Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Insects, Volume 5, Issue 1 (March 2014) – 13 articles , Pages 1-300

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
733 KiB  
Article
Densities of Agrilus auroguttatus and Other Borers in California and Arizona Oaks
by Laurel J. Haavik, Tom W. Coleman, Mary Louise Flint, Robert C. Venette and Steven J. Seybold
Insects 2014, 5(1), 287-300; https://doi.org/10.3390/insects5010287 - 21 Mar 2014
Cited by 6 | Viewed by 5574
Abstract
We investigated within-tree population density of a new invasive species in southern California, the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), with respect to host species and the community of other borers present. We measured emergence hole densities of A. auroguttatus and [...] Read more.
We investigated within-tree population density of a new invasive species in southern California, the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), with respect to host species and the community of other borers present. We measured emergence hole densities of A. auroguttatus and other borers on the lower stem (bole) of naïve oaks at 18 sites in southern California and on co-evolved oaks at seven sites in southeastern Arizona. We sampled recently dead oaks in an effort to quantify the community of primary and secondary borers associated with mortality—species that were likely to interact with A. auroguttatus. Red oaks (Section Lobatae) produced greater densities of A. auroguttatus than white oaks (Section Quercus). On red oaks, A. auroguttatus significantly outnumbered native borers in California (mean ± SE of 9.6 ± 0.7 versus 4.5 ± 0.6 emergence holes per 0.09 m2 of bark surface), yet this was not the case in Arizona (0.9 ± 0.2 versus 1.1 ± 0.2 emergence holes per 0.09 m2). In California, a species that is taxonomically intermediate between red and white oaks, Quercus chrysolepis (Section Protobalanus), exhibited similar A. auroguttatus emergence densities compared with a co-occurring red oak, Q. kelloggii. As an invasive species in California, A. auroguttatus may affect the community of native borers (mainly Buprestidae and Cerambycidae) that feed on the lower boles of oaks, although it remains unclear whether its impact will be positive or negative. Full article
Show Figures

Graphical abstract

906 KiB  
Article
Screening of Repellents against Vespid Wasps
by Jean-Luc Boevé, Kris Honraet and Bart Rossel
Insects 2014, 5(1), 272-286; https://doi.org/10.3390/insects5010272 - 06 Mar 2014
Cited by 8 | Viewed by 7183
Abstract
Vespid wasps are ecologically beneficial, but they can be a nuisance and dangerous to people due to their tendency to sting. Here, the aim was to screen samples of volatiles (i.e., essential oils and pure chemicals) for their repellency against wasps. The number [...] Read more.
Vespid wasps are ecologically beneficial, but they can be a nuisance and dangerous to people due to their tendency to sting. Here, the aim was to screen samples of volatiles (i.e., essential oils and pure chemicals) for their repellency against wasps. The number of wasps (mainly Vespula vulgaris) present in a glass box with attractant and 5 µL sample was compared to the number of wasps in a similar box with attractant only. Both boxes were connected to a large glass container harboring 18–35 wasps. Among 66 tested samples, some essential oils from Lamiaceae and Asteraceae, as well as some pure natural compounds such as the monoterpenes (−)-terpinen-4-ol and isopulegol showed a significant repellency against vespids. Our results corroborate the potential of (mixtures of) volatiles in repelling these insects. Full article
Show Figures

Figure 1

45 KiB  
Editorial
Acknowledgement to Reviewers of Insects in 2013
by Insects Editorial Office
Insects 2014, 5(1), 270-271; https://doi.org/10.3390/insects5010270 - 27 Feb 2014
Viewed by 3351
Abstract
The editors of Insects would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2013. [...] Full article
635 KiB  
Article
Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency
by Marisol Amaya-Márquez, Peggy S. M. Hill, Charles I. Abramson and Harrington Wells
Insects 2014, 5(1), 243-269; https://doi.org/10.3390/insects5010243 - 14 Feb 2014
Cited by 9 | Viewed by 7074
Abstract
Learning facilitates behavioral plasticity, leading to higher success rates when foraging. However, memory is of decreasing value with changes brought about by moving to novel resource locations or activity at different times of the day. These premises suggest a foraging model with location- [...] Read more.
Learning facilitates behavioral plasticity, leading to higher success rates when foraging. However, memory is of decreasing value with changes brought about by moving to novel resource locations or activity at different times of the day. These premises suggest a foraging model with location- and time-linked memory. Thus, each problem is novel, and selection should favor a maximum likelihood approach to achieve energy maximization results. Alternatively, information is potentially always applicable. This premise suggests a different foraging model, one where initial decisions should be based on previous learning regardless of the foraging site or time. Under this second model, no problem is considered novel, and selection should favor a Bayesian or pseudo-Bayesian approach to achieve energy maximization results. We tested these two models by offering honey bees a learning situation at one location in the morning, where nectar rewards differed between flower colors, and examined their behavior at a second location in the afternoon where rewards did not differ between flower colors. Both blue-yellow and blue-white dimorphic flower patches were used. Information learned in the morning was clearly used in the afternoon at a new foraging site. Memory was not location-time restricted in terms of use when visiting either flower color dimorphism. Full article
(This article belongs to the Special Issue Honey Bee Behavior)
Show Figures

