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Abstract: Leakage in static metal-to-metal seals is predominantly determined by the topography
of the contacting surfaces. The topography consists of features that span the entire range from its
carefully engineered geometry down to micro-sized surface asperities. The mesh density necessary to
fully resolve all the features, in this large span of length scales, generates too many degrees of freedom
for a direct numerical approach to be applicable. Some kind of sophistication, either incorporated
in the mathematical model or in the numerical solution procedure or even a combination of both is
therefore required. For instance, in a two-scale model, the geometrical features can be addressed
in the global-scale model, while the features belonging to length scales smaller than a given cut-off
value are addressed in the local-scale model. However, the classical two-scale approaches do not
explicitly address the stochastic nature of the surfaces, and this has turned out to be a requirement in
order to obtain quantitative predictions of leakage in metal-to-metal seals. In this work, we present
a continued development of an already existing two-scale model, which incorporates a stochastic
element. The novelty lies in the way we characterise the permeability at the local scale and how this
is used to build a more efficient and useful approach.

Keywords: leakage; contact mechanics; reynolds equation; two-scale modelling; stochastic;
metal-to-metal seal

1. Introduction

A seal is a machine element intended to prevent a given fluid in a high pressure region to flow
to a low pressure one. Due to their inexpensiveness and suitable mechanical properties, rubber
materials are commonly used for this purpose. However, metal-to-metal seals must be used whenever
extreme thermal or pressure conditions are to be faced [1,2], as is the case in casing connections in
oil wells [3–8] and pressure relieve valves [9,10]. Other fields in which metal-to-metal seals can be
found include space recovery [11], aviation [12], nuclear power plants [2] or refrigeration systems for
cryomagnets [13]. Common to these applications is that leakage can be hazardous for the environment
or affect the performance of critical systems. Therefore, it is important to understand and be able
to predict leakage. More generally, the problem considered here concerns the pressure driven flow
through rough surfaces in contact, which is also relevant in other fields such as fracture media [14].
With this in mind, the goal of this work is thus to further develop an existing model, presented in [15].
By using previous knowledge on the behaviour of seals, we obtain a model that is faster and that
allows for extracting more information than the one presented in [15].

In order to predict leakage, it is necessary to understand the gap left between two rough bodies
in contact. Therefore, surface topography, with its features spanning many length scales, must be
considered [16]. Therefore, a two-scale approach, see, e.g., [17–19], is favoured. Under this approach,
a coarse (global-scale) representation of the seal is constructed in which a detailed description of
the surface topography is replaced by a local permeability. This permeability is then obtained by
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computing the flow through small (local-scale) domains, in which surface topography can be resolved
with great detail. Due to the stochastic nature of surface topography, however, this permeability
will typically present rapid spatial variations and must thus be described too in a stochastic manner.
Following these lines, a stochastic two-scale model was developed [15,20], which could accurately
predict leakage through the rough interface between two contacting bodies. This method, although
complete, can be improved by further understanding how surface topography determines the local
permeability. This is, indeed, the very objective of this paper. The central part of this paper is thus
focused on characterizing the permeability of local-scale domains, first individually in Section 4 and
then stochastically in Section 5. This characterization is then used in Section 6 to provide for an
enhanced version of the aforementioned stochastic two-scale model, the advantages of which are
discussed in Section 7. Before that, however, a review of the two-scale model presented in [15] is
given in Section 2.2 to serve as a context for the discussion thereafter, and the two case examples used
throughout the work are presented in Section 3.

2. Theoretical Background

Let us start by introducing the two-scale stochastic model presented in [15], as this is the base
of the current model. Note that the intention here is not to give a detailed description of the model,
already available in [15], but to give an overview for the reader to have sufficient context to understand
the following sections. In order to facilitate the understanding, we will construct the model in three
steps. First, a deterministic model will be presented, in which neither a two-scale nor a stochastic feature
is considered. Based on this deterministic model, a two-scale model will be presented. Finally, the
stochastic two-scale model, in the form presented in [15], will be introduced. Note that a flow chart of the
latter can be found in Appendix B.

