016/S0378-4290(03)00036-4
http://dx.doi.org/10.1016/0022-474X(65)90005-6
http://dx.doi.org/10.1016/0022-474X(94)00035-R
http://www.ncbi.nlm.nih.gov/pubmed/573305
http://dx.doi.org/10.1371/journal.pone.0049071
http://www.ncbi.nlm.nih.gov/pubmed/23145074
http://dx.doi.org/10.1007/s10905-007-9095-y


Insects 2016, 7, 26 9 of 9

30. Hoback, W.W.; Stanley, D.W. Insects in hypoxia. J. Insect Physiol. 2001, 47, 533–542. [CrossRef]
31. Greenlee, K.J.; Harrison, J.F. Respiratory changes throughout ontogeny in the tobacco hornworm caterpillar,

Manduca sexta. J. Exp. Biol. 2005, 208, 1385–1392. [CrossRef] [PubMed]
32. Harrison, J.; Frazier, M.R.; Henry, J.R.; Kaiser, A.; Klok, C.J.; Rascón, B. Responses of terrestrial insects to

hypoxia or hyperoxia. Respir. Physiol. Neurobiol. 2006, 154, 4–17. [CrossRef] [PubMed]
33. Frazier, M.R. Alpine Insects: Physiology and Evolution in Cold, Thin Air. Ph.D. Thesis, University of

Washington, Seattle, WA, USA, 2007.
34. Reiling, J.H.; Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by

down-regulating S6 K activity upstream of TSC in Drosophila. Genes Dev. 2004, 18, 2879–2892. [CrossRef]
[PubMed]

35. Cheng, W.N.; Chi, Y.H.; Ahn, J.E.; Yun, D.J.; Lee, S.Y.; Liu, T.X.; Zhu-Salzman, K. Changes in oxygen and
carbon dioxide environment alter gene expression of cowpea bruchids. J. Insect Physiol. 2005, 57, 220–230.

36. Lavista-Llanos, S.; Centanin, L.; Irisarri, M.; Russo, D.M.; Gleadle, J.M.; Bocca, S.N.; Muzzopappa, M.;
Ratcliffe, P.J.; Wappner, P. Control of the hypoxic response in Drosophila melanogaster by the basic
helix-loop-helix PAS protein similar. Mol. Cell. Biol. 2002, 22, 6842–6853. [CrossRef] [PubMed]

37. Gorr, T.A.; Gassmann, M.; Wappner, P. Sensing and responding to hypoxia via HIF in model invertebrates.
J. Insect Physiol. 2006, 52, 349–364. [CrossRef] [PubMed]

38. Cheng, W.N.; Lei, J.X.; Ahn, J.E.; Liu, T.X.; Zhu-Salzman, K. Effects of decreased O2 and elevated CO2

on survival, development, and gene expression in cowpea bruchids. J. Insect Physiol. 2012, 58, 792–800.
[CrossRef] [PubMed]

39. Lum, P.T.M. Oocyte degeneration in Plodia interpuntella Hubner and Cadra cautella (Walker) (Lepidoptera:
Pyralidae): Influence of Temperature and Humidity! Environ. Entomol. 1983, 12, 1539–1541. [CrossRef]

40. Lum, P.T.M.; Flaherty, B.R. Effect of carbon dioxide on production and hatchability of eggs of
Plodia interpunctella (Lepidoptera: Phycitidae). Ann. Entomol. Soc. Am. 1972, 65, 976–977. [CrossRef]

41. Janisch, E. Über die experimentelle Beeinflussung der Lebensdauer und des Alterns schadlicher Insekten.
I. Mitt. Arb. Biol. Abt. 1924, 13, 173–195. (In German)

42. Ofuya, T.I.; Reichmuth, C. Control of two bruchid pests of stored grain legumes in a nitrogen atmosphere.
Crop Prot. 1993, 12, 394–396. [CrossRef]

43. Woods, H.A.; Bonnecaze, R.T.; Zrubek, B. Oxygen and water flux across eggshells of Manduca sexta.
J. Exp. Biol. 2005, 208, 1297–1308. [CrossRef] [PubMed]

44. Murdock, L.L.; Baoua, I.B. On Purdue improved crop storage (PICS) technology: Background, mode of
action, future prospects. J. Stored Prod. Res. 2014, 58, 3–11. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0022-1910(00)00153-0
http://dx.doi.org/10.1242/jeb.01521
http://www.ncbi.nlm.nih.gov/pubmed/15781898
http://dx.doi.org/10.1016/j.resp.2006.02.008
http://www.ncbi.nlm.nih.gov/pubmed/16595193
http://dx.doi.org/10.1101/gad.322704
http://www.ncbi.nlm.nih.gov/pubmed/15545626
http://dx.doi.org/10.1128/MCB.22.19.6842-6853.2002
http://www.ncbi.nlm.nih.gov/pubmed/12215541
http://dx.doi.org/10.1016/j.jinsphys.2006.01.002
http://www.ncbi.nlm.nih.gov/pubmed/16500673
http://dx.doi.org/10.1016/j.jinsphys.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22387498
http://dx.doi.org/10.1093/ee/12.5.1539
http://dx.doi.org/10.1093/aesa/65.4.976
http://dx.doi.org/10.1016/0261-2194(93)90084-V
http://dx.doi.org/10.1242/jeb.01525
http://www.ncbi.nlm.nih.gov/pubmed/15781890
http://dx.doi.org/10.1016/j.jspr.2014.02.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Insect Colonies 
	Baseline Bruchid Reproductive Output 
	Effect of Reduced Oxygen on Bruchid Egg Production 
	Statistical Analysis 

	Results 
	Baseline Reproductive Output of Female Bruchids 
	Effect of Reduced Ambient Oxygen on Bruchid Egg Production 
	Adult-Emergence 

	Discussion 
	Conclusions 

