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Abstract: The determination of residual stresses is an important issue when it comes to material
failure analysis. The variation of global indentation properties, due to the presence of residual stresses,
can serve as a guideline for the size and direction of such stresses. One of these global indentation
properties, the material hardness, is unfortunately invariant of residual stresses when metals and
alloys are at issue. In this situation, one has to rely on the size of the indentation contact area for
residual stress determination. For other materials such as ceramics and polymers, where elastic
deformations are of greater importance at indentation, such invariance is no longer present. Here,
this variation is investigated based on finite element simulations. The aim is then to determine
how the indentation hardness is influenced by the principal residual stress ratio and also discuss
if such an influence is sufficient in order to determine the size and direction of such stresses in
an experimental situation. It should be emphasized that this work does not suggest a new approach to
residual stress determination (by indentation testing) but investigates the applicability of previously
derived methods to a situation where the surface stress field is not simplified as equi-biaxial or
uniaxial. For simplicity, but not out of necessity, only cone indentation of elastic-perfectly plastic
materials is considered.

Keywords: residual stress determination; hardness; correlation of indentation properties; principal
stress influence; relative contact area

1. Introduction

An extremely important contribution to the understanding of indentation testing, and other
related contact mechanics-based testing, was presented by Johnson [1,2]. In summary, it was concluded
in these studies that the mechanical behavior of global indentation properties can be correlated based
on a single parameter (here and below named the Johnson parameter) and that the mechanics of the
indentation problem is very much dependent on the combination of the material and geometrical
quantities included in this parameter. The Johnson parameter will be discussed in more detail in the
next section.

The analyses by Johnson are pertinent to initially stress-free materials. Later it has been shown [3–5]
that it is possible to also include indentation of residually stressed materials in Johnson’s single
parameter correlation. A very important conclusion was presented by Pharr et al. [6,7], saying that
indentation hardness is invariant of residual stresses for metals and alloys. This is not so however for
another global indentation quantity: the relative contact area. This feature can be used for determining
residual stresses [8–12].

The results of the Pharr et al. [6,7] study is concerned with metals and alloys where plasticity
dominates the deformations around the indentation contact zone. However, this is not so in the case of
such materials as ceramics and polymers where elastic and plastic deformations are of equal magnitude
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at the indent. In such a situation, residual stresses do indeed influence hardness values [13,14] and
consequently this quantity could be used for residual stress determination.

The results in [13,14] can be summarized as follows:

• When elastic deformations around the contact region are in the same order as plastic ones; then the
hardness is dependent on residual stresses.

• In case of equi-biaxial surface stresses, correlation with the Johnson parameter is accurate and
produces a general relation with corresponding stress-free results when residual stresses are
appropriately accounted for.

• In case of uniaxial surface stresses, correlation with the Johnson parameter is not good and in
such a situation; the hardness variation is not a good tool for an experimental determination of
residual stresses.

Obviously, there is a fundamental difference in mechanical indentation behavior between
equi-biaxial and uniaxial surface stresses. Accordingly, it is of interest to investigate this feature also
for other types of surface stress fields (deviating from equi-biaxial or uniaxial). This is also the aim of
the present investigation.

In doing so, previous finite element results [12] and additional finite element simulations performed
presently will be revisited within the question at issue above. For simplicity, but not out of necessity,
only cone indentation (Figure 1) of elastic-perfectly plastic materials is considered. Strain-hardening
effects could easily be incorporated into the analysis based on the representative strain concept [15].
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20], just to mention a few. 

Figure 1. Schematic of the geometry of cone indentation where a represents the true contact radius.
In the present investigation β = 22◦. The nominal contact area Anom = πh2/(tanβ)2 where h is the
indentation depth.