2.1. The Deterministic Model

The deterministic model presented here includes all the main physical assumptions on which the
two-scale stochastic model is based. Moreover, it will be used in different domains when constructing
the two-scales model and will be the basis for the validation of the model developed in this work in
Section 6. Therefore, it is necessary to understand it. We shall, however, only give a brief explanation
here and we refer the interested reader to other works where this model is explained in more detail.
For example, it is presented and applied to metal-to-metal seals in [21]. A fundamental assumption of
the model is that the deformation caused on the solid by the fluid pressure is negligible, which allows
for separating the model in contact mechanics and fluid flow parts. Both of these parts reduce the
dimensionality of the problem, i.e., they solve a three-dimensional problem in a two-dimensional grid.
This makes them very suitable for dealing with the fine meshes demanded by the surface topography.
In the following, we shall use the terms Deterministic Contact Mechanics Model and the Deterministic
Flow Model to refer to each of these parts of the deterministic model.

In the Deterministic Contact Mechanics Model, the problem to solve is to find the deformed gap left
between two bodies facing each other, each with nominally flat but rough surfaces, when an external
load, W, is applied between them. A comprehensive explanation of the model used for this purpose
can be found in [18]. It is based on the boundary element method, which assumes that the slopes of the
surfaces are small and that the bodies can be characterized as semi-infinite half-spaces near the contact
zone. In order to include plastic deformation, which commonly occurs when metallic surfaces are
brought into contact, we allow any point to float freely once it has reached the hardness of the softer
material, i.e., it is allowed to deform without any further increase in contact pressure. The output
of this model includes then both the deformed gap between the surfaces and the contact pressure
distribution at the interface. An example of the latter is depicted in an insert of Figure 1.

When the deformed gap between the two surfaces is known, the Deterministic Flow Model can
be used to compute the total flow through it, i.e., the leakage. For this, we make use of the Reynolds
equation [22], which assumes that the gap is thin as compared to the lateral dimensions, and that the
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fluid is Newtonian, iso-viscous and incompressible. From this model, we can obtain the fluid pressure
distribution as well as the flow, both of which are depicted in an insert of Figure 1. We note that,
although the assumptions concerning the fluid might seem restrictive, the fluid can actually be easily
replaced by a piezo-viscous or a compressible one following the result in [23], which applies both to
this deterministic model and the stochastic two-scale model.

2.2. The Two-Scale Model

In this section, a two-scale model is constructed based on the deterministic model presented on the
previous section. Schematically, the general concept behind this model is presented in Figure 1.
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Figure 1. A schematic representation of the two-scale model, including the fluid flow (left) and contact
mechanics (right) parts. On the left, the red arrows represent the direction and magnitude of the
(global-scale) fluid flow, while the yellow to blue colormap depicts the (global-scale) fluid pressure.
The insert reflects that each arrow summarizes a detailed, local-scale flow pattern. On it, the pattern
coloured in red reflects the (local-scale) flow while the (local-scale) fluid pressure is depicted by a
yellow to blue colormap. On the right, the average contact pressure p̄ is depicted. Again, the insert
reflects that each global-scale point hides a detailed local-scale contact pressure distribution. This figure
has been adapted from [15].

Let us focus first on the fluid flow part of the model. For this, several grids are used, as depicted
in Figure 2. In particular, the orange grid represents the original discretization. A much coarser,
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global-scale grid can then be superimposed, as indicated by the red dots. In order to compute the flow
between any two-contiguous global-scale points, we can use Darcy’s law, i.e.,

j = K
δp f

η
, (1)

where δp f is the global-scale pressure drop, i.e., the pressure difference between the two global-scale
points, η is the viscosity of the fluid and K is defined as the permeability of the region between
the two global-scale points. This law was first experimentally observed for porous media and has
since been commonly used in the field. In our case, where the fluid follows the Reynolds equation,
it can also be easily shown to hold theoretically via a simple dimensional analysis, see, e.g., [20].
Assuming the permeability is known, mass balance can be imposed at every global-scale point to
solve for the (global-scale) fluid pressure and flow, as shown in Figure 1. As depicted in the insert,
these permeabilities are precomputed, using the Deterministic Flow Model, in small, local-scale domains,
in which the topography can be captured in detail. As indicated in Figure 2, these domains are taken
in between each pair of global-scale points.

Figure 2. Representation of the three grids used in the two-scale model. In orange, the finest grid,
with which the smaller details are captured. The red dots represent the global-scale grid between
whose points the global-scale flow, j, depicted by red arrows, is computed. The intermediate black grid
is used in the global-scale contact mechanics model. Two local-scale domains where permeability is
computed are depicted in purple and green. This figure has been adapted from [15].

