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Abstract: The paper extents the fluid film bearing database method to arbitrary fixed bearing
profiles including floating ring bearings. The method is applied to evaluate rotordynamic response
of an automotive turbocharger, modeled as rigid rotor, and of a turbine-generator shaft train
for power generation modeled as flexible rotor through the transient transfer matrix method.
The methodology claims to render drastically faster evaluation of transient response of rotating
systems with nonlinear bearings regardless the complexity of the bearing models implemented.
The computational time of transient response is similar to this when short bearing expressions are
used. Turbocharger rotordynamic simulation considers the use of nonlinear bearing models as
mandatory, and several case studies have to be performed for the definition of key design parameters
of floating ring bearings. The bearing database method offers the tool for a severe total time reduction
in rotordynamic calculations, with the possibility to implement advanced thermohydrodynamic
bearing models to the rotordynamic algorithm as fast as short bearing approximation formulas.
Furthermore, the rotordynamic design of large turbine shaft trains is still based on linear harmonic
analysis which leads to conservative designs. The database method aims to include the transient
response of nonlinear rotor models as a standard procedure in the rotordynamic design of large shaft
trains, which nowadays is avoided due to high time cost and complexity.

Keywords: bearing database method; nonlinear bearings; floating ring bearing; transient response;
rotordynamics; turbochargers; turbines

1. Introduction

In rotor bearing systems of medium and high speed, the fluid film bearing forces have to be
solved at every discrete time step of the integration of system equations when nonlinear transient
response is evaluated. This requires considerable evaluation time spent on bearing subroutines of the
rotordynamic algorithm. The evaluation time is a very important matter in rotordynamic design tools
as the engineer should be able to try geometrical and physical properties conveniently, in terms of
time required to get results for unbalance response and other standard calculations. It is a fact that the
accurate and relatively fast analytical models of finite length journal bearing forces are still cumbersome
and available only for simple bearing profiles [1,2]. Furthermore, despite the computational capacity
of computers, the numerical bearing models may still require a considerable evaluation time for an
entire rotor run-up. The database methods have been proposed in 1993 for fixed bearing profile to
overcome the above shortcomings [3–9]. Similar approaches had been already used since the 60′s.
Notable are mobility maps introduced by Booker in 1965 [10,11] and the impedance method introduced
by Childs et al. in 1977 [12].
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For all rotor systems supported by fluid film bearings, the linear stability assessment which
implements linear bearing stiffness and damping properties, the well-known 8 matrix elements, is not
able to predict response at speeds higher than the instability threshold. Further to that, and probably of
higher importance, is the fact that the linear theory where linear bearing properties and linear stability
assessment are used, cannot predict that originally stable systems may go unstable when a sudden
external excitation is applied. For these major reasons, the nonlinear stability study of slender rotor
systems attracts increased attention.

The most popular way to implement nonlinear fluid film forces into a rotordynamic algorithm is the
direct solution of the Reynolds equation [13–15], the approximate short and long bearing theory [13–15],
and the use of higher order stiffness and damping coefficients [13–15]. Millions of integration steps
may be required to evaluate a transient rotor-bearing response and the Reynolds equation has to be
solved in each of these time intervals. Supposing a multi-bearing shaft train, the Reynolds equation
should be solved for each bearing. Even for a high speed turbocharger rotor mounted on floating
ring bearings, the Reynolds equation should be solved four times at each discrete time interval of the
transient response, for the two bearings, and two films at each bearing. The approximate methods are
very fast, but their accuracy is not applicable in common bearing profiles e.g., of industrial turbines,
as their length to diameter ratio neither corresponds to a short nor a long bearing.

The database technique developed initially in [3], puts forward a fast and accurate implementation
of fluid film forces in rotordynamic algorithms. Application of the method on simple bearing profiles
and Jeffcott rotor has proved that the method not only had practically the same accuracy as the direct
solving method, but also reduced dramatically the computation time of transient response. Recently,
the method was applied in grooved floating ring bearings [7] where it was shown that transient
response of turbochargers with simple circular floating rings can be evaluated in such a low time so to
enable different considerations on the design optimization of such systems. Bearing database method
has been also applied on rod fastening rotors with tilting pad bearings [8] where nonlinear phenomena
where efficiently captured.

The key to apply the database technique is on the transformation of the Reynolds equation
kinematic parameters, varying theoretically from −∞ to∞, these being the velocity of the journal in
two directions, to the variation on a finite range e.g., from −1 to 1. This is described in this paper
for the representative case of a fixed lobe bearing of complex geometry for industrial applications in
different way than what presented before [3–9]. The difference is that 4 parameters are considered in
the database, enabling the calculation of oil film forces for a flow on a theoretically arbitrary profile.
The key benefit of the current approach is that the database may consider the position of the journal
attitude angle with respect to the bearing profile configuration, e.g., scallops, when talking for a fixed
profile bearing. Furthermore, with the current approach, the database can be established for the case of
floating ring bearings where the floating ring includes radial holes for the flow of oil between inner
and outer film, and axial grooves as well. In the current paper, fixed lobe bearing profiles and floating
ring bearings are considered.

Another benefit of the database method is that a very precise journal bearing model can be
considered, including e.g., evaluation using edge commercial tools on THD lubrication principles.
Parallel processing can be applied for the a priori to the rotordynamic analysis creation of the database
with respect to the 4 parameter variation within finite range intervals which define a sparse or dense
grid. However, in this paper, a Finite Difference Method (FDM) is used to evaluate the lubricant
pressure depending on the four parameters of the database, without the type of the numerical solution
to be restrictive for the applicability of the method. Using the database method, a very precise prediction
of the bearing performance, e.g., using CFD, can be implemented in a rotordynamic algorithm as fast
as a simple solution, e.g., short bearing approximation.

The paper considers two rotordynamic design applications of the database method. The extended
database method is developed for simple floating ring bearing models [16] and it is applied to a simple
high-speed system of an automotive turbocharger, considering rigid rotor [17]. The evaluation time for
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a rotor run-up and the respective optimization problem described in the paper is drastically reduced
when Database Method is applied. The application of the database method in a turbine shaft train
consisting of 3 rotors connected with rigid couplings. Four oil film bearings with complex profile are
included [18]. When two bearings have equal dimensionless geometric parameters, e.g., length to
diameter ratio and clearance to radius ratio, the oil film forces can be deducted from the same database.
This instruction is explained in the paper. However, if a dimensional geometrical or physical parameter
is different, e.g., dynamic viscosity, then different databases are needed, one for each dynamic viscosity
value. The rotors are modeled using the Transient Transfer Matrix Method (TTMM) [19], explained in
the Appendix B, and the bearings are modeled using the FDM with the Gumbel’s boundary condition
applying [13]. The model includes flexible bearing pedestals as lumped mass models on linear springs
and dampers [18].

Depending on the type of machine and the rotordynamic problem, the bearing database method
can reduce the evaluation time of the entire rotordynamic algorithm at a similar level; this happens for
systems with few degrees of freedom, e.g., a rigid rotor mounted on floating ring bearings—simulation
of a turbocharger. Depending on the time consumption of the bearing subroutine with respect to the
overall calculations, the database method renders a corresponding reduction of the total evaluation time.

2. The Database Method and Its Application in Journal Bearings

2.1. Application of the Method in Fixed Profile Bearings

A journal bearing of fixed geometry is represented in Figure 1a. As a matter of generality,
the bearing consists of two circular sectors: (a) A concentric to the bearing center OB(xB, yB) circular
sector of radius RB for θS < θ < θ, and (b) a circular sector of radius RL, for θ < θS or θ > θ, centered
at OL(xL, yL). The latter sector is a preloaded lobe, called also preloaded pad, as its center does not
coincide to the bearing center. Such a geometric configuration increases the journal bearing effective
eccentricity and this is the principle to enhanced bearing stability of preloaded bearings [15], known
also as elliptical bearings or lobe bearings. When the journal center OJ

(
x j, y j

)
does not coincide to the

bearing center OB, the eccentricity e = (x2
j + y2

j )
1/2 forms a fluid film thickness h between the sliding

surfaces of the journal and the bearing, well approximated by the formulas in Equation (1), which can
be expressed in dimensionless form as H = h/cB.

The bearing housing, called also bearing pedestal, see Figure 1b, is considered as a 2 DOF system
with one lumped mass MP,X, MP,Y (pedestal mass) in vertical and in horizontal direction. The lumped
pedestal masses are connected through linear springs of stiffness coefficient KP,X, KP,Y, and through
linear dampers of damping coefficient CP,X, CP,Y, to the ground. The nonlinear fluid film impedance
forces FB

X and FB
Y are functions of eight variables appearing explicitly in the equations of motion

described in Appendices: the horizontal and vertical displacement of the journals x j, y j, and their
respective time derivatives

.
x j,

.
y j, and the horizontal and vertical displacement of the pedestal xP, yP,

and their respective time derivatives
.
xP,

.
yP. The rotating speed is also a parameter in equations of

motion but it does not appear explicitly as it is a parameter in fluid film forces function.



Lubricants 2019, 7, 78 4 of 28
Lubricants 2019, 7, x FOR PEER REVIEW 4 of 29 

 

  
(a) (b) 

Figure 1. (a) Representation of (a) the configuration and key parameters for design and operation, 
and (b) the nonlinear bearing and the linear support structure (pedestal) as considered in the model. 
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is preloaded with a preload 𝑚 = 1 − 𝑐 /𝑐 . Furthermore, the bearing has a length 𝐿  in Z direction, 
the lubricant is characterized by a dynamic viscosity μ which for simplicity is assumed constant in 
this paper as the flow of the lubricant is considered isoviscous, and the journal rotates around its 
center with rotating speed Ω, called spinning speed. Under dynamic conditions, the journal will 
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bearing clearance for laminar, isothermal, isoviscous flow is defined by the Reynolds equation 
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The problem on establishing a database for bearing performance directly from the Reynolds 
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Figure 1. (a) Representation of (a) the configuration and key parameters for design and operation,
and (b) the nonlinear bearing and the linear support structure (pedestal) as considered in the model.