Finally, it should be mentioned that the discussion above has been restricted to features related to
sharp indentation. This is the most straightforward interpretation of the results and this study will
be entirely devoted to such indenter geometry. Having said this, it is important to emphasize that
quite a few important contributions concerning spherical and other blunt indenters (including cones
with a rounded tip), as a tool for residual stress determination, has been previously presented [16–20],
just to mention a few.
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2. Theoretical Background

The analysis by Johnson [1,2] defined the fundamentals for a general analysis of indentation
testing. Specifying to sharp indentation on classical elastoplastic materials a general correlation
parameter could be defined as:

Λ = Etanβ/((1 − ν2)σrep) (1)

In Equation (1), E is the Young’s modulus and ν is Poisson’s ratio, β is the angle between the
(sharp) indenter and the undeformed surface, and σrep is the material flow stress at a representative
value of the equivalent (accumulated) plastic strain εp. Based on the parameter Λ three regions or
levels of contact behavior can be defined. These levels, as shown in Figure 2, are:

1. Level I: Dominating elastic deformations, i.e., low indentation load, where an elastic contact
analysis is sufficient.

2. Level II: Elastic and plastic deformations are of equal magnitude.
3. Level III: Plastic deformations are dominating in the contact region.

In level II, it was determined by Johnson [1,2] that in this region

H ~ ln Λ (2)

while in level III, Tabor [21] showed that at sharp indentation

H = Cσrep (3)

For a Vickers indenter C ≈ 3 and εp ≈ 0.08 (Tabor [2]) and for a cone indenter C ≈ 2.54 and εp ≈ 0.11
(Atkins and Tabor [22]). The latter case is specified for a cone indenter with an angle of 22◦ between
the indenter and the undeformed surface being at issue here, see Figure 1. In Equations (2) and (3),
H is the material hardness defined as the average contact pressure between indenter and material.

At level III conditions, and also at substantial parts of the level II region in Figure 2, the hardness
is, as stated above, invariant of residual stresses. However, this is not so for the relative contact area:

c2 = A/Anom (4)

where A (true contact area) and Anom (nominal contact area) are projected areas (Figure 1). This quantity
can indeed be related to an equi-biaxial residual stress σres according to:

c2 = c2(σres = 0) − 0.35ln(1 + (Fσres/σy)) (5)

where c2(σres = 0) is the value on the relative contact area at indentation of a virgin (unstressed material)
and F is a constant that takes on different values at tension and compression. For simplicity but not
for necessity ideal plasticity, with a yield stress σy, is here assumed. The Equation (5) was originally
proposed by Rydin and Larsson [5] based on the similar mechanical behavior between contact induced
stresses in an unstressed material or contact induced stresses in a material with a properly chosen
apparent initial yield stress. Rydin and Larsson [5] suggested an apparent yield stress:

σy,apparent = σy + Fσres (6)

(σy being the initial yield stress of the material) in Λ in Equation (1), according to:

Λ = Etanβ/(σy,apparent(1 − ν2)) (7)

This makes it possible to rely on a universal c2-curve, shown schematically in Figure 2, regardless if
residual stresses are present or not. This curve can be used to determine σres when c2(σres = 0) is known.
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values, in essentially the same way as for the relative contact area c2, when the residual stresses are 
equi-biaxial. This correlation is, again as for c2, based on Equations (6) and (7) and is explicitly 
shown in Figure 3, and obviously very good agreement with a universal curve is achieved. 
Corresponding results [14] were then presented for a uniaxial stress state and unfortunately, 
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Figure 2. Normalized hardness, H = H/σy, and area ratio, c2, as functions of lnΛ, defined by Equation (1).
Schematic of the correlation of sharp indentation testing of elastic-ideally plastic materials. The three
indentation levels, I, II and III, are also indicated. Approximately, level II contact initiates at Λ = 3 level
III contact at Λ = 900. The H-curve flattens out at (approximately) Λ = 30.