Of course, the permeability is a function of the deformed gap, which is in turn a function of the
external applied pressure. Therefore, a two-scale contact mechanics model is also needed. In fact,
however, three scales are actually used in this case. The process is outlined in the flow chart in
Appendix A. The process start with a large surface, discretized finely (orange grid in Figure 2). This is
then low-pass filtered and then a coarser representation is extracted in a meso-scale grid (black grid in
Figure 2). On this grid, we can now use the Deterministic Contact Mechanics Model to obtain a meso-scale
representation of the contact pressure and average separation. The value of these variables can then be
averaged on the local scale domains (in green and purple in Figure 2), leading to the pressure map
shown in Figure 1. In this map, each global-scale point has assigned an average pressure, p̄, as well as
an average separation, h̄. Notice that this map can now be extended by replication to cover the full
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domain to be considered (if the original surface is smaller) and that out-of-flatness can be added in
the form of long wavelength pressure variations. As indicated in the insert of Figure 1, the values of
p̄ and h̄ are then used to compute the deformed gap at the local-scale domain, needed to compute
the pemreabiltiy. To do so, the Deterministic Contact Mechanics Model is used again, using p̄ as the
external load.

2.3. The Two-Scale Stochastic Model

Finally, let us introduce the stochastic two-scale model. In the two-scale model previously presented,
one needs to compute the permeability of all possible domains, which is both costly and unnecessary.
In a traditional two-scale approach, this issue is solved by assuming that two domains under the
same average pressure have the same permeability. This, although reasonable for many applications,
does not hold for metal-to-metal seals. Indeed, it was shown in [20] that the local-scale domains should
be as large as the seal itself to avoid large variations between contiguous domains. The alternative
proposed is to allow a stochastic variation of the permeability of the different local-scale domains.
In the model presented in [15], this was done by first computing several predefined points of the
function relating the permeability with p̄ and h̄, K

(
p̄, h̄

)
. Then, an integer j between 1 and Nc is

randomly assigned to each global-scale point. Knowing p̄ and h̄ at these points from the contact
mechanics computation at the meso-scale grid and K( p̄, h̄) for the given cell, the necessary K can be
retrieved by interpolation. In this approach, the permeability need not be computed in all local-scale
domains but only in sufficiently enough to obtain a sufficiently varied set of K( p̄, h̄). The main objective
of this work is to replace this strategy to generate K by a more efficient one, which uses our current
knowledge of the relation K( p̄, h̄).

3. Two Case Examples

In this section, we present the two surface topographies, taken from [15] to facilitate the
comparison, which will be used hereafter to discuss the leakage through metal-to-metal seals. The gaps
resulting when facing these topographies with a flat surface are depicted in Figure 3. The first one
corresponds to a (periodic) self-affine fractal topography, which has been generated using the same
method as in [24]. The topography has been generated in a domain of 1 mm × 1 mm and discretized
with 212 × 212 points. The Hurst exponent has been taken as 0.8 and the root mean square (rms) value
of heights as 1 µm. Finally, lower and higher cutoff frequencies of 1/(8∆x) and 10/L have been taken,
where ∆x is the element size and L the size of the contact. These choices are motivated to ensure
a sufficiently large domain to achieve convergence and a sufficiently fine mesh to resolve correctly
the smaller wavelengths. The second topography used is one that is typical in metal-to-metal seals,
i.e., a turned surface which has undergone mild wear [2,8,25–27]. The surface has been measured
using white light interferometry and then filtered by truncating any frequency higher than 1/(8∆x).
The resulting topography has a value of rms height value of 0.7 µm and the domain has a size of
1.8 mm × 1.8 mm and is discretized using 2000× 2000 points.
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Figure 3. The two initial gaps used in this work. On the (top), corresponding to a (generated) self-affine
fractal surface. On the (bottom), corresponding to a (measured) turned surface. The superimposed
grid depicts the local-scale domains used to compute the permeability. This figure has been adapted
from [15].