Figure 1

795 KiB  
Article
Resistance is not Futile: It Shapes Insecticide Discovery
by Margaret C. Hardy
Insects 2014, 5(1), 227-242; https://doi.org/10.3390/insects5010227 - 23 Jan 2014
Cited by 31 | Viewed by 9653
Abstract
Conventional chemical control compounds used for the management of insect pests have been much maligned, but still serve a critical role in protecting people and agricultural products from insect pests, as well as conserving biodiversity by eradicating invasive species. Although biological control can [...] Read more.
Conventional chemical control compounds used for the management of insect pests have been much maligned, but still serve a critical role in protecting people and agricultural products from insect pests, as well as conserving biodiversity by eradicating invasive species. Although biological control can be an effective option for area-wide management of established pests, chemical control methods are important for use in integrated pest management (IPM) programs, as well as in export treatments, eradicating recently arrived invasive species, and minimizing population explosions of vectors of human disease. Cogitated research and development programs have continued the innovation of insecticides, with a particular focus on combating insecticide resistance. Recent developments in the fields of human health, protecting the global food supply, and biosecurity will be highlighted. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

7839 KiB  
Article
Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change
by J. Mark Scriber, Ben Elliot, Emily Maher, Molly McGuire and Marjie Niblack
Insects 2014, 5(1), 199-226; https://doi.org/10.3390/insects5010199 - 21 Jan 2014
Cited by 18 | Viewed by 7015
Abstract
Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval [...] Read more.
Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus and P. canadensis in general, highlighting the importance of scale in adaptations to climate change. Furthermore, we also show that rapid size increases in cold pocket P. canadensis females with recent summer warming are more likely to result from phenotypic plasticity than genotypic introgression from P. glaucus, which does increase size in late-flight hybrids and P. appalachiensis. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

292 KiB  
Article
The First Order Transfer Function in the Analysis of Agrochemical Data in Honey Bees (Apis Mellifera L.): Proboscis Extension Reflex (PER) Studies
by Lisa A. De Stefano, Igor I. Stepanov and Charles I. Abramson
Insects 2014, 5(1), 167-198; https://doi.org/10.3390/insects5010167 - 07 Jan 2014
Cited by 11 | Viewed by 5659
Abstract
This paper describes a mathematical model of the learning process suitable for studies of conditioning using the proboscis extension reflex (PER) in honey bees when bees are exposed to agrochemicals. Although procedural variations exist in the way laboratories use the PER paradigm, proboscis [...] Read more.
This paper describes a mathematical model of the learning process suitable for studies of conditioning using the proboscis extension reflex (PER) in honey bees when bees are exposed to agrochemicals. Although procedural variations exist in the way laboratories use the PER paradigm, proboscis conditioning is widely used to investigate the influence of pesticides and repellents on honey bee learning. Despite the availability of several mathematical models of the learning process, no attempts have been made to apply a mathematical model to the learning curve in honey bees exposed to agrochemicals. Our model is based on the standard transfer function in the form Y=B3 e-B2 (X-1) +B4(1-e-B2 (X-1)) where X is the trial number, Y is the proportion of correct responses, B2 is the learning rate, B3 is readiness to learn, and B4 is ability to learn. We reanalyze previously published data on the effect of several classes of agrochemicals including: (1) those that are considered harmless to bees (e.g., pymetrozine, essential oils, dicofol); (2) sublethal exposure to pesticides known to harm honey bees (e.g., coumaphos, cyfluthrin, fluvalinate, permethrin); and (3) putative repellents of honey bees (e.g., butyric acid, citronella). The model revealed additional effects not detected with standard statistical tests of significance. Full article
(This article belongs to the Special Issue Honey Bee Behavior)
265 KiB  
Review
Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests
by Anaïs Castagnola and S. Patricia Stock
Insects 2014, 5(1), 139-166; https://doi.org/10.3390/insects5010139 - 06 Jan 2014
Cited by 51 | Viewed by 9636
Abstract
This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities [...] Read more.
This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. Full article
2148 KiB  
Review
The Bee as a Model to Investigate Brain and Behavioural Asymmetries
by Elisa Frasnelli, Albrecht Haase, Elisa Rigosi, Gianfranco Anfora, Lesley J. Rogers and Giorgio Vallortigara
Insects 2014, 5(1), 120-138; https://doi.org/10.3390/insects5010120 - 02 Jan 2014
Cited by 42 | Viewed by 9338
Abstract
The honeybee Apis mellifera, with a brain of only 960,000 neurons and the ability to perform sophisticated cognitive tasks, has become an excellent model in life sciences and in particular in cognitive neurosciences. It has been used in our laboratories to investigate [...] Read more.
The honeybee Apis mellifera, with a brain of only 960,000 neurons and the ability to perform sophisticated cognitive tasks, has become an excellent model in life sciences and in particular in cognitive neurosciences. It has been used in our laboratories to investigate brain and behavioural asymmetries, i.e., the different functional specializations of the right and the left sides of the brain. It is well known that bees can learn to associate an odour stimulus with a sugar reward, as demonstrated by extension of the proboscis when presented with the trained odour in the so-called Proboscis Extension Reflex (PER) paradigm. Bees recall this association better when trained using their right antenna than they do when using their left antenna. They also retrieve short-term memory of this task better when using the right antenna. On the other hand, when tested for long-term memory recall, bees respond better when using their left antenna. Here we review a series of behavioural studies investigating bees’ lateralization, integrated with electrophysiological measurements to study asymmetries of olfactory sensitivity, and discuss the possible evolutionary origins of these asymmetries. We also present morphological data obtained by scanning electron microscopy and two-photon microscopy. Finally, a behavioural study conducted in a social context is summarised, showing that honeybees control context-appropriate social interactions using their right antenna, rather than the left, thus suggesting that lateral biases in behaviour might be associated with requirements of social life. Full article
(This article belongs to the Special Issue Honey Bee Behavior)
Show Figures