When elastic and plastic deformations are of equal size, invariance of hardness is lost. This is
pertinent to the linear variation regime of the normalized hardness, H/σy, in Figure 2. It was recently
shown by Larsson [13] that it is possible to correlate the influence from residual stresses on hardness
values, in essentially the same way as for the relative contact area c2, when the residual stresses are
equi-biaxial. This correlation is, again as for c2, based on Equations (6) and (7) and is explicitly shown
in Figure 3, and obviously very good agreement with a universal curve is achieved. Corresponding
results [14] were then presented for a uniaxial stress state and unfortunately, correlation with a universal
curve was not good.
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Figure 3. Results for equi-biaxial residual stress fields. Normalized hardness, H/σy, as function of lnΛ,
defined by Equation (7) with the yield stress σy replaced by σy,apparent in Equation (6). The straight line
represents Equation (7). (#), stress-free results taken from Larsson [17]. (�), hardness values taken
from [12] with and without residual stresses. (?), hardness values taken from [14] with and without
residual stresses.
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Based on the results in [13,14], it can be concluded that the influence from residual stresses on the
indentation hardness is quite different in an equi-biaxial situation compared to a uniaxial situation.
This indicates that a more general approach to the problem is of substantial interest and this will be
attempted presently. In doing so, a more general residual surface stress state will be investigated.

3. Numerical Analysis

In this section, the present finite element simulations of the cone indentation problem are described.
It is then important to emphasize that, due to the fact that uniaxial residual stress states are considered,
axisymmetric conditions are lost and a full three-dimensional (3D) solution has to be sought for. Similar
analyses have been previously performed [13] and, accordingly, concerning details of the numerical
approach of this article is referred to.

Quasi-static cone indentation of elastic-ideally plastic pre-stressed materials is analyzed
here. Frictionless contact is assumed in all simulations. Concerning the constitutive description,
the rate-independent Prandtl-Reuss equations for classical plasticity are relied upon accounting
for large deformations. Ideally, plastic conditions are assumed throughout the entire analysis and
accordingly plastic deformation is initiated and maintained when the equivalent stress.

σe = σy (8)

When elastic loading or unloading is an issue, a hypoelastic formulation of Hooke’s law is used.
The material hardness is, as stated above, defined as the average contact pressure during loading

according to:
H = F/A (9)

where F is the indentation load and A is the projected contact area. In this context, it should be mentioned
that if the residual stresses are homogeneous as assumed presently, the problem is self-similar with no
characteristic length and, as a result of global indentation properties, such as hardness and relative
contact area, are independent of indentation depth.

As indicated above, the residual stress field is defined by the principal residual surface stresses
σ1 and σ2. For a general surface stress state, the contact area will become ellipsoidal with semi-axes
a1 , a2. Accordingly, a three-dimensional finite element analysis is required at uniaxial residual loading.
Clearly, since surface residual stresses are at issue the principal stress σ3 = 0.

The boundary value problem schematically outlined above was solved using the multi-purpose
finite element program ABAQUS [23]. The full indentation procedure, starting at initial contact between
indenter and material, was modelled. Approximately 100,000 eight-node hybrid solid elements (element
type C3D8H in ABAQUS [23]) were used to discretize the material while the conical indenter was
assumed to be rigid. Due to existing symmetries only one quarter of the material needs to be modelled.
The resulting finite element mesh is shown in Figure 4, where for clarity only the mesh details close
to the contact region is shown. Residual (applied) stresses are enforced by prescribed boundary
displacements leading to a homogeneous residual stress state prior to indentation. Note that no
distinction is made between residual and applied stresses in this analysis. The applied pre-stresses are
kept within the elastic limit regardless of the ratio between the principal residual surface stresses σ1

and σ2. Accordingly, these stresses are given by Hooke’s law in a homogeneous situation. Indentation
loading was applied by controlling the transversal displacement of the rigid indenter.
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Figure 4. Finite element mesh, close to the region of contact, used in the numerical simulations.
The coordinate Y corresponds to X2 in Figure 1. The finite element mesh, modelling a quarter of the
material accounting for symmetries, is shown observed obliquely from above.