When conducting the numerical studies, the following material properties have been used:
elastic modulus E1 = E2 =206 GPa, Poisson ratio ν1 = ν2 = 0.3 and hardness of the softer surface
H = 2.75 GPa. For the contact mechanics algorithm, we use a tolerance for the load of 10−3% and
a tolerance for the contact plane of 10−10 m, see [18] for details. For the fluid flow computations,
the mesh is refined by a factor of four in each direction. In addition, the coarsening factor for the
global-scale contact mechanics computations is set to 4. Finally, the size of the local-scale domains
considered, also depicted in Figure 3, is 128∆x× 128∆x for the fractal topography and 132∆x× 132∆x
for the turned topography. The reader is referred to [15] for a motivation for these values.
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4. The Permeability of Individual Local-Scale Domains

In this section, we characterize the permeability of individual local-scale domains, as a function
of the applied average pressure p̄. As stated in Section 2.2, we use the deterministic model, which
is described in detail in [20,21]. Figure 4a depicts the permeability, K, as a function of the applied
average pressure, p̄, for several local-scale domains. The differences are large, even when comparing
the permeability of two domains extracted from the same topography. This spread is caused by the
stochastic nature of surface topography and the small size of the local-scale domains, which do not
allow for the fluctuations caused by the surface topography to average out. Indeed, it is clear from
Figure 3 that the form of topography of different domains is substantially distinct. Notice, however,
that enlarging the local-scale domains until such averaging is achieved would undermine the two-scale
approach. Therefore, we want to embrace this variability and still provide for a general characterization.
As often occurs, the variability is greatly reduced by studying the permeability in its non-dimensional
form. Indeed, as depicted in Figure 4b, a similar shape can be observed in all curves despite the
substantial variability still being present.
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Figure 4. Permeability, K, as a function of the applied average pressure, p̄, corresponding to the two
topographies studied. In (a), the same data is presented as in (b), but in non-dimensional form. The
average pressure is scaled by the average pressure at the percolation threshold p̄c. Regarding the
scaling factor for the permeability, en, the reader is referred to Equation (3).

It is then the goal of this section to characterize this shape, first in a qualitative manner and then
by fitting mathematical expressions to it.

4.1. Qualitative Description

The permeability of a local-scale domain is described here through an example, depicted in
Figure 5, extracted from the fractal topography. The comments we make are, however, general to
all domains of both topographies studied. Moreover, the shape of the curve presented in Figure 5
has been observed in many theoretical observations [16,28–31] as well as experimental studies [1,32],
considering both elastic and elasto-plastic materials.

The three flow situations depicted in Figure 5 represent three different regimes, which can also be
identified in the graph plotting the permeability and the average pressure. At low loads, the free flow
regime, depicted in Figure 5A, exhibits an (almost) free flow, close to the flow through non-contacting
surfaces. In this regime, the separation of the surfaces is rather large and the contact is only held
by a few asperities. This allows for a large permeability, but also makes the stiffness of the surfaces
rather small, leading to a rapid decrease of permeability with increasing load. In order to describe
the permeability in this regime one would be tempted to neglect the contact and follow Tripp [33] to
obtain a close form for the permeability as a function of the average separation between the surfaces.
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Unfortunately, deformation cannot be neglected and this approach fails as soon as the surfaces enter in
contact. Therefore, there is no available functional form to characterize this regime. As the applied
pressure increases, the permeability enters in the channelized flow regime, in which permeability decays
exponentially, which is reflected in Equation (3). As depicted in Figure 5B, the flow in this regime occurs
only through few paths and the permeability decreases as these become narrower and eventually
disappear. Eventually, see Figure 5C, most of the fluid pressure drops at a single location, identified
as the critical constriction [16], thus entering in the constriction flow regime. As shown in Figure 5E
and reflected in Equation (4), the permeability in this regime decreases following a power law, which,
as identified by Dapp and Müser [34], is characteristic of saddle points.
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Figure 5. On top, the three flow regimes are depicted, i.e., (A) the free-flow regime, (B) the channelized
flow regime and (C) the constriction flow regime, the corresponding pressure points of which are
marked on the bottom figures by the black diamond. These three sub-figures should be interpreted as
follows: the situation represented corresponds to the flow through the gap left when a rough surface is
pressed against a flat one at different average pressures, indicated in the bottom sub-figures. The area
where the surfaces are in contact is marked in grey. The fluid flow is marked in a reddish colour scale
(yellow meaning high flow and black meaning almost no flow). Finally, wherever the flow is small, the
fluid pressure has been superimposed in a colour scale from yellow (high inlet pressure) to blue (low,
outlet pressure). On the bottom (D,E), the permeability as a function of the reduced average contact
pressure, using different axes. The blue dots mark the permeability as computed at regular pressure
intervals while the red dots mark the points calculated using the algorithm presented in Section 4.2.
The solid lines correspond to the fitting given by Equations (3) and (4). The vertical dashed lines mark
the transition between the different regimes. The black dot deviating from the power-law on the right
line is the result of an insufficient discretization, depicted only for illustrative purposes.