In Equation (1), xB = yB = xL = 0 (see Figure 1a), while yL , 0; cB = RB − R is the bearing
clearance, called also assembly clearance, and cP = RL − R is the pad clearance (or machined pad
clearance). It is clear that in Figure 1a, cP > cB and consequently RL > RB, and thus the lobe sector
is preloaded with a preload m = 1− cB/cP. Furthermore, the bearing has a length LB in Z direction,
the lubricant is characterized by a dynamic viscosity µ which for simplicity is assumed constant in this
paper as the flow of the lubricant is considered isoviscous, and the journal rotates around its center
with rotating speed Ω, called spinning speed. Under dynamic conditions, the journal will perform
whirling motion inside the bearing clearance, with velocities

.
x j and

.
y j.

h =

 cB −
(
x j − xB

)
· cos(θ) −

(
y j − yB

)
· sin(θ), θS ≤ θ ≤ θE

cP −
(
x j − xL

)
· cos(θ) −

(
y j − yL

)
· sin(θ), θ< θS or θ >θE

(1)

The lubrication problem which is the evaluation of lubricant pressure distribution inside the
bearing clearance for laminar, isothermal, isoviscous flow is defined by the Reynolds equation which
includes all the previously defined geometric and physical parameters, see Equation (2) [13].

1
µR2

∂
∂θ

(
h3 ∂p
∂θ

)
+

h3

µ

∂2p
∂z2 = 6Ω

∂h
∂θ

+ 12
dh
dt

(2)

With the use of Equation (1), the right hand side (RHS) of Equation (2) is written after some math
in Equation (3).

RHS =
(
6Ωx j − 12

.
y j

)
sinθ−

(
6Ωy j + 12

.
x j

)
cosθ (3)

Setting dimensionless variables in Equation (4), Equation (2) is written in Equation (5).

p =
c2

Bp
µΩR2 , εx =

x j
cB

, εy =
y j
cB

,
.
εx =

.
x j
cB

,
.
εy =

.
y j
cB

,
.
εx =

.
εx
Ω ,

.
εy =

.
εy
Ω , k = 2R

L , z = 2z
L ,

.
ϕ =

x j
.
y j−y j

.
x j

ε2
x+ε

2
y

(4)

∂
∂θ

(
H3 ∂p
∂θ

)
+ k2H3 ∂

2p

∂z2 =
(
6εx − 12

.
εy

)
sinθ−

(
6εy + 12

.
εx

)
cosθ (5)

The problem on establishing a database for bearing performance directly from the Reynolds
equation is that whereas the input parameters εx and εy may have values within the domain

−1 < εx, εy < 1, the input parameters
.
εx,

.
εy(−∞,∞) cannot be defined within a specific domain.
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To overcome this problem, the Reynolds equation in the form of Equation (5) is divided by Q and then
the Reynolds equation is written in Equation (6).

3H2Hθ
∂p′

∂θ
+ H3 ∂

2p′

∂θ2 + k2H3 ∂
2p′

∂z2 = 6x1 sinθ− 6x2 cosθ (6)

The portion Q has two definitions:

1. If
∣∣∣∣εx − 2

.
εy

∣∣∣∣ > ∣∣∣∣εy + 2
.
εx

∣∣∣∣, then Q =

∣∣∣∣∣∣∣
(
εx−2

.
εy

)(
ε2Ω−2εx

.
εy+2εy

.
εx

)
ε
(
εxΩ−2

.
εy

)
∣∣∣∣∣∣∣

2. If
∣∣∣∣εx − 2

.
εy

∣∣∣∣ < ∣∣∣∣εy + 2
.
εx

∣∣∣∣, then Q =

∣∣∣∣∣∣∣
(
εy+2

.
εx

)(
ε2Ω−2εx

.
εy+2εy

.
εx

)
ε
(
εyΩ+2

.
εx

)
∣∣∣∣∣∣∣

The Reynolds equation in the form of Equation (6) has variables defined in Equations (7) and (8).

p′ =
p
Q

, p′θ =
∂p
∂θ

, x1 =
εx − 2

.
εy

Q
, x2 =

εy + 2
.
εx

Q
(7)

Hθ =
∂H
∂θ

= εx sinθ− εy cosθ (8)

Practically, it is not possible to have Q = 0. This would correspond to a static case of a journal
with zero eccentricity. At this theoretical case the lubrication problem would require a model of

Couette flow. Furthermore, the case where
∣∣∣∣εx − 2

.
εy

∣∣∣∣ = ∣∣∣∣εy + 2
.
εx

∣∣∣∣ is not a practical case. This may
happen only when the accuracy of the computer is very low; not the case nowadays. The Reynolds
Equation (6) can be solved after the four variables x1, x2, εx, εy are defined in the domain (−1,1).
The solution can be a numerical solution scheme e.g., Finite Difference Method (FDM). Supposing that
the FDM is implemented, with a definition of finite difference grid as Nz ×Nθ, the respective intervals
are defined as ∆z = LB/Nz and ∆θ = (θ − θS)/Nθ. The angles θS and θE can be any angles on the
circumference if the corresponding fluid film functions have been defined. The fact that x1, x2 receive
values in the domain (−1,1) finds its explanation in the limits of the functions which define x1, x2,
see Equation (7), when eccentricity of the journal approaches 1, or journal velocity approaches infinity
(only a theoretical case).

1. If Q > 0, then the resulting fluid film forces and torque components are given in dimensionless
form in Equation (9):


F
′

x+
F
′

y+

T
′

1
T
′

2+

 =



−

Nz∑
i=1

Nθ∑
j=1

(
∆θ·p′i, j· cosθ j

)
−

Nz∑
i=1

Nθ∑
j=1

(
∆θ·p′i, j· sinθ j

)
Nz∑
i=1

Nθ∑
j=1

(
∆θ

Hθ, j

)
Nz∑
i=1

Nθ∑
j=1

(
∆θ·p′θi, j·H j

)


(9)

For Gümbel boundary conditions, only p′i, j > 0 values are implemented in the double sum.
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2. If Q < 0, then the resulting fluid film forces and friction torque components are given in
dimensionless form in Equation (10):


F
′

x−
F
′

y−

T
′

1
T
′

2−

 =



−

Nz∑
i=1

Nθ∑
j=1

(
−∆θ·p′i, j· cosθ j

)
−

Nz∑
i=1

Nθ∑
j=1

(
−∆θ·p′i, j· sinθ j

)
Nz∑
i=1

Nθ∑
j=1

(
∆θ

Hθ, j

)
Nz∑
i=1

Nθ∑
j=1

(
∆θ·p′θi, j·H j

)


(10)

For Gümbel boundary conditions, only p′i, j < 0 values are implemented in the double sum.

In both cases (1) and (2) the resulting fluid film forces and friction torque in dimensional form are
defined in Equation (11).


Fx

Fy

T

 =
µLBΩR3

Nzc2
B

Q


F
′

x
F
′

y
cBT′1

Q + 1
2 cBT

′

2

 (11)

The bearing forces and torques database dat can be then constructed in Equation (12) where
variables εx and εy vary from −0.9 to 0.9 within INT = 100 intervals, while variables x1 and x2 vary from
−0.99 to 0.99 within INT = 100 intervals. Further columns can be added in the database corresponding
to further outputs like e.g., rising temperature when THD model is implemented. The number of INT
= 100 intervals can be sufficient to create a database that corresponds well in the demands for bearing
forces under mild dynamic conditions, which means relatively low response around equilibrium.
However, parallel processing can offer higher number of intervals, e.g., 400 or even 600, with the
number of intervals to be different for each variable. It makes sense the database dat to include
combinations of εx and εy such that they render ε =

(
ε2

x + ε2
y

)1/2
< 1 only.

For the use of the database in a rotordynamic algorithm for transient response analysis a 4-D
interpolation should be implemented. The interpolation scheme can be linear or of higher order.
The linear 4-D interpolation is presented hereby and the results following in the next sections depict
its efficiency.

For i, j, k, m from 1 to INT

dat(i, j, k, m, 1) = F
′

y+

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 2) = F

′

x+

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 3) = F

′

y−

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 4) = F

′

x−

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 5) = T

′

1

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 6) = T

′

2+

(
εx,i, εy, j, x1,k, x2,m

)
dat(i, j, k, m, 7) = T

′

2−

(
εx,i, εy, j, x1,k, x2,m

)
(12)

next m, k, j, i.
At a discrete time moment of transient response, the bearing model requires at least 5 input

variables in order to render the output forces and friction moments: the horizontal and vertical
displacement of the journal x j and y j, their respective velocities

.
x j and

.
y j, and the rotating speed Ω.

When the bearing support motion is included as a parameter in the algorithm, the journal bearing
lubrication problem still requires five inputs: two relative displacements and two relative velocities



Lubricants 2019, 7, 78 7 of 28

of the journal with respect of the bearing, and the rotating speed. Supposing that a group of x j, y j,
.
x j,

.
y j, and Ω are rendered from the motion equations solver to the bearing subroutine at the time

moment t1, then the four variables εx, εy, x1, and x2 are computed from Equations (4) and (7), or (4)
and (8). With INT to be the number of intervals for each variable as in Equation (12), then the index
numbers a2, β2, γ2, δ2 which are real numbers, used in the database in Equation (12) correspond to the
actual values εx, εy, x1, x2 defined in Equation (13). Then the side indexes are defined as a1, β1, γ1, δ1

(integers) and a0, β0, γ0, δ0 (integers) in Equation (13).


a2

β2

γ2

δ2

 =



εx+0.90+2·0.90/(INT−1)
2·0.90/(INT−1)

εy+0.90+2·0.90/(INT−1)
2·0.90/(INT−1)

x1+0.99+2·0.99/(INT−1)
2·0.99/(INT−1)

x2+0.99+2·0.99/(INT−1)
2·0.99/(INT−1)


,


a1

β1

γ1

δ1

 =


ceil(a2)

ceil(β2)

ceil(γ2)

ceil(δ2)

,


a0

β0

γ0

δ0

 =


a1 − 1
β1 − 1
γ1 − 1
δ1 − 1

 (13)

For a 4-D interpolation, 4 × 4 = 16 coefficients should be calculated in order to implement the
interpolation of the given values in the database [20]. Furthermore, the sign of Q will indicate if the
dimensionless fluid film forces and friction torque should be collected from the F

′

x+, F
′

y+, T
′

2+ values,

or from the F
′

x−, F
′

y−, T
′

2− values. The T
′

1 value is independent from the sign of Q. The 16 coefficients
are defined in Equation (14).