4. Results and Discussion

In this section, the results for uniaxial (σ2 = 0) and equi-biaxial residual stresses (σ1 = σ2) are
presented. Accordingly, these results will be compared with the corresponding ones for other values
on the ratio σ1/σ2. The present results are, unless otherwise stated, derived for the case of:

Λ = 3.4 (10)

where the Johnson [15,16] parameter Λ is given by Equation (1). This value was chosen to ensure that
the stress-free material experienced level III contact (the material hardness is given by Equation (9))
while the behavior entered the level II regime in presence of tensile stresses. This is based on the result
for the equi-biaxial case that ln Λ = 3 constitute an approximate border between level II and level III
indentation (with Λ defined according to Equations (6) and (7)), and a clear hardness dependence at
higher tensile stresses (lower values on Λwhen accounting for the change in yield stress) [14] (Figure 3).

The results are presented using the ratios σ1/σy and σ2/σy, where again σ1 and σ2 are the principal
residual surface stresses with σ3 = 0. It should also be mentioned that in the present situation a direct
comparison between uniaxial and equi-biaxial results is rather straightforward based on the equivalent
stress σe, see [14]. In short, this is due to the fact that the value on the equivalent stress σe is the
same (σe = σres) for both these residual stress systems (obviously, this refers to a situation prior to
indentation). In order to relate the residual stress fields, in other biaxial cases, to the material yield
stress also ((σres)e/σy) is used to describe the present results. In this case, (σres)e is the Mises equivalent
stress derived based solely on the residual surface stress field.

It should be emphasized that compressive stresses will increase Λ, when again defined according
to Equations (6) and (7), leading to a more pronounced level III (rigid-plastic) situation pertinent to the
material hardness, which is not of direct interest presently. Accordingly, compressive residual stresses
are not included in detail in the present analysis.
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It seems appropriate to start this presentation with some basic previous results that will form the
basis of the discussion. Before presenting explicit results, it should be mentioned that in the present
situation a direct comparison between uniaxial and equi-biaxial results is rather straightforward based
on the equivalent stress σe. As already stated above, this is due to the fact that the value on the
equivalent stress (σres)e is the same ((σres)e = σres) for both these residual stress systems (obviously,
this refers to a situation prior to indentation). The explicit results are shown in Figure 5 where the
non-dimensional hardness is depicted as function of the stress ratio (σres/σy). Note that in Figure 5 and
below, H0 is the hardness for the residual stress-free case. It is very clear from what is shown in Figure 5
that the hardness is far more influenced by an equi-biaxial residual stress σres than a corresponding
uniaxial one. For example, at (σres/σy) = 1, the hardness value is reduced (compared to the stress-free
hardness H0) with around 18% in the equi-biaxial case but with only approximately 6% in the uniaxial
one. In practice, it would be very hard, if not experimentally impossible, to accurately determine σres

based on the small variation, in the uniaxial case, from the stress-free results.
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Figure 5. Nondimensionalized hardness, H/H0, as a function of the residual stress ratio, σres/σy. H0 is
the residual stress-free hardness. (- - -), H/H0 = 1. Results from [14]. (#), numerical results for
uniaxial residual stresses, σ1 = σres and σ2 = 0. (�), numerical results for equi-biaxial residual stresses,
σ1 = σ2 = σres.

Below are the results pertinent to residual surface stress states that depart from the strictly uniaxial
and equi-biaxial. The reason for this is that equi-biaxial, but not uniaxial, stress states are experimentally
determinable in a practical situation. It is then of interest to determine at what combination of principal
residual stresses indentation experiments is a realistic alternative. In doing so, results for the particular
case are:

σ1 = σres = 2σ2 (11)

which are in between the two extreme cases discussed above. In this context, it should be mentioned
that based on Equation (11) then,

(σres)e = 31/2σres/2 (12)

The results pertinent to Equations (11) and (12) are now presented in Figure 6, together with the
results shown in Figure 5. Specifically, the cases σres = σy and σres = σy/2 are investigated.

As can be seen in Figure 6, the new results fall essentially between the results for uniaxial and
equi-biaxial stress states. In particular, it can be seen that the results for the stress state in Equations (11)
and (12) indicate that experimental determination is practically achievable also in this case. This is
indeed encouraging and deserves to be investigated further.
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Figure 6. Nondimensionalized hardness, H/H0, as a function of the residual stress ratio, σres/σy. H0 is
the residual stress free hardness. (- - -), H/H0 = 1. (#), numerical results from [14] for uniaxial residual
stresses, σ1 = σres and σ2 = 0. (N), present numerical results for the case σ1 = σres = 2σ2. (�), numerical
results from [14] for equi-biaxial residual stresses, σ1 = σ2 = σres.

The hardness sensitivity (to residual stresses) is evaluated also for other values on the ratio:

k = σ2/σ1 (13)

The numerically derived results are shown Figure 7 for the case σ1 = σres = σy. It can be seen that
at k = 0.25, the influence from residual stresses on the hardness value is small and it seems appropriate
to conclude that k = 0.5 constitutes an approximate lower bound for the practical applicability of the
present approach. For k-values smaller than 0.5, the influence from residual stresses is so small that it
would be difficult to measure any relevant changes of the material hardness in an accurate manner.

Lubricants 2018, 6, x FOR PEER REVIEW  8 of 12 

 

 

Figure 6. Nondimensionalized hardness, H/H0, as a function of the residual stress ratio, σres/σy. H0 is 
the residual stress free hardness. (- - -), H/H0 = 1 . (o), numerical results from [14] for uniaxial residual 
stresses, σ1 = σres and σ2 = 0. (▲), present numerical results for the case σ1 = σres = 2σ2. (●), numerical 
results from [14] for equi-biaxial residual stresses, σ1 = σ2 = σres. 

The hardness sensitivity (to residual stresses) is evaluated also for other values on the ratio: 

k = σ2/σ1 (13) 

The numerically derived results are shown Figure 7 for the case σ1 = σres = σy. It can be seen that at k = 
0.25, the influence from residual stresses on the hardness value is small and it seems appropriate to 
conclude that k = 0.5 constitutes an approximate lower bound for the practical applicability of the 
present approach. For k-values smaller than 0.5, the influence from residual stresses is so small that 
it would be difficult to measure any relevant changes of the material hardness in an accurate 
manner. 

 

Figure 7. Nondimensionalized hardness, H/H0, as a function of the stress ratio k in Equation (13). H0 
is the residual stress-free hardness. (- - -), H/H0 = 1. (●), present numerical results for the case σ1 = σres = 
σy. 

The corresponding results for the case σ1 = σres = σy/2 are shown in Figure 8. As could be 
expected, the practical applicability of the present approach is then very doubtful. Indeed, it can be 
argued that only in the case of equi-biaxial stresses any degree of accuracy of results can be 
expected. 

Figure 7. Nondimensionalized hardness, H/H0, as a function of the stress ratio k in Equation (13).
H0 is the residual stress-free hardness. (- - -), H/H0 = 1. (�), present numerical results for the case
σ1 = σres = σy.

The corresponding results for the case σ1 = σres = σy/2 are shown in Figure 8. As could be expected,
the practical applicability of the present approach is then very doubtful. Indeed, it can be argued that
only in the case of equi-biaxial stresses any degree of accuracy of results can be expected.

It should be emphasized that the results above are only valid for the Λ-value specified in Equation
(10) (ln Λ = 3.4). Correlation of the hardness variation with ln Λ has been attempted previously [13,14]
and as stated above, this correlation is acceptably accurate for equi-biaxial stresses but not so for
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uniaxial ones. As this state of affairs is in direct agreement with the results presented in Figures 6–8,
correlation and accuracy deteriorate with decreasing values on k; this feature will not be dwelled
upon further.
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Figure 8. Nondimensionalized hardness, H/H0, as a function of the stress ratio k in Equation (13).
H0 is the residual stress-free hardness. (- - -), H/H0 = 1. (�), present numerical results for the case
σ1 = σres = σy/2.

Instead, the Λ-dependence will be illustrated for a specific case, namely ln Λ = 5.7. This is done in
Figure 9, where selected results for uniaxial and equi-biaxial stresses are presented. From what could
be expected from the initial discussion in this subchapter, the Λ-dependence is essentially non-existent
(within the numerical accuracy) also at very high values on residual stresses (in the order of the material
yield stress). It should be emphasized though that for values on ln Λ smaller than 3.4, the hardness
variation will be more pronounced in particular when it comes to range of values on k.
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Figure 9. Nondimensionalized hardness, H/H0, as a function of the residual stress ratio, σres/σy for
the case ln Λ = 5.7. H0 is the residual stress free hardness. (- - -), H/H0 = 1. (#), numerical results for
uniaxial residual stresses, σ1 = σres and σ2 = 0. (�), numerical results for equi-biaxial residual stresses,
σ1 = σ2 = σres.

Further, values on Λ corresponding to rigid plastic contact, such as ln Λ = 5.7, residual stress
determination by indentation has to rely on the relative contact area c2 in Equation (4). Corresponding
results for equi-biaxial stresses, to the hardness results in Figure 9, for this quantity for ln Λ = 5.7,
are shown in Figure 10. Clearly, the Λ-dependence is strong, which is encouraging. Such dependence
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has been shown previously [3–8], but here it is directly compared with the corresponding situation for
the material hardness and established for a particular value on Λ.
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Figure 10. Normalized relative contact area, RCA = c2/ c0
2, as a function of the residual stress ratio,

σres/σy for the case lnΛ = 5.7. c0
2 is the value on the relative contact area at residual stress-free conditions.

(- - -), c2/ c0
2 = 1. (#), numerical results for equi-biaxial residual stresses, σ1 = σ2 = σres.

The nature of different types of residual stresses is of course a matter of basic importance for
the present work. For one thing, when it comes to equi-biaxial residual stresses, such a situation
can result from temperature loading of thin films or coatings on thick substrates. For more involved
cases, for example residual stresses in bearings, gears, and cam-followers (with among other things
implications for the onset of fatigue), studies presented in [24–26] are referred to.

As a final comment, it should be emphasized that the present results are also of interest for other
types of contact problems, i.e., the concerns of scratching and scratch testing where correlation using
the Johnson [15,16] parameter Λ also is a major issue, cf. [27–30].

5. Conclusions

The effects from the residual principal stress ratio on the material hardness is analyzed and
discussed. The analysis is restricted to the cone indentation of elastic and ideally-plastic materials.
The most important findings can be summarized as follows:

• The material hardness dependence on residual stresses is highest for equi-biaxial stresses and less
for uniaxial ones. Other values on the principal stress ratio yield results that lie between these
two extremes.

• At residual stresses well below the material yield stress, it can be argued that only in the case of
equi-biaxial stresses any degree of accuracy of results can be expected with the present approach.

• For values on the Johnson parameter Λ higher than the one presently investigated (ln Λ = 3.4),
the hardness dependence on residual stresses vanishes rapidly. A better alternative for this
purpose is then to use the relative contact area, here denoted c2.

From a practical point of view, the most important outcome of the present investigation is the fact
that the approach presented is reliable for equi-biaxial stresses. In other types of residual stress states,
the limitations are obvious and accurate predictions can be expected essentially at stresses approaching
the material yield stress.

Funding: This research received no external funding.
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