4.2. Quantitative Description

In order to summarize the aforementioned behaviour in a quantitative manner, we fit a
mathematical expression to it, shown in solid lines in Figure 5. When doing so, the free flow regime
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is ignored and the permeability of non-contacting surfaces is expressed as a simple function of the
average separation, h̄. Of course, this introduces a significant error at low loads, but any static seal
operating in the free flow regime has already failed and thus is not of interest in our study. The overall
expression used to describe the permeability, K, thus reads

K = h̄3/12, p̄ = 0, (2)

K = e−sp̄/ p̄c+n, 0 < p̄ < p̄T , (3)

K = c2

(
1− p̄

p̄c

)β
, p̄T ≤ p̄ < p̄c, (4)

K = 0, p̄ > p̄c, (5)

where n, s, c2, p̄T , β and pc are the fitting parameters, the interpretation of which can be given as
follows: en would be the permeability at zero load if the channelized flow regime would be extended
to reach it; s is the slope in Figure 5D and thus indicates how rapidly the permeability decreases
with increasing load in the channelized flow regime; c2 would be the permeability at zero load if
the constriction flow regime would be extended to reach it; p̄T marks the transition between the
channelized and the constriction flow regimes and thus (approximately) marks the pressure above
which all fluid pressure drops at a single constriction; β is the critical exponent governing the vanishing
of permeability close to the percolation threshold and p̄c is the average pressure at the percolation
threshold. In order to reduce the amount of fitting parameters, and to ensure a smooth description of
the permeability, we demand continuity and derivablility at p̄ = p̄T . This allows for expressing two
parameters as a function of the others, i.e.,

p̄T = p̄c

(
1− β

s

)
, (6)

c2 =en
(

β

s

)−β

eβ−s. (7)

Now, assuming that an estimate of s and n has been obtained by fitting the permeabilities at
the channelized flow regime to Equation (3), permeability can be written, in the constriction flow
regime, as

K = e−s+neβ

(
β

s

)−β (
1− p̄

p̄c

)β

. (8)

Thus, the following equation

log(K)− (−s + n) = β log
(

1− p̄
p̄c

)
+ β (1 + log(s)− log(β)) (9)

can be used to fit β.
Of course, the thresholds between the three regimes are not known a priori and can vary

significantly between different local-scale domains, as seen in Figure 4. Therefore, an algorithm
is required to identify the different regimes and fit the parameters while keeping the number of
average pressures at which permeability is computed low. Here, we present such an algorithm. To aid
the presentation, we define the ordered list of points Pi = ( p̄i, Ki) as the points computed up to a given
current step. In addition, we define the groups G f , Ge and Gp as containing the points belonging to
the free, channelized and constriction flow regimes and use Ie and Ip to mark the first and last points
in Ge. We then proceed as follows:

1. Find the average pressure, p̄c, at which the percolation threshold occurs: This is done by solving (only)
the contact mechanics problem at increasing average contact pressures until a pressure at which
there is no percolation is reached. Then, the value of p̄c is refined by means of a bisecting method.
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2. Compute the permeability at three average pressures: These can be chosen freely, but we have observed
that choosing them around 0.5p̄c leads to a good performance.

3. Find the starting point of the channelized flow regime: Since the free flow regime is neglected,
the starting point of the channelized flow regime is not a required parameter. However, it
is imperative to ensure that all the points used to fit the parameters in Equation (3) do belong to
the channelized flow regime. This is done in the following manner:

3.1. Compute K ( p̄ ≈ 0).
3.2. Form the groups Ge = {P1}, Gl = {P2, P3, P4}, Gp = {} and set the index Ie = 2
3.3. Compute K ( p̄ = ( p̄Ie−1 + p̄Ie)/2) and add the point to the list.
3.4. Classify the computed points in the groups, using the following steps:

i. For every point, obtain si, ni by fitting Equation (3) through the points Pi−1, Pi and Pi+1.
ii. Find Is such that sIs is the smallest one.

iii. For all points in the list, compute erre
i = (Ki − exp(−sIs p̄i + nIs))/Ki.

iv. Define Ie as the index of the point with minimum load such that erre
i < err0. If erre

Is−1 >

err0, assign Ie = Is − 1 instead.
v. Define Ip as the index of the point with maximum load such that erre

i < err0. If
errl

Is+1 > err0, assign Ip = Is + 1 instead.
vi. Form the groups G f = {P1, ..., PIe−1}, Ge = {PIe , ..., PIp}, Gp = {Pi|i > Ip} .

3.5. If 2( p̄Ie−1 − p̄Ie−1)/( p̄Ie−1 + p̄Ie−1) < ∆ p̄obj, stop.

4. Populate the constriction flow regime, until it contains at least four points. For this, compute a point
with a pressure between the maximum computed at the given step and p̄c. Then, update the
group classification following 3.4.

Once this is done, the parameters n and s are fitted to Equation (3) using the points in Ge and β is
fitted to Equation (9) using the points in Gp. The other two parameters, p̄T and c2, are then computed
by means of Equations (6) and (7).

The error on the channelized flow regime is smaller than 5% in most of the domains studied.
In a few domains, however, some points exhibit a larger error, up to 30%. This is caused by an
inaccuracy in p̄T that leads to wrongly assign to the channelized flow regime points that belong to the
constriction flow regime. This inaccuracy likely results from assuming a sharp transition between the
regimes, whereas a small transition region can probably be expected to occur. In any case, less than
10% of the domains show this error. The error in the constriction flow regime is, however, larger,
as it can go as high as 50%. Over 90% of the domains studied, however, show an error smaller than
20%. This larger error can be attributed to the discretization. Indeed, the size of critical constriction
decreases as the percolation threshold is approached and thus a finer discretization becomes necessary.
This can cause a deviation from the power law behaviour, as seen in Figure 5E. To avoid larger errors,
β has been fitted without considering loads too close to p̄c whenever possible. As we shall present in
Section 6, these errors, although not negligible, cause an error in the global-scale leakage smaller than
the uncertainty in the results and thus can be considered acceptable.

5. A Stochastic Description of the Permeability at the Local Scale

Once the permeability of an individual local-scale domain is understood, the question arises as
to how it varies between different domains extracted from the same topography. Figure 6 depicts
this variability in terms of the parameters in Equations (3) and (4) as well as in terms of permeability
at constant average pressure, expressed both in dimensions and dimensionless. For each parameter,
three histograms are presented. One corresponds to the fractal topography, for which the values
computed in the x- and y-direction have been blended due to the isotropy of the surface. The other
two correspond to the turned surface, for which the values in each direction are presented separately.
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Figure 6. Summary of the stochastic behaviour of permeability of local-scale domains. (a–d) depict the
histogram for the parameters in Equations (3) and (4), p̄c, s, n and β; (e,f) depict the permeability (in
logarithmic scale) at a constant average pressure, p̄. Finally (g,h) depict the permeability (in logarithmic
scale) at a constant reduced average pressure, p̄/ p̄c. The probability density of the fractal surfaces
include both x and y-directions and has been doubled for visualization processes.
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Let us first pay attention to the permeability at a constant average pressure, p̄, depicted in
Figure 6e for a high pressure and in Figure 6f for a low pressure. It is clearly apparent, especially
at the higher pressure, that the permeability at a given constant p̄ does not follow a log-normal
distribution as utilized in [20]. This fact, caused by a bias against low permeabilities due to some
domains being already beyond the percolation threshold, was already indicated in [15,35]. It is thus
clear that, although the log-normal distribution could be used to describe permeability at low average
pressures, this approach cannot be used in general. A promising alternative approach, which removes
the aforementioned bias, is to use a log-normal distribution to describe the permeability at a constant
reduced pressure, p̄/ p̄c. As shown by the histograms depicted in Figure 6g,h, a log-normal distribution
can indeed be used to describe the permeability at constant reduced pressures for all topographies.
This approach has, however, a drawback, namely that both parameters describing the distribution will
vary in a non-trivial manner with increasing load, making it harder to retrieve information from them.

A different, more fruitful approach is to study at the variation of the parameters in Equations
(2)–(5). In particular, Figure 6a to d depict the histograms of p̄c, s, n and β, respectively. A Gaussian
distribution seems appropriate to describe these histograms and we thus use it to model the uncertainty
in the parameters. We notice, however, that other topographies may be better modelled by other
distributions. Such a change should not affect the analysis presented in this work. It is interesting to
discuss here how these histograms are expected to vary as the size of local-scale domains is increased.
For this, we take β as an example. When studying this parameter in Gaussian topographies under
elastic conditions, Dapp and Müser [30] found, in agreement with their previous theoretical work [34],
a constant value for this parameter, namely, β = 3.45. Given the similar behaviour, we observe in the
constriction flow regime, we hypothesise that this should also hold for other types of surfaces and
for plastically deformed ones. We also expect, however, that the lack of low-frequency cut-off as is
the case in the local-scale domains studied here, should lead to a spread around β = 3.45. The way in
which this spreading occurs could, of course, depend on the particular topography studied. In our
results, we notice that the value of β is centred quite close to β = 3.45 for all three cases (we have
β̄ = 3.83, β̄ = 3.79 and β̄ = 3.28 for the fractal topography, the turned topography in x-direction and
the turned topography in the y-direction, respectively), which gives credibility to our hypothesis. We
can therefore expect that the probability density functions for β will tend to converge towards a delta
function at β = 3.45 as the domain size increases the histogram. In fact, the same behaviour is to be
expected for the other parameters, although the value at which they should converge is not known a
priori. We finally point out that this convergence is the one that makes the classical homogenization
possible when one can choose sufficiently large local-scale domains.

6. Global-Scale Leakage

In this section, a brief comment on the structure of the two-scale stochastic model is given.
A flow chart of the model is presented in Appendix A. As seen by comparing with the flow chart
corresponding to the model presented in [15,20] (see Appendix B), the main difference between the two
lies in how we construct the global-scale permeability map and we should thus only focus on this part.
To construct the permeabiltiy map, we use the Gaussian distributions describing the four parameters,
p̄c, s, n and β. For every realization, a sample of each parameter is assigned to each global-scale point.
From the global-scale contact mechanics model, the nominal pressure, p̄, is also known at these points
for each load, W. Therefore, we can use Equations (2)–(5) to compute the permeability. Once this is
known, leakage can be computed. This process is then repeated until a sufficient number of realizations
has been carried out.

Let us now discuss the validity of the present approach. We start by noting that the deterministic
model, presented in Section 2.1, has already been validated. Indeed, its two parts, i.e., the contact
mechanics and the fluid flow model, are themselves widely used in the literature and have thus
been validated several times. The reader is referred, for example, to the recent review by Vakis
et al. [36], which discusses the applicability of the boundary element method to the contact of
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rough surfaces. Classical text books can be referred to concerning the use of Reynolds equation
for the fluid flow model, e.g., [37]. For a direct validation of the coupling of the two parts of the
deterministic model, in its application to leakage, the reader is referred to the work by Sahlin et al. [38]
for a quantitative comparison with experiments and to [21] for a qualitative one. We also point out
that similar assumptions have led Lorenz and Persson [28,39] to a model that compares well with
experiments. We thus claim that we can trust the model developed in this work as long as it provides
for the same answer as the deterministic model. Such a comparison is presented in Figure 7. It can
be seen there that the deterministic solution falls inside the range of uncertainty provided by the
two-scales solution, for sufficiently large loads. Of course, a much lower leakage is predicted at low
loads, as the free flow regime was not considered. We can thus conclude that the stochastic two-scales
model here presented is a valid tool for study of leakage through metal-to-metal seals.
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Figure 7. Comparison between the deterministic model in [15] (red marks) and the current stochastic,
two-scales model (blue lines). The solid line depicts the mean value of the different realizations
performed while the dashed lines mark the 95% confidence interval. The comparison corresponding to
the fractal (turned) topography is depicted on the left (right).

7. Advantages of the Present Approach

Let us finish by discussing the advantages of the current model as compared with the previous
ones. The advantage with respect to the model presented in [20] is clear, as it used a log-normal
distribution to characterize the permeability at constant average pressure, which has been shown to be
inaccurate. We thus focus the comparison with the model presented in [15].

The most obvious advantage is probably the gain in speed, which is of capital importance for the
usability of the model, as it requires heavy computational power. To give a sense of this gain, the CPU
time needed to compute the results for the fractal surface is given in Table 1 for the current model as
well as for the model in [15]. The gain in time is clear there. Looking at it in more detail, we see that
it includes both the computation of permeability at the local-scale domains and the computation of
leakage at the global-scale domain, leaving only the meso-scale contact mechanics solution untouched.
Concerning the local-scale permeability, the gain comes from the fact that it can be at fewer average
pressures due to a more efficient representation of the power-law decay. Indeed, the large slope of
the relation K( p̄) near the percolation threshold demands computing a lot of points there. Since the
location of the percolation threshold is not known a priori, this affects the other regimes as well.
By fitting a power-law decay at the constriction flow regime, the current model does not need to
compute many points on this region. Similarly, few points are also needed in the other regimes. We can
thus reduce the number of points to be computed around 47%. This leads to a reduction of CPU-time
of about 39%. The gain in speed concerning the global-scale leakage computation comes from using
Equations (2)–(5) to generate the permeability at the global-scale, instead of using interpolation. Since
this part was the most costly in the global-scale flow solution in [15], a reduction of almost 100% in
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CPU-time can be achieved in this part. Since the computation of the permeabiltiy at the local-scale
domains is, by far, the most costly part of the model, we can expect a total reduction time of almost
40%. We also notice that, when fitting the parameters, one has a clear idea on what error is committed
by the finite number of local-scale domains assessed. Knowing this, one can set a criteria to avoid
computing the permeability at too many local-scale domains.

Table 1. Comparison of CPU time needed to obtain a full solution as in Figure 7, corresponding to the
fractal surface. LS, MS and GS stand for local-, meso- and global-scale, respectively. The average time
per domain of the local-scale pemreabiltiy has been computed using 72 domains. The times for the MS
Contact Mechanics model and the GS flow model correspond to the loads in Figure 7. The total time
includes 72 local-scale domains.

LS Permeability MS Contact Mechanics GS Flow Total(Average Time Per Domain)

Algorithm in [15] 7986 s 3301 s 4406 s 162 h
New algorithm 4904 s 3301 s 11 s 99 h

Difference −39% −99% 0 % −39%

Beyond the increased speed, the current model is more informative, which is an advantage in
itself. Indeed, with the current model, one can easily pose questions such as: how does the spatial
variation on the percolation threshold affect the global-scale performance of the seal? This would be
much harder in a model where the permeability of local-scale domains is treated fully numerically. In
addition, it becomes easier to correlate surface features with the final result, as one can first correlate
the features with the parameters describing the local-scale permeability and then these with the
global-scale performance.

8. Conclusions

In this work, we have first started by describing the permeability of local-scale domains. We have
shown that three regimes can be identified, namely, a free, a channelized and a constriction flow
regime. The three regimes present a different formulation for the relation between permeability and
applied average pressure. This formulation can be described by means of four parameters, which vary
randomly between different local-scale domains, following a Gaussian distribution. We have then
used this description to enhance a stochastic two-scale model that had already been developed earlier.
The new stochastic two-scale model has been tested against a deterministic solution, obtaining a good
match in the prediction. In fact, the deterministic solution lays inside the range of possible stochastic
solutions for sufficiently large loads. Finally, we have argued that the new model is faster, leading to a
reduction in CPU-time of about 38%, and more informative in the interpretation of the results.
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Appendix A. Flow Chart of the Model Presented in This Work
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Figure A1. Flow chart for the numerical solution procedure of the stochastic two-scale model presented
in this work. The pink boxes indicate middle or end results, and are connected by a dotted line to
the box in the global-scale solver where they are used. The other colours indicate the grid or domain
in which the operation is done, according to Figure 2, i.e., orange for the original grid, black for the
meso-scale contact mechanics model, purple for the local-scale domain and red for the global-scale
flow model. The boxes highlighted in blue are the ones changed with respect with the model presented
in [15].
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Appendix B. Flow Chart of the Model Presented the previous work
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Figure A2. Flow chart for the numerical solution procedure of the stochastic two-scale model presented
in [15]. The pink boxes indicate middle or end results, and are connected by a dotted line to the box in
the global-scale solver where they are used. The other colours indicate the grid or domain in which
the operation is done, according to Figure 2, i.e., orange for the original grid, black for the meso-scale
contact mechanics model, purple for the local-scale domain and red for the global-scale flow model.
The boxes highlighted in blue are the ones changed with respect to the model presented in this work.
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