N1 = (a1 − a2)(β1 − β2)(γ2 − γ0)(δ2 − δ0), N9 = (a1 − a2)(β1 − β2)(γ2 − γ0)(δ1 − δ2)

N2 = (a1 − a2)(β2 − β0)(γ2 − γ0)(δ2 − δ0), N10 = (a1 − a2)(β2 − β0)(γ2 − γ0)(δ1 − δ2)

N3 = (a2 − a0)(β1 − β2)(γ2 − γ0)(δ2 − δ0), N11 = (a2 − a0)(β1 − β2)(γ2 − γ0)(δ1 − δ2)

N4 = (a2 − a0)(β2 − β0)(γ2 − γ0)(δ2 − δ0), N12 = (a2 − a0)(β2 − β0)(γ2 − γ0)(δ1 − δ2)

N5 = (a1 − a2)(β1 − β2)(γ1 − γ2)(δ2 − δ0), N13 = (a1 − a2)(β1 − β2)(γ1 − γ2)(δ1 − δ2)

N6 = (a1 − a2)(β2 − β0)(γ1 − γ2)(δ2 − δ0), N14 = (a1 − a2)(β2 − β0)(γ1 − γ2)(δ1 − δ2)

N7 = (a2 − a0)(β1 − β2)(γ1 − γ2)(δ2 − δ0), N15 = (a2 − a0)(β1 − β2)(γ1 − γ2)(δ1 − δ2)

N8 = (a2 − a0)(β2 − β0)(γ2 − γ0)(δ2 − δ0), N16 = (a2 − a0)(β2 − β0)(γ1 − γ2)(δ1 − δ2)

(14)

For the interpolation of F
′

x, supposing that e.g., Q > 0, 16 values of F
′

x are picked from the
database dat, corresponding to all combinations of the integer indexes evaluated in Equation (13), as in
Equation (15).

F
′

x,1 = dat(a0, β0,γ1, δ1, 2), F
′

x,5 = dat(a0, β0,γ0, δ1, 2), F
′

x,9 = dat(a0, β0,γ1, δ0, 2), F
′

x,13 = dat(a0, β0,γ0, δ0, 2)
F
′

x,2 = dat(a0, β1,γ1, δ1, 2), F
′

x,6 = dat(a0, β1,γ0, δ1, 2), F
′

x,10 = dat(a0, β1,γ1, δ0, 2), F
′

x,14 = dat(a0, β1,γ0, δ0, 2)
F
′

x,3 = dat(a1, β0,γ1, δ1, 2), F
′

x,7 = dat(a1, β0,γ0, δ1, 2), F
′

x,11 = dat(a1, β0,γ1, δ0, 2), F
′

x,15 = dat(a1, β0,γ0, δ0, 2)
F
′

x,4 = dat(a1, β1,γ1, δ1, 2), F
′

x,8 = dat(a1, β1,γ0, δ1, 2), F
′

x,12 = dat(a1, β1,γ1, δ0, 2), F
′

x,16 = dat(a1, β1,γ0, δ0, 2)

(15)

The interpolated values for F
′

x, F
′

y, T
′

1, T
′

2 are then evaluated in Equation (16). For F
′

y,i
used in Equation (16), Equation (15) should be written for the values dat(. . . , . . . , . . . , . . . , 1) in
advance. Similarly, T

′

1 and T
′

2 will be picked from the database elements dat(. . . , . . . , . . . , . . . , 5)
and dat(. . . , . . . , . . . , . . . , 6) respectively.

F
′

x =
16∑

i=1

NiF
′

x,i , F
′

y =
16∑

i=1

NiF
′

y,i , T
′

1 =
16∑

i=1

NiT
′

1,i , T
′

2 =
16∑

i=1

NiT
′

2,i (16)

The benefit of the method is the evaluation time of bearing forces and friction torque, which is
decreased up to approximately 100 times, without compromising accuracy. A Lagrange interpolation
scheme can be also implemented. However, the forces will not obtain that different values compared
to the linear interpolation, in order to raise concerns for the type of the interpolation method.
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Furthermore, the bearing forces included in the database can be calculated with enhanced bearing
models such as thermohydrodynamic models (THD models) from any commercial software or other
code. The reader should bear in mind that 4 variables is the minimum to describe the operating
conditions of a non-circular bearing, e.g., lemon bore, 3-4 Lobe, offset halves, partial arc bearing. For the
implementation of the method in floating ring bearings, 4 variables are still required if the floating ring
includes holes for the flow of the lubricant from the outer to the inner film. At the case of plain circular
floating ring bearing without holes in the ring, or at plain circular bearing, 3 variables are enough to
create the database [3,7]. As a generic approach, if the bearing profile is always symmetric with respect
to any attitude angle of the journal, then 3 variables are enough to create a database, this not being the
case for the bearing of Figure 1a. Furthermore, the method can be applied in squeeze film dampers,
and other bearing elements.

2.2. Application of the Method in Floating Ring Bearings

The application of the database method in floating rings is similar to what described in Section 2.1.
The reader should consider that although the floating ring bearings in this paper consider a plain
circular profile, the formulation is generic and it can be applied to any floating ring bearing profile,
elliptical or other, including holes and grooves. This is to motivate simulation of lobe bore floating
rings in future. Should the inner and outer films be of different length to diameter ratio 1/k, a different
database should be calculated. This is the most applicable case in floating rings of automotive
turbochargers [16,17].

In correspondence to Section 2.1, the lubrication problem in a floating ring bearing which is the
evaluation of lubricant pressure distribution in the inner and the outer film for laminar, isothermal,
and isoviscous flow is defined by the Reynolds equation which is now written in correspondence
to Equation (5), in Equation (17) for the inner, and in Equation (18) for the outer film respectively,
including the geometric and the physical parameters defined in Figure 2. Note that the coordinate
system is now defined in Figure 2, and that in the inner film the rotating speed included in Reynolds is
Ω + Ωr. In Equations (17) and (18), ci and co is the inner and outer clearance respectively. The bearing
has a length LB,i and LB,o in the inner and the outer film respectively in X direction, the lubricant
is characterized by a dynamic viscosity µi in the inner film and µo in the outer film, both assumed
constant in this paper. The shaft rotates around its center with a rotating speed Ω and the ring obtains
a rotating speed Ωr as the inner and outer film apply torques Ti and To respectively, see also Figure 2b.
Under dynamic conditions, the shaft and the ring will perform whirling motion inside the bearing
clearances, with absolute velocities

.
zs,

.
ys, and

.
zr,

.
yr. Equations (20)–(23) complete the definition of the

Reynolds equation in Equations (17) and (18).

∂
∂θ

(
H3

i
∂pi

∂θ

)
+ k2

i H3
i
∂2pi

∂x2
i

=
(
6εz,i − 12

.
εy,i

)
sinθ−

(
6εy,i + 12

.
εz,i

)
cosθ (17)

∂
∂θ

(
H3

o
∂po
∂θ

)
+ k2

oH3
o
∂2po

∂x2
o

=
(
6εz,o − 12

.
εy,o

)
sinθ−

(
6εy,o + 12

.
εz,o

)
cosθ (18)

{
Hi
Ho

}
=

{
hi/ci
ho/co

}
,

{
hi
ho

}
=

{
ci − (zs − zr)· cos(θ) − (ys − yr)· sin(θ), inner film
co − zr· cos(θ) − yr· sin(θ), outer film

(19)

pi =
c2

i pi

µi(Ω + Ωr)R2 , εz,i =
zs − zr

ci
, εy,i =

ys − yr

ci
,

.
εz,i =

.
zs −

.
zr

ci
,

.
εy,i =

.
ys −

.
yr

ci
(20)

.
εz,i =

.
εz,i

Ω + Ωr
,

.
εy,i =

.
εy,i

Ω + Ωr
, ki =

2R
LB,i

, xi =
2x
LB,i

,
.
ϕi =

(zs − zr)
( .
ys −

.
yr

)
− (ys − yr)

( .
zs −

.
zr
)

ε2
z,i + ε2

y,i

(21)

po =
c2

opo

µoΩrR2
o

, εz,o =
zr

co
, εy,o =

yr

co
,

.
εz,o =

.
zr

co
,

.
εy,o =

.
yr
co

(22)
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.
εz,o =

.
εz,o

Ωr
,

.
εy,o =

.
εy,o

Ωr
, ko =

2Ro

LB,o
, xo =

2x
LB,o

,
.
ϕo =

zr
.
yr − yr

.
zr

ε2
z,o + ε2

y,o
(23)

Similarly to Section 2.1, the Reynolds equation in the form of Equations (17) and (18) is divided

by Qi and Qo respectively, where εi = ei/ci,
.
ϕ
′

i =
.
ϕi/(Ω + Ωr) =

.
ϕi/

(
c2

i (Ω + Ωr)
)

and εo = eo/co,
.
ϕ
′

o =
.
ϕo/Ωr =

.
ϕo/

(
c2

oΩr
)
. Then, the Reynolds equation can be written in Equations (24) and (25).

The variables x1,i x2,i x1,o x2,o are defined in Equations (26)–(28).

3H2
i Hθ,i

∂p′i
∂θ

+ H3
i
∂2p′i
∂θ2 + k2

i H3
i
∂2p′i
∂xi2

= 6x1,i sinθ− 6x2,i cosθ (24)

3H2
o Hθ,o

∂p′o
∂θ

+ H3
o
∂2p′o
∂θ2 + k2

oH3
o
∂2p′o
∂xo2 = 6x1,o sinθ− 6x2,o cosθ (25)

Similarly, to the portion Q defined in Equations (7) and (8), the portions Qi and Qo have two
definitions, each, as follows.

For the inner film:

1. If
∣∣∣∣εz,i − 2

.
εy,i

∣∣∣∣ > ∣∣∣∣εy,i + 2
.
εz,i

∣∣∣∣, then Qi =

∣∣∣∣∣∣∣
(
εz,i−2

.
εy,i

)(
ε2

i (Ω+Ωr)−2εz,i
.
εy,i+2εy,i

.
εz,i

)
εi

(
εz,i(Ω+Ωr)−2

.
εy,i

)
∣∣∣∣∣∣∣

2. If
∣∣∣∣εz,i − 2

.
εy,i

∣∣∣∣ < ∣∣∣∣εy,i + 2
.
εz,i

∣∣∣∣, then Qi =

∣∣∣∣∣∣∣
(
εy,i+2

.
εz,i

)(
ε2

i (Ω+Ωr)−2εz,i
.
εy,i+2εy,i

.
εz,i

)
εi

(
εy,i(Ω+Ωr)+2

.
εz,i

)
∣∣∣∣∣∣∣

For the outer film:

1. If
∣∣∣∣εz,o − 2

.
εy,o

∣∣∣∣ > ∣∣∣∣εy,o + 2
.
εz,o

∣∣∣∣, then Qo =

∣∣∣∣∣∣∣
(
εz,o−2

.
εy,o

)(
ε2

o Ωr−2εz,o
.
εy,o+2εy,o

.
εz,o

)
εo

(
εz,oΩr−2

.
εy,o

)
∣∣∣∣∣∣∣

2. If
∣∣∣∣εz,o − 2

.
εy,o

∣∣∣∣ < ∣∣∣∣εy,o + 2
.
εz,o

∣∣∣∣, then Qo =

∣∣∣∣∣∣∣
(
εy,o+2

.
εz,o

)(
ε2

o Ωr−2εz,o
.
εy,o+2εy,o

.
εz,o

)
εo

(
εy,oΩr+2

.
εz,o

)
∣∣∣∣∣∣∣

The Reynolds equation in the form of Equations (24) and (25) has variables defined in
Equations (26) and (27).

p′i =
pi
Q

, pi
′

θ =
∂pi
∂θ

, x1,i =
εz,i − 2

.
εy,i

Qi
, x2,i =

εy,i + 2
.
εz,i

Qi
(26)

p′o =
po
Q

, po
′

θ =
∂po
∂θ

, x1,o =
εz,o − 2

.
εy,o

Qo
, x2,o =

εy,o + 2
.
εz,o

Qo
(27)

The derivatives of the inner and outer fluid film thickness functions appearing in Equations (24)
and (25) are defined in Equation (28).

Hθ,i =
∂Hi
∂θ

= εx,i sinθ− εy,i cosθ , Hθ,o =
∂Ho

∂θ
= εx,o sinθ− εy,o cosθ (28)

Equations (24) and (25) are solved with the four variables x1, x2, εx, εy (inner or outer) to receive
specific values in the domain (−1,1). The solution is a numerical solution scheme e.g., Finite Difference
Method. Supposing that the FDM is implemented, with a definition of finite difference grid as Nz ×Nθ,
the respective intervals are defined as ∆z = LB/Nz, for inner or outer film, and ∆θ = 2π/Nθ. Similarly,
to Section 2.1 two cases are defined for the evaluation of p′ for inner or outer film, these being for
Q > 0, and Q < 0. The inner and outer film impedance forces and friction torques are then evaluated in
correspondence to Equations (9)–(11).
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(a) (b) 

Figure 2. (a) Definition of the geometry and parameters of operation used in the analysis of a plain
cylindrical floating ring bearing, and (b) Representation of the forces and moments acting at the floating
ring [16].

3. Evaluation of Nonlinear Transient Response Using the Bearing Database Method

3.1. Application in a High-Speed System of Automotive Turbocharger

A simplified rotor system of an automotive turbocharger is used in this Section to obtain transient
response through two different bearing algorithms [17]:

a. Bearing forces are called from the Ordinary Differential Equation solver (ODE solver) and
provided by the database which has been constructed as described in previous sections;

b. Bearing forces are called from the ODE solver and they are evaluated with the direct solution of
the Reynolds equation at every discrete time during run-up, using Finite Difference Method.

The second case will be referred in the results as “Direct Solution”, while the first as “Database
Method”. The reader may advise recent works on enhanced bearing models and rotordynamics of
automotive turbochargers, including phenomena and methods which are beyond the scope of this
paper [21–31].

A rigid rotor and two wheels representing the turbine wheel and the compressor wheel, see Figure 3,
as lumped masses at rotor ends, consist a rotor which rotates with a speed Ω around the rotor center
line, as shown in Figure 3. The total mass of CW, TW, and Rotor is M, the total moment of inertia (polar)
is JP with respect to the rotor center line, and the total diametric moment of inertia is JT with respect
to the vertical and horizontal axes that pass through the center of mass of the system, see Figure 3.
The mathematical modeling of the simplified high speed system of Figure 3 is presented in Appendix A.
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response ‘jumps’ each time that a hydrodynamic instability takes place, in the inner or outer film, at 
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Figure 3. Representation and definition of the physical and geometrical parameters of the high-speed
rotor-bearing system consisting of a rigid rotor carrying two wheels at its ends and mounted on two
floating ring bearings [17].
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A representative response of an automotive turbocharger with the equations of motion of Equation
(A17) is depicted in Figures 4 and 5, where the response and the inner and outer eccentricity of the
journal and of the ring are plotted. One can notice the expected phenomenon of response ‘jumps’
each time that a hydrodynamic instability takes place, in the inner or outer film, at the Bearing 1 or
Bearing 2. The floating ring bearing is supposed to suppress the response due to instability in inner
film, with enhanced damping from the outer film. The reader may find extended studies on instability
phenomena of such systems in [24–27].

The response plotted in Figure 4 has been evaluated with both methods (a) and (b) defined
at the beginning of the Section, for the virtual time of 4 s, with linearly increasing rotating speed,
Ω = 1800·t [rad/s]. The ending speed of the turbocharger is approximately Ω = 70 kRPM. This is an
application of relatively large turbocharger for commercial Diesel application. Comparing the two
methods, a very good agreement is noticed in the response amplitude during run-up, see Figure 4a.
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Figure 4. (a) Time response of shaft and ring at Bearing 1 during run-up, evaluated by Direct Solution
(DS) and Database Method (DB). (b) Comparison of time response at selected time slots at 1 s (20 kRPM)
and 3 s (60 kRPM) during run-up evaluated with Direct Solution (DS) and Database Method (DB).

The response evaluated by the Database Method (DB) is plotted only in selected time slots in
Figure 4a so as not to cover the response evaluated by the Direct Solution (DS) and other response
characteristics at selected time slots. However, when the response is plotted in very short time range,
e.g., from 1 s to 1.02 s and from 3 s to 3.02 s, see Figure 4b, it is clear that the response evaluated through
the two methods is not identical. The reason is that Database Method does not render identical to
the Direct Method bearing forces and frictional torque at every discrete time step. However, taken
into account also Figure 5, where the eccentricity is plotted, one can conclude that Bearing Database
Method will not compromise the reliability of the results compared to the Direct Method. This is
clear from Figures 4a and 5a, where the rotor response and bearing eccentricity appear in very good
agreement between the two methods.

For the response evaluated and plotted in Figure 4, useful time measures for the application
of the Database Method are presented in Table 1. Both methods require similar calls in the bearing
subroutines, these being approximately 2.45 Mio for the Direct Solution, and 2.37 Mio for the Database
Method. This difference is due to the slightly different number calls to the system of differential
equations, these being approximately 0.61 Mio in the Direct Solution, and 0.59 Mio in the Bearing
Database. The occasional slight differences in the forces between the two methods are the reason for
the minor differences on the dynamics and on the progress of the numerical solution. The total time
spent in the calculation of bearing forces is drastically lower with the Database Method, this being
1.48 min, compared to the Direct Solution which requires 207 min in bearing subroutines. This is a ratio
of approximately 140 times faster Database Method. The Database Method returns the bearing forces
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and frictional force in 0.037 ms, while the Direct Solution requires 5.06 ms. This is the same ratio as
mentioned before, 140 times faster Database Method. However, the total time for the run-up and the
evaluation of the response is not that faster when Database Method is used; Direct Solution evaluates
the response in 213 min, while Database Method requires only 8 min, which is approximately 27 times
faster. This is a difference which highlights the benefit from the application of Database Method.
All computations in this paper were performed with a desktop PC with an i7 CPU @ 2.30GHz.
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Table 1. Time spent for the evaluation of the response using Database Method and Direct Method.

Bearing Sub-Routine ODEs Integration Total Time

Calls Total Time Time/Call Calls Total Time Time/Call (Run up)

Direct Method ~2.45 Mio ~207 min ~5.06 ms ~0.61 Mio ~6.1 min ~0.62 ms ~213 min
Database
Method ~2.37 Mio ~1.48 min ~0.037 ms ~0.59 Mio ~6.5 min ~0.66 ms ~8 min

In Figure 6, the fluid film forces and the frictional torque are compared between the two methods.
With a database of INT = 100 intervals, the Database Method bearing forces and frictional torque are in
a very good agreement to the Direct Solution forces and torque during the rotor run-up, see Figure 6a,c
(upper graph). Furthermore, the ring speed ratio is in very good agreement between the two methods,
see Figure 6c (lower graph). A key notice is that when database Forces and torque are evaluated with
input from the Direct Solution response, these are identical to the direct solution, see Figure 6b,d
comparing the curves (DS) and ([DB]). The Database Method forces and torques evaluated with input
from the Database Method response appear to some divergence from the Direct Solution forces and
torque, comparing the curves (DS) and (DB) in Figure 6b,d. As mentioned above, the Database Method
Response is not identical to the Direct Solution response, see Figures 4b and 5b. This explains the last
comment for the divergence of (DS) and (DB) curves in Figure 6b,d. However, the divergence in the
forces and torque (comparing (DS) and (DB)) does not render a considerable difference in the response.
The difference noticed in forces and torque comparing the two methods is due to the combined effect
of the interpolation and of the different input (slightly different response) to the bearing algorithms.
The computation time with the database method is approximately 136 times lower than this with
the Direct Method, see Table 1 for time related measures. Two points of interest is that a relatively
small rotor may develop bearing impedance forces of approximately 100 N amplitude, see Figure 6a,
and that the frictional torque in inner and outer film of the floating ring bearings develops a variance,
approximately after 1.8 s, see Figure 6c, due to the pressure variance from the rotor and ring whirling
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motion. The variance is the torque does not render intense variance in ring speed as shown in Figure 6c
where only a slight variance in the ring speed may be depicted (not clear in the full curve of Figure 6c,
see the two zoom windows inside Figure 6c).Lubricants 2019, 7, x FOR PEER REVIEW 13 of 29 
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The Right Hand Side Reynolds input parameters �̅� and �̅�  included in Equation (6) present 
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film separately in Figure 7a during the entire rotor run-up. As the system experiences its first 
instability at approximately 0.8 s, the variation of �̅�  occurs in the entire range from −1 to 1, at both 
films of Bearing 1. Similar progress is noticed in the films of Bearing 2. The values  𝑥 , �̅�  are 
depended only to the kinematics of the journal and of the ring, therefore, as the Database Method 
response is slightly different to the Direct Solution response, see also Figure 4b, the respective values 
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Figure 6. (a) Fluid film forces evaluated in the inner film of Bearing 1 during run-up of the system,
with Direct Solution (DS) and Database Method (DB). (b) Selected time slots where fluid film forces
include also Database Forces evaluated with input response from Direct Solution ([DB]). (c) above:
inner and outer film friction torque during run-up of the system, with Direct Solution (DS) and Database
Method (DB); below: ring speed to rotor speed ratio during run-up evaluated with Direct Solution (DS)
and Database Method (DB). (d) Selected time slots for the progress of frictional torque in the inner and
outer film including also Database Torque evaluated with input response from Direct Solution ([DB]).

The Right Hand Side Reynolds input parameters x1 and x2 included in Equation (6) present similar
progress to each other with their values to be limited in the domain −1 < x1, x2 < 1, as described in
previous Section. In Figure 7, the variation of x1 is presented for the inner and outer film separately in
Figure 7a during the entire rotor run-up. As the system experiences its first instability at approximately
0.8 s, the variation of x1 occurs in the entire range from −1 to 1, at both films of Bearing 1. Similar
progress is noticed in the films of Bearing 2. The values x1, x2 are depended only to the kinematics of
the journal and of the ring, therefore, as the Database Method response is slightly different to the Direct
Solution response, see also Figure 4b, the respective values of x1, x2 appear with some divergence,
see Figure 7b. The boundaries of x1, x2 is the basement of the method presented in this paper as
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they render a bounded the Reynolds equation regardless the kinematics of the journal and the ring,
see Section 2.

Lubricants 2019, 7, x FOR PEER REVIEW 14 of 29 

 

method presented in this paper as they render a bounded the Reynolds equation regardless the 
kinematics of the journal and the ring, see Section 2. 

  
(a) (b) 

Figure 7. Reynolds right hand side coefficient  �̅�  evaluated with Direct Solution (DS) and Database 
Method (DB) in Bearing 1 during (a) rotor run-up, and (b) selected time slots. Above: inner film, 
below: outer film. 

The drastically reduced computation time for impedance forces and frictional torque of bearing 
designs of multiple inputs, allows design optimization schemes [31] as the one presented in 
continue. As the response of the turbocharger cannot be evaluated with closed form expressions to 
render analytical functions of inputs, these being the physical and geometrical properties of the 
bearing and outputs like response, temperature, and others needed for the bearing design, the 
rotordynamic engineer has to perform several case studies where the response is calculated 
numerically for various combinations of input parameters. This set of calculations may include from 
few up to hundredths virtual run-ups of the system, and for each of them, the designated output is 
plotted. Such a case is shown in Figure 8, where the inner and outer eccentricity at both bearings 
(output) of the turbocharger of Figure 3, is plotted as a function of inner and outer bearing clearances 
(input). The value of each eccentricity considered in the graphs of Figure 8 is the higher eccentricity 
noticed in the entire run-up time (0–4 s). The clearance values are expressed with respect to a 
reference design clearance, and the range of variation is from 0.1 to 1.9, with an interval of 0.15. 
Therefore 144 run-up simulations have to be performed for this optimization problem. With the time 
related measures presented in Table 1, the optimization problem requires more than 21 days 
computational time using the Direct Method, while the Database Method requires less than 1 day 
computational time. 

The optimization problem may consider the maximum eccentricity calculated at every fluid 
film simultaneously, meaning that for each of the 144 run-up simulations, the 𝑚𝑎𝑥 𝜀 , , 𝜀 , , 𝜀 , , 𝜀 ,  
can be plotted. Constructing contour plots for the progress of 𝑚𝑎𝑥 𝜀 , , 𝜀 , , 𝜀 , , 𝜀 ,  can be 
produced in as shown in Figure 9. In Figure 9a the optimization problem considers variation of inner 
clearance in both bearings, while Figure 9a considers the variation of both inner and outer clearances 
as in Figure 8. Selecting a limit for the output parameter as e.g., 𝑚𝑎𝑥 𝜀 , , 𝜀 , , 𝜀 , , 𝜀 , < 0.6, the 
optimization problem can render the group of design inputs that satisfy the rotordynamic standards.  

Figure 7. Reynolds right hand side coefficient x1 evaluated with Direct Solution (DS) and Database
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outer film.

The drastically reduced computation time for impedance forces and frictional torque of bearing
designs of multiple inputs, allows design optimization schemes [31] as the one presented in continue.
As the response of the turbocharger cannot be evaluated with closed form expressions to render
analytical functions of inputs, these being the physical and geometrical properties of the bearing
and outputs like response, temperature, and others needed for the bearing design, the rotordynamic
engineer has to perform several case studies where the response is calculated numerically for various
combinations of input parameters. This set of calculations may include from few up to hundredths
virtual run-ups of the system, and for each of them, the designated output is plotted. Such a case is
shown in Figure 8, where the inner and outer eccentricity at both bearings (output) of the turbocharger
of Figure 3, is plotted as a function of inner and outer bearing clearances (input). The value of each
eccentricity considered in the graphs of Figure 8 is the higher eccentricity noticed in the entire run-up
time (0–4 s). The clearance values are expressed with respect to a reference design clearance, and the
range of variation is from 0.1 to 1.9, with an interval of 0.15. Therefore 144 run-up simulations have
to be performed for this optimization problem. With the time related measures presented in Table 1,
the optimization problem requires more than 21 days computational time using the Direct Method,
while the Database Method requires less than 1 day computational time.

The optimization problem may consider the maximum eccentricity calculated at every fluid film
simultaneously, meaning that for each of the 144 run-up simulations, the max(ε1,i, ε1,o, ε2,i, ε2,o) can
be plotted. Constructing contour plots for the progress of max(ε1,i, ε1,o, ε2,i, ε2,o) can be produced in
as shown in Figure 9. In Figure 9a the optimization problem considers variation of inner clearance in
both bearings, while Figure 9a considers the variation of both inner and outer clearances as in Figure 8.
Selecting a limit for the output parameter as e.g., max(ε1,i, ε1,o, ε2,i, ε2,o) < 0.6, the optimization
problem can render the group of design inputs that satisfy the rotordynamic standards.
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engineer should consider that other parameters, like e.g., oil temperature are influenced from tight 
clearances, and therefore a limit must be applied in the lower “acceptable” combinations.  

Figure 8. Optimization problem: (a) Inner eccentricity at Bearing 1, (b) outer eccentricity at Bearing 1,
(c) inner eccentricity at Bearing 2, and (d) outer eccentricity at Bearing 2, evaluated for varying inner
and outer clearance at both bearings, simultaneously; ci,1 = ci,2 and co,1 = co,2.

Furthermore, the fact that the Database Method offers drastically reduced evaluation time, enables
the rotordynamic optimization problem with e.g., 4 or 5 parameters varying simultaneously, like inner
clearance, outer clearance, bearing distance, bearing length. This consideration is practically applied
with an objective function and the computational time is always restriction on how many parameters
varying and at how many intervals. In Figure 9 there are acceptable combinations of clearances such
that max(ε1,i, ε1,o, ε2,i, ε2,o) < 0.6. These combinations are gathered in low values of clearances (tight
clearances) as depicted in Figure 9b. However, the rotordynamic engineer should consider that other
parameters, like e.g., oil temperature are influenced from tight clearances, and therefore a limit must
be applied in the lower “acceptable” combinations.
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considered equal in all bearings. Thermal effects are not taken into account in the evaluation of 
bearing performance. However, thermal effects can be considered in the database method as already 
mentioned in Section 2. 

A virtual run-up of the rotor system is performed from 0 to 3000 RPM with a linearly varying 
rotating speed for the time duration of 30 s. Unbalance excitation is considered in all three rotors in 
positions so that 1st, 2nd, and 3rd mode of each rotor can be excited, and the unbalance magnitude is 
defined per ISO. The rotor system response develops some transient phenomena at the beginning of 
the run-up, as the initial condition locates the system approximately at the center of each bearing. 
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towards the center of the bearing as the rotating speed increases, see Figure 11a. The first critical 
speed of the generator rotor appears at c.a. 11 s (1100 RPM) with a horizontal mode, and 

Figure 9. Optimization problem: Maximum eccentricity max (εi,1, εi,2, εo,1, εo,2) evaluated during
run-up (all speeds are considered), for (a) varying inner clearance at both bearings and constant outer
clearance at both bearings; co,1 = co,2, and (b) varying inner and outer clearance at both bearings with
ci,1 = ci,2 and co,1 = co,2.

3.2. Application in a Medium-Speed System of Turbine-Generator Shaft-Train

The database method in its extended form, as described in Section 2.1, is applied in a rotor bearing
system of turbine generator for power generation, represented in Figure 10 [18]. The system consists of
three rotors and four journal bearings mounted on the respective pedestals as depicted in Figure 1b.
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Figure 10. Representation of a turbine generator shaft-train with three rotors and four bearings.

The profile of the journal bearings consists of a combination of partial arcs. The central partial arc
is concentric to the bearing center (no preload), while the two partial arcs on the sides of the central
are preloaded, see Figure 1a. The bearings have different L/D ratios, while the ratio of pad clearance
to journal radius is equal in all bearings. Therefore, due to the fact that length to diameter ratio is
different, all bearings require a separate database. The lubricant dynamic viscosity is considered equal
in all bearings. Thermal effects are not taken into account in the evaluation of bearing performance.
However, thermal effects can be considered in the database method as already mentioned in Section 2.

A virtual run-up of the rotor system is performed from 0 to 3000 RPM with a linearly varying
rotating speed for the time duration of 30 s. Unbalance excitation is considered in all three rotors in
positions so that 1st, 2nd, and 3rd mode of each rotor can be excited, and the unbalance magnitude
is defined per ISO. The rotor system response develops some transient phenomena at the beginning
of the run-up, as the initial condition locates the system approximately at the center of each bearing.
Approximately after 5 s these transients are quenched and the rotor journals continue with elevation
towards the center of the bearing as the rotating speed increases, see Figure 11a. The first critical speed
of the generator rotor appears at c.a. 11 s (1100 RPM) with a horizontal mode, and approximately
at 13 s (1300 RPM) with a vertical mode. Only the response at Bearing #3 is considered in Figure 11.
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In Figure 11b, where the horizontal response is plotted, a stepped progress appears approximately
between 3 s and 7 s; this is due to the low relative accuracy of the numerical solver at this stage of
response so as the solver to proceed fast to the transient response during passage through resonance
which is of more interest for the dynamics of the system. The solver implements dynamic time interval
and varying relative accuracy.

As the rotor approaches the speed of 2800 RPM, instability occurs and the system enters a
supercritical Hopf bifurcation, where under constant rotating speed the system whirls at a stable limit
cycle of constant shape (extent). However, the rotating speed is increased further (end speed is 3000
RPM) so as to achieve a higher response and to study the efficiency of the database method in such a
case; this is why an unstable design has been chosen in this Section. Figure 11 depicts that a sparse
database of 100 intervals (INT = 100) is efficient to evaluate an accurate (compared to Direct Method)
response only at relatively low amplitudes. It is clear that after the 15 s, a slight divergence appears
between the responses evaluated with the two methods for bearing forces.
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Figure 11. Relative eccentricity (a) εy, and (b) εx of Journal #3 as a function of time during run-up.

The difference is clearer in Figure 12 where the response is plotted at a narrow time slot.
In Figure 12a, the sparse grid (INT = 100) is efficient to render accurate response (close to the response
evaluated through the direct method) when the response is low (e.g., at 10 s—1000 RPM). When the
response amplitude increases (e.g., during instability at 30 s), the sparse grid is not sufficient as severe
divergence appears between the two methods. A dense grid of e.g., INT = 600 intervals is then required
to render an excellent much between the two methods (also INT = 400 can be sufficient but of not
that excellent match). The number of INT = 600 intervals is high enough, and the database requires
severely higher time to be computed. It is redundant to say that the database is calculated in advance
of the rotordynamic calculations.

The progress of the four input parameters in the database (εx, εy, x1, and x2) is depicted in
Figure 13 for the corresponding run-up shown in Figure 11. These four parameters will be always
varying in −1 < εx, εy, x1, x2 < 1, and therefore, according to Figure 13, somebody can realize that
an interval of e.g., 1/INT = 0.01 (sparse grid) might be large compared to 1/INT = 0.002 (dense grid).
Figures 14 and 15 show the efficiency of the database method to predict identical to the direct method
forces in all circumstances of small journal whirling around an equilibrium position (e.g., at 10 s,
see Figures 14a and 15a) or large journal whirling on a limit cycle (e.g., at 30 s during instability,
see Figures 14b and 15b).
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Table 2 depicts computational time used for the response of the system with the two methods. 
Bearing forces are returned from the database method subroutine in only 0.037 ms (the same as 
calculated for a single oil film in the floating ring bearing in previous section) while the direct 
method subroutine will return forces in 5.06 ms. This is a reduction of approximately 136 times. The 
time on the database subroutine (from call to return) will be retained at the same low level (e.g., 
0.037 ms at the specific CPU) whatever the method for the lubrication performance is. Depending on 
the rotor-bearing system (type of application), low or high number of degrees of freedom is used for 
the rotor model, and as a result, it may happen that the reduction of the net time spent in the bearing 
routines is not enough to decrease the total time of a rotor run-up. For instance, a turbocharger 
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Figure 15. Progress of Bearing #3 horizontal fluid film forces (dimensionless) implemented from the
database and the direct calculation, at (a) 10 s and (b) 30 s.

Table 2 depicts computational time used for the response of the system with the two methods.
Bearing forces are returned from the database method subroutine in only 0.037 ms (the same as
calculated for a single oil film in the floating ring bearing in previous section) while the direct method
subroutine will return forces in 5.06 ms. This is a reduction of approximately 136 times. The time on
the database subroutine (from call to return) will be retained at the same low level (e.g., 0.037 ms at the
specific CPU) whatever the method for the lubrication performance is. Depending on the rotor-bearing
system (type of application), low or high number of degrees of freedom is used for the rotor model,
and as a result, it may happen that the reduction of the net time spent in the bearing routines is not
enough to decrease the total time of a rotor run-up. For instance, a turbocharger transient run-up
with a rotor model as a rigid body will experience a severe reduction on evaluation time when the
database method is used, as the number of DOFs is low (even 10 DoFs are enough to model such
system as shown in previous section), and therefore the run-up time is influenced much from the
bearing subroutines. At the current example the total time for rotor run-up is reduced almost 3 times
when using the database method, see Table 2. All computations in this paper were performed with a
desktop PC with an i7 CPU @ 2.30GHz.

Table 2. Time spent for the evaluation of the response and of bearing forces, using database method
and direct method.

Bearing Sub-Routine ODEs Integration Total Time

Calls Total Time Time/Call Calls Total Time Time/Call (Run Up)

Direct Method ~38 Mio ~53 h ~5.06 ms ~8 Mio ~27 h ~300 ms ~80 h
Database
Method ~40 Mio ~0.4 h ~0.037 ms ~8 Mio ~28 h ~300 ms ~28 h

4. Conclusions

Standard rotordynamic design evaluation of large turbomachinery does not include nowadays
evaluation of nonlinear transient response due to the still high evaluation time which cannot support
design procedures. However, in small turbochargers and turbopumps, and generally in high speed
turbomachinery, nonlinear transient analysis is mandatory for the prediction of dynamics and therefore
of mechanical integrity and operating performance in order to establish an initial design. The evaluation
time spent in bearing subroutines is still considerable, and this paper aims to support the introduction
of bearing database modules to the rotordynamic calculations of large and small turbomachinery.
Enhanced THD bearing models are to be included in database method in future works. The method
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can implement enhanced THD bearing models without the evaluation time to be a drawback. However,
this application is not included in this paper.

Large turbomachinery does not urge nonlinear transient response for the calculation of unbalance
response (linear harmonic analysis yields very similar results in most cases), but, the nonlinear stability
analysis may be proved very beneficial as slender rotors (which cannot be avoided—e.g., generator
rotors) operate very close to the stability threshold (e.g., 60 Hz generators).

The present paper aims to provide the tool for a faster evaluation of transient nonlinear response.
With the reduction of the evaluation time, the rotordynamic engineer may compose optimization
problems including more input design parameters than before. Regarding the evaluation time of
nonlinear transient response of high speed systems (mandatory for their design), this can be severely
reduced and optimization problems including the definition of clearances, groove dimensions, bearing
length, etc. can be performed, without the time to be a drawback, even with enhanced THD models.
Conclusively, the following benefits of using the database method should be highlighted:

1. The method renders severe time reduction in transient nonlinear response calculation of large and
small scale systems of high and medium speed and enables nonlinear rotordynamics in standard
design procedures (fast design iteration);

2. The method enables the implementation of accurate bearing models (e.g., THD, CFD) of complex
bearing geometries in rotordynamic algorithms without any time cost (regardless the complexity
of bearing performance model);

3. The rotordynamic predictions comparing Database Method and Direct Solution are in a very
good agreement, if not identical.

Time related measures from the computations performed in this paper prove the drastically
reduced computation time for a high speed rotor run-up from 0 to 70 kRPM to approximately 8 min,
while direct solution required 213 min (26 times less). This is a system with 10 DoFs and the response
computation time is intensively influenced from the bearing model. For the turbine shaft train, in which
several DoFs were modelled, 80 h were required with the direct solution and 28 h with the database to
compute a run-up of the system from 0 to 3000 RPM. The evaluation time spent solely on the call-return
of one bearing subroutine is reduced from 5.06 ms to 0.0037 ms; the bearing database returns the oil
film forces and frictional torque approximately 136 times faster than the direct method (solution of the
Reynolds and calculation of forces).
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Nomenclature

Hellenic Letters
ε: relative eccentricity θ: starting angle of the fluid film
εi: inner relative eccentricity θS: ending angle of the fluid film
εo: outer relative eccentricity ϑ1: rotating angle of the ring 1
εx: horizontal relative eccentricity ϑ2: rotating angle of the ring 2
εy: vertical relative eccentricity

.
ϑ1: rotating speed of the ring 1

εx,i: horizontal inner relative eccentricity
.
ϑ2: rotating speed of the ring 2

εy,i: vertical inner relative eccentricity
..
ϑ1: rotational acceleration of the ring 1

εx,o: horizontal outer relative eccentricity
..
ϑ2: rotational acceleration of the ring 2

εy,o: vertical outer relative eccentricity
.
ϕ: journal attitude angle rate of change



Lubricants 2019, 7, 78 21 of 28

.
εx: rate of change of εx

.
ϕ: dimensionless rate of change of ϕ

.
εy: rate of change of εy

.
ϕi: dimensionless rate of change of ϕi

.
εy,i: rate of change of εy,i

.
ϕo: dimensionless rate of change of ϕo

.
εy,o: rate of change of εy,o

.
ϕ
′

: dimensionless
.
ϕ

.
εx:

.
εx/Ω

.
ϕ
′

i : dimensionless rate of change of ϕi
.
εy:

.
εy/Ω

.
ϕ
′

o: dimensionless rate of change of ϕo
.
εy,i:

.
εy,i/(Ω + Ωr) ψY: vertical tilting angle of the rigid rotor

.
εy,o:

.
εy,o/Ωr ψZ: horiz. tilting angle of the rigid rotor

.
εz,i:

.
εz,i/(Ω + Ωr) Ω: rotating speed of the shaft

.
εz,o:

.
εz,o/Ωr

.
Ω: rotating accel. of the shaft

µ: dynamic viscosity of lubricant Ωr: rotating speed of the ring
µi: dynamic viscosity of the inner film Ωr,1: rotating speed of the ring 1
µo: dynamic viscosity of the outer film Ωr,2: rotating speed of the ring 2
θ: circumferential coordinate angle

.
Ωr,1: rotating accel. of the ring 1
.

Ωr,2: rotating accel. of the ring 2
Latin Letters
cB: bearing clearance FY,i: inner fluid film force, vertical
ci: inner bearing clearance FY,o: outer fluid film force, vertical
co: outer bearing clearance FY,1: inner fluid film force, Bearing 1, vert.
cP: pad clearance FY,2: inner fluid film force, Bearing 2, vert.
CP,X: damping coef. in pedestal (horiz.) FZ,i: inner fluid film force, horizontal
CP,Y: damping coef. in pedestal (vert.) FZ,o: outer fluid film force, horizontal
D: diameter of shaft FZ,1: inner fluid film force, Bearing 1, horiz.
e: absolute eccentricity (of journal) FZ,2: inner fluid film force, Bearing 2, horiz.
ei: inner absolute eccentricity (of journal) FG

i : gravitational force at node
eo: outer absolute eccentricity (of ring) Fu,y, j: unbalance forces, vertical
Fi: field matrix Fu,z, j: unbalance forces, horizontal
Fg,1: gravity forces loading bearing 1 FB

X: nonlinear bearing force, horizontal
Fg,2: gravity forces loading bearing 2 FU

X : unbalance forces, horizontal
FU

Y : unbalance forces, vertical MP,X: lumped pedestal mass, horiz.
FB

Y: nonlinear bearing force, vertical MP,Y: lumped pedestal mass, vert.
F
′

x: dimensionless bearing force, horiz. Nz: pressure intervals (axially)
F
′

x+: dimensionless bearing force, horiz. Nθ: pressure intervals (circumf.)
F
′

x−: dimensionless bearing force, horiz. p: absolute pressure
F
′

y: dimensionless bearing force, vert. Pi: point matrix
F
′

y+: dimensionless bearing force, vert. p: dimensionless pressure
F
′

y−: dimensionless bearing force, vert. pi: inner dimensionless pressure
g: gravity acceleration po: outer dimensionless pressure
h: fluid film thickness p′ : p/Q
hi: inner fluid film thickness Q: divisor of dimen/less Reynolds
ho: outer fluid film thickness RB: journal radius
H: dimensionless fluid film thickness RL: bearing lobe radius

R: radius of shaft
Hi: dimensionless fluid film thick., inner t: time
Ho: dimensionless fluid film thick., out. Ti: torque of the inner film
IP,1: mass moment of inertia of ring 1 Ti: transfer matrix
IP,2: mass moment of inertia of ring 2 U: unbalance magnitude
JP: rotor mass moment of inertia, polar To: torque of the outer film
JT: rotor mass moment of inertia, diametric U j: distance of unbalance plane distance
JND,i: lumped mass moment of inertia, diam. x j: horizontal displacement
JNP,i: lumped mass moment of inertia, polar xP: pedestal displacement, horiz.
k: bearing ratio, 2RB/LB

.
x j: journal absolute velocity, horiz.

KP,X: Stiffness coefficient of pedestal, horiz. y j: journal displacement, horiz.
KP,Y: Stiffness coefficient of pedestal, vert. yP: pedestal displacement, vert.
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L: bearing length in axial direction yr: ring displacement, vert.
LB: bearing length in axial direction ys: journal displacement, vert.

LB,i:
bearing length in the inner film, axially
direction

.
y j: journal absolute velocity, vert.

LB,o:
bearing length in the outer film, axially
direction

.
yr: ring absolute velocity, vert.

L1: length of bearing 1
.
ys: journal absolute velocity, vert.

L2: length of bearing 2 z: axial coordinate in bearing
m: bearing preload (geometric) zr: ring displacement, horiz.
m1: mass of ring 1 zs: journal displacement, horiz.
m2: mass of ring 2

.
zr: ring absolute velocity, horiz

M: total mass of rotor
.
zs: journal absolute velocity, horiz

MN,i: lumped mass at a node z: Dimensionless axial coordinate

Appendix A. Simplified Model of an Automotive Turbocharger

For the representative high speed system of a rigid rotor mounted on floating ring bearings, see Figure 3,
four ODEs describe the motion of the rotor system, these defined in Equations (A1)–(A4) with the resulting
impedance forces from the bearings to the rotor to be FY,1 and FY,2 in the vertical direction and FZ,1 and FZ,2 in the
horizontal direction, for Bearing #1 and Bearing #2 correspondingly, see Figure 3.

M
..
yCM = Fg,1 + FY,1 + Fg,2 + FY,2 +

4∑
j=1

Fu,y, j (A1)

M
..
zCM = FZ,1 + FZ,2 −

4∑
j=1

Fu,z, j (A2)

JT
..
ψY + JPΩ

.
ψ = FY,1L1 − FY,2L2 + Fu,y,1U1 + Fu,y,2U2 − Fu,y,3U3 − Fu,y,4U4 (A3)

JT
..
ψ − JPΩ

.
ψY = FZ,1L1 − FZ,2L2 − Fu,z,1U1 − Fu,z,2U2 + Fu,z,3U3 + Fu,z,4U4 (A4)

The unique nonlinearity in the 4 DoF system is sourced from the fluid film bearing forces. The four unbalance
forces applied on the planes at a distance U j from the plane of CM (see Figure 3), are defined on Equation (A5) for

constant rotating acceleration
.

Ω.

Fu,y, j = u jΩ2 cos
(1

2

.
Ωt2

)
, Fu,z, j = u jΩ2 sin

(1
2

.
Ωt2

)
, j = 1, 2, 3, 4 (A5)

The gravity forces loading the two bearings are defined in Equation (A6).

Fg,1 = −MgL2/(L1 + L2), Fg,2 = −MgL1/(L1 + L2) (A6)

Using Equations (A7) and (A8), and after some math, the equations of motion in Equations (A1)–(A4) are
written in Equations (A9) to (A12).

y1 = yCM + L1ψY, y2 = yCM − L2ψY, z1 = zCM + L1ψZ, z2 = zCM − L2ψZ (A7)

ψY =
y1 − y2

L1 + L2
ψZ =

z1 − z2
L1 + L2

(A8)

..
y1 =

L1 + L2
ML2

Fg,1 + FY,1 + Fg,2 + FY,2 +
4∑

j=1

Fu,y, j

− L1
L2

..
y2 (A9)

..
z1 =

L1 + L2
ML2

FZ,1 + FZ,2 −

4∑
j=1

Fu,z, j

− L1
L2

..
z2 (A10)

..
y2 = −

L1 + L2
JT

(
FY,1L1 − FY,2L2 + Fu,y,1U1 + Fu,y,2U2 − Fu,y,3U3 − Fu,y,4U4

)
+

JPΩ
JT

( .
y1 −

.
y2

)
+

..
z1 (A11)

..
z2 = −

L1 + L2
JT

(
FZ,1L1 − FZ,2L2 − Fu,z,1U1 − Fu,z,2U2 + Fu,z,3U3 + Fu,z,4U4

)
−

JPΩ
JT

( .
z1 −

.
z2

)
+

..
y1 (A12)
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The floating rings in this paper are assumed for simplicity as plain hollow cylindrical rigid bodies. Torsional
moments act at each floating ring from the inner and the outer film of the lubricant, see Figure 2b. The fluid film
forces applied on the ring from the outer film are defined as FY,o and FZ,o in the vertical and horizontal direction
correspondingly, see Figure 2b, while the inner film forces are defined as FY,i and FZ,i in the vertical and horizontal
direction correspondingly, see Figure 2b. The respective torsional moments are defined as Ti and To for inner and
outer film correspondingly, see Figure 2b. The gravity forces are also incorporated assumed to act on the vertical
direction at the CM of each ring with magnitudes m1g and m2g.

Each floating ring rotates by ϑ1 and ϑ2, with rotating speed Ωr,1 =
.
ϑ1 and Ωr,2 =

.
ϑ2 and rotational

acceleration
.

Ωr,1 =
..
ϑ1 and

.
Ωr,2 =

..
ϑ2 respectively. With the definitions in Figures 2 and 3, the equations of

motion for each floating ring are given in Equations (A13)–(A15), and therefore, 6 more DoFs are added into the
rotor-bearing system. In equations of motion for the floating rings, IP,1 and IP,2 is the mass moment of inertia of
each ring with respect to its axis of rotation and m1 and m2 is the mass of each ring.

m1
..
yr,1 = −m1g + FY,o,1 − FY,i,1, m1

..
zr,1 = FZ,o,1 − FZ,i,1 (A13)

m2
..
yr,2 = −m2g + FY,o,2 − FY,i,2, m2

..
zr,2 = FZ,o,2 − FZ,i,2 (A14)

IP,1
..
ϑ1 = Ti,1 − To,1, IP,2

..
ϑ2 = Ti,2 − To,2 (A15)

After the definitions in Equation (A16), the 2nd order 10× 10 system of motion equations, Equations (A7) to
(A12), is reduced to a 1st order 20× 20 system of motion equations in Equation (A17).

s(1) = ys,1 , s(2) =
.
ys,1, s(3) = ys,2, s(4) =

.
ys,2, s(5) = zs,1

s(6) =
.
zs,1, s(7) = zs,2, s(8) =

.
zs,2, s(9) = yr,1, s(10) =

.
yr,1

s(11) = zr,1,s(12) =
.
zr,1, s(13) = ϑ1, s(14) =

.
ϑ1, s(15) = yr,2

s(16) =
.
yr,2, s(17) = zr,2, s(18) =

.
zr,2s(19) = ϑ2, s(20) =

.
ϑ2

(A16)

The system
.
s = f(s) can be solved applying numerical integration solvers for stiff ODE systems.

.
s(1) = s(2)

.
s(2) = L1+L2

L2M

Fg,1 + FY,1 + Fg,2 + FY,2 +
4∑

j=1
Fu,y, j

− L1
L2

.
s(4)

.
s(3) = s(4)

.
s(4) = − L1+L2

JT

(
FY,1L1 − FY,2L2 + Fu,y,1U1 + Fu,y,2U2 − Fu,y,3U3 − Fu,y,4U4

)
−

JP
JT

Ω(s(6) − s(8))
.
s(5) = s(6)

.
s(6) = L1+L2

L2M

FZ,1 + FZ,2 −
4∑

j=1
Fu,z, j

− L1
L2

.
s(8)

.
s(7) = s(8)

.
s(8) = − L1+L2

JT

(
FZ,1L1 − FZ,2L2 − Fu,z,1U1 − Fu,z,2U2 + Fu,z,3U3 + Fu,z,4U4

)
+ JP

JT
Ω(s(2) − s(4))

.
s(9) = s(10)

.
s(10) =

(
−m1g− FY,i,1 + FY,o,1

)
/m1

.
s(11) = s(12)

.
s(12) =

(
−FZ,i,1 + FZ,o,1

)
/m1

.
s(13) = s(14)

.
s(14) =

(
Ti,1 − To,1

)
/JP,1

.
s(15) = s(16)

.
s(16) =

(
−m2g− FY,i,2 + FY,o,2

)
/m2

.
s(17) = s(18)

.
s(18) =

(
−FZ,i,2 + FZ,o,2

)
/m2

.
s(19) = s(20)

.
s(20) =

(
Ti,2 − To,2

)
/JP,2

(A17)

Appendix B. Modelling of Turbine-Generator Shaft Trains Using the Transient Transfer
Matrix Method

The rotor-bearing-foundation system modeling used for the results of the turbine-generator system of
Section 3.2 is presented in this Appendix B describing the Transient Transfer Matrix Method (TTMM) [19] which
enables the evaluation of the nonlinear transient response of the system. Foundations are called also bearing
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pedestals or just pedestals in this Section. The Transfer Matrix Method is the core of the simulation of the system.
The geometric and physical properties of multiple rotor segments N, are discretized in N + 1 nodes as lumped
masses, see Figure A1.

The status vectors on the sides of each node ZL
i and ZR

i , i = 1, 2, . . . , N + 1, are defined as function of time t
and the status vectors become as in Equation (A18), see also Figure A2. The displacements and the slopes on
the sides of each lumped mass are equal, meaning that yL

i (t) = yR
i (t) = yi(t), θL

Y,i(t) = θR
Y,i(t) = θY,i(t) and

xL
i (t) = xR

i (t) = xi(t), θL
X,i(t) = θR

X,i(t) = θX,i(t). The entire analysis considers the coordinate system defined in
Figure A2.

ZL
i (t) =

{
yi(t) θY,i(t) ML

Y,i(t) VL
Y,i(t) xi(t) θX,i(t) ML

X,i(t) VL
X,i(t) 1

}T

ZR
i (t) =

{
yi(t) θY,i(t) MR

Y,i(t) VR
Y,i(t) xi(t) θX,i(t) MR

X,i(t) VR
X,i(t) 1

}T (A18)
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segments and the nodes of the discretized system.

The role of the point matrix Pi, field matrix Fi, and transfer matrix Ti, see also Figure A2 is expressed by the
formulas ZL

i (t) = Fi ×ZR
i−1(t), ZR

i (t) = Pi ×ZL
i (t), and Ti = Pi+1 × Fi. However, applying the Transient Transfer

Matrix Method, there is no need to define the point matrix Pi. The principle of the TTMM is based on that each
nodal mass MN,i executes lateral and tilting transient motions under the effect of shearing and bending moment
applied from the relative motions of the side nodal masses MN,i−1 and MN,i+1. Furthermore, the external forces
acting to the mass MN,i, such as unbalance, gravitational forces, bearing impedance force etc., are incorporated.
The equations of motion for the mass MN,i are given in Equation (A19).

MN,i ·
..
xi = VR

X,i −VL
X,i + FB

X + FU
X

MN,i ·
..
yi = VR

Y,i −VL
Y,i + FB

Y + FU
Y − FG

i

JND,i ·
..
θX,i = MR

X,i −ML
X,i − JNP,i ·Ω ·

.
θY,i

JND,i ·
..
θY,i = MR

Y,i −ML
Y,i + JNP,i ·Ω ·

.
θX,i

(A19)
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The unique source of nonlinearity in the system is the nonlinear bearing impedance forces FB
X and FB

Y. In order
to evaluate the transient response of the system, the motion equations in Equation (A19) should be integrated
with some numerical technique, e.g., Runge-Kutta. The MATLAB ODE solver® is highly recommended for such
applications though. All forces and moments acting to the mass must be defined at each discrete time interval.

The status vectors ZL
i and ZR

i may be split in two vectors each, corresponding to the displacement/tilting and
to the moments/forces as in Equation (A20).

ZD,i(t) =
{

yi(t) θY,i(t) −xi(t) θX,i(t)
}T

ZR
F,i(t) =

{
MR

Y,i(t) VR
X,i(t) MR

X,i(t) −VR
Y,i(t)

}T

ZL
F,i(t) =

{
ML

Y,i(t) VL
X,i(t) ML

X,i(t) −VL
Y,i(t)

}T
(A20)

Only one vector is needed at each node to describe the displacement/tilting of the mass, because these
are equal. The moments/forces acting at the left and right of the mass MN,i are defined as ZL

F,i(t) and ZR
F,i(t)

respectively. In this way, the expression ZL
i (t) = Fi ×ZR

i−1(t) may be converted to the expression in Equation (A4)
including the definitions of Equation (A20).{

ZD,i(t)
ZL

F,i(t)

}
=

[
FDD,i FDF,i
FFD,i FFF,i

]
×

{
ZD,i−1(t)
ZR

F,i−1(t)

}
(A21)

The submatrices FDD,i, FDF,i, FFD,i, and FFF,i are all (4× 4) matrices defined in Equation (A22).

FDD,i =


1 LS,i 0 0
0 1 0 0
0 0 1 LS,i
0 0 0 1

, FFD,i = [0](4×4),FFF,i =


1 −LS,i 0 0
0 1 0 0
0 0 1 −LS,i
0 0 0 1

,

FDF,i =



L2
S,i

2EiIS,i
−

L3
S,i

6EiIS,i
+

s fiLS,i
GiAS,i

0 0
LS,i

EiIS,i
−

L2
S,i

2EiIS,i
0 0

0 0
L2

S,i
2EiIS,i

−
L3

S,i
6EiIS,i

+
s fiLS,i
GiAS,i

0 0 LS,i
EiIS,i

−
L2

S,i
2EiIS,i



(A22)

Equation (B4) is expressed as a system of two equations with unknowns the force/moment vectors ZL
F,i(t)

and ZR
F,i−1(t) with its solution to be defined in Equations (A23) and (A24).

ZR
F,i−1(t) = F−1

DF,i ×
(
ZD,i(t) − FDD,i ×ZD,i−1(t)

)
(A23)

ZL
F,i(t) = FFD,i ×ZD,i−1(t) + FFF,i ×

(
F−1

DF,i ×
(
ZD,i(t) − FDD,i ×ZD,i−1(t)

))
(A24)

Equations (A23) and (A24) simply express that if the displacement vectors are known in all nodes, then
the force vectors can be evaluated in all nodes. The force vectors will be the input for the definition of motion
equations of each mass in Equation (A19). Note that Equation (A23) and (A24) can be written for i = 2, 3, . . . , N + 1.
Then, for an initial condition for every ZD,i, and for i = 1, 2, . . . , N + 1, the resulting bending moment and shearing
force on the left and on the right side of each node i will be given from Equation (A25), excluding the values for
the left of the 1st node ZL

F,1 and for the right of the last node ZR
F,N+1. These should be set equal to zero since they

correspond to free-end boundary conditions, meaning that ZL
F,1 = ZR

F,N+1 =
{

0 0 0 0
}T

. Should a different

boundary condition be applied, the corresponding vectors are defined for ZL
F,1 and ZR

F,N+1.

ML
X,i(t) = ZL

F,i[3]
ML

Y,i(t) = ZL
F,i[1]

,
VL

X,i(t) = ZL
F,i[2]

VL
Y,i(t) = −ZL

F,i[4]
,

MR
X,i(t) = ZR

F,i[3]
MR

Y,i(t) = ZR
F,i[1]

,
VR

X,i(t) = ZR
F,i[2]

VR
Y,i(t) = −ZR

F,i[4]
(A25)

If any unbalance force is assigned to a node this should be defined in vertical and horizontal direction with
the formulas of Equation (A26) for constant rotating speed Ω, and of Equation (A27) for linearly varying rotating
speed (run-up/down) Ω = a · t (where a =

.
Ω). Unbalance U is given first.

FU
Y = U ·Ω2

· cos(Ω · t), FU
X = −U ·Ω2

· sin(Ω · t) (A26)

FU
Y = U ·Ω2

· cos
(
0.5

.
Ω · t2

)
, FU

X = −U ·Ω2
· sin

(
0.5

.
Ω · t2

)
(A27)

The initial values for the transient analysis should correspond to a position of the rotor that locates each
journal inside the bearing clearance, preferably at the center of each bearing. This means that for example an
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approximate zero value for all displacements and tilting angles may be used if no pedestal elevation has been
implemented, see Equation (A28).

ZD,i(0) =
{

yi(0) θY,i(0) −xi(0) θX,i(0)
}T

= 1e− 6
{
−1 1 −1 1

}T
(A28)

At the case that an elevation of pedestals should be implemented due to static alignment, then the initial
values for ZD,i(0) should correspond to the static sag line of the rotor to locate each journal in the center of the
elevated bearing shell. The last input to define the system of motion equations for each mass is the gravitational
force acting in every mass MN,i, given as FG

i = MN,i · g.
Motion equations compose a 4 × 4 system of 4 ODEs of 2nd order. To integrate the system and obtain

the response over time, the system is converted to an 8 × 8 system composed by 8 ODEs of 1st order.
The correspondence of the state variables qi to the displacement and tilting angle of each mass is given in
Equation (A29). Then, the motion equations for the lumped masses of the rotor are defined in Equation (A30).

{
xi

.
xi yi

.
yi ϕX,i

.
ϕX,i ϕY,i

.
ϕY,i

}T
=

{
qi[1] qi[2] qi[3] qi[4] qi[5] qi[6] qi[7] qi[8]

}
t
T (A29)

.
qi[1] = qi[2]
.
qi[2] =

1
MN,i

(
VR

X,i −VL
X,i + FB

X + FU
X

)
.
qi[3] = qi[4]
.
qi[4] =

1
MN,i

(
VR

Y,i −VL
Y,i + FB

Y + FU
Y − FG

i

)
.
qi[5] = qi[6]
.
qi[6] =

1
JND,i

(
MR

X,i −ML
X,i − JNP,i ·Ω · qi[8]

)
.
qi[7] = qi[8]
.
qi[8] =

1
JND,i

(
MR

Y,i −ML
Y,i + JNP,i ·Ω · qi[6]

) (A30)

The system in Equation (A13) should be defined for every nodal mass, meaning for i = 1, 2, . . . , N + 1 for a
rotor with N segments. Bearing forces FB

X and FB
Y, and unbalance forces are introduced FU

X and FU
Y when in the

respective node a bearing or unbalance is assigned. The pedestal motion is introduced in the transient analysis
very similarly to the way that rotor’s masses motion was modeled. Considering Figure 1b, the pedestal mass
translational motion may be described by a 2× 2 system of 2 ODEs of 2nd order in Equation (A31).

MP,Y ·
..
yP = −KP,Y(yP − yP,0) −CP,Y ·

.
yP − FB

Y −MP,Y · g
MP,X ·

..
xP = −KP,X · xP −CP,X ·

.
xP − FB

X
(A31)

In Equation (A31) the excitation to the pedestal motion is introduced only by the resulting oil film forces FB
X

and FB
Y of the bearing. With the definition of state variables in Equation (A32), pedestal motion equations are

converted to a 4× 4 system of 4 ODEs of 1st order in Equation (A33). The oil film bearing forces couple the two
systems of Equations (A30) and (A32) with the nonlinear oil film force model to account for the motion of the
pedestal (bearing shell).{

yP, j
.
yP, j xP, j

.
xP, j

}T
=

{
w j[1] w j[2] w j[3] w j[4]

}
t
T (A32)

.
w j[1] = w j[2]
.

w j[2] = −
1

MP,Y

(
KP,Y

(
w j[1] − yP,0

)
+ CP,Y ·w j[2] + FB

Y + MP,Y · g
)
,

.
w j[3] = w j[4]
.

w j[4] = − 1
MP,X

(
KP,Z ·w j[3] + CP,X ·w j[4] + FB

X

) (A33)

The initial value for the integral solution of system in Equation (A33) may be zero or non-zero depending on
the elevation of the pedestal yP,0, see Equation (A34). The system should be defined for each pedestal, meaning
that j = 1, 2, . . . , NOB, where NOB is the number of bearings.{

wi[1] wi[2] wi[3] wi[4]
}
0

T =
{

0 0 0 0
}T{

wi[1] wi[2] wi[3] wi[4]
}
0

T =
{

yP,0 0 0 0
}T (A34)

As a summary to this Section, it should be clarified that a rotor with N segments, N + 1 nodal masses and
NOB bearings will render n = (N + 1) · 8 + (NOB) · 4 equations of motion with the equal number of unknowns,
consisting a nonlinear autonomous system (when unbalance is absent) of the form

.
x = f(x, Ω).
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