Figure 1

818 KiB  
Article
Colonization of Three Maple Species by Asian Longhorned Beetle, Anoplophora glabripennis, in Two Mixed-Hardwood Forest Stands
by Kevin J. Dodds, Helen M. Hull-Sanders, Nathan W. Siegert and Michael J. Bohne
Insects 2014, 5(1), 105-119; https://doi.org/10.3390/insects5010105 - 31 Dec 2013
Cited by 14 | Viewed by 8314
Abstract
Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), is an invasive insect that has successfully established multiple times in North America. To investigate host colonization and reproductive success (exit holes/eggs), two ALB infested forest stands were sampled in central Massachusetts, USA. Infested Acer platanoides [...] Read more.
Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), is an invasive insect that has successfully established multiple times in North America. To investigate host colonization and reproductive success (exit holes/eggs), two ALB infested forest stands were sampled in central Massachusetts, USA. Infested Acer platanoides L., Acer rubrum L., and Acer saccharum Marsh. were felled, bucked into 1 m sections and dissected to determine indications of ALB infestations, such as presence of life stages or signs of damage on trees. ALB damage was also aged on a subset of trees to determine the earliest attacks on the three Acer species. In one stand, ALB oviposition was significantly higher on the native A. rubrum and A. saccharum than the exotic A. platanoides. In the second stand, ALB oviposition was significantly higher and cumulative reproductive success was higher on A. rubrum than A. platanoides or A. saccharum. An A. saccharum had the earliest signs of attack that occurred in 2006. Acer rubrum (2007) and A. platanoides (2010) were colonized shortly thereafter. Overall, ALB was more successful in A. rubrum, where adults emerged from 53% and 64% of trees in each stand, compared to A. platanoides (11% and 18%) or A. saccharum (14% and 9%). Full article
Show Figures

Figure 1

898 KiB  
Article
Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel
by Hidetoshi Ikeno, Tadaaki Akamatsu, Yuji Hasegawa and Hiroyuki Ai
Insects 2014, 5(1), 92-104; https://doi.org/10.3390/insects5010092 - 31 Dec 2013
Cited by 8 | Viewed by 7400
Abstract
It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used [...] Read more.
It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area. Full article
(This article belongs to the Special Issue Honey Bee Behavior)
Show Figures

Figure 1

504 KiB  
Review
Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches
by Ronaldo Costa Argôlo-Filho and Leandro Lopes Loguercio
Insects 2014, 5(1), 62-91; https://doi.org/10.3390/insects5010062 - 24 Dec 2013
Cited by 58 | Viewed by 14657
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true [...] Read more.
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

1691 KiB  
Review
Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes
by Jon Mark Scriber
Insects 2014, 5(1), 1-61; https://doi.org/10.3390/insects5010001 - 24 Dec 2013
Cited by 18 | Viewed by 10024
Abstract
Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not [...] Read more.
Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge. Full article
(This article belongs to the Special Issue Insect Conservation and Diversity)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop