Supplementary Materials:

Meta-Analysis Comparing Wettability Parameters and the Effect of Wettability on Friction Coefficient in Lubrication

Michael J. Schertzer * and Patricia Iglesias
Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; pxieme@rit.edu
* Correspondence: mjseme@rit.edu; Tel.: +1-585-475-5715

Abstract

Characterization of friction factor using $\lambda \cdot\left|S^{* *}\right|$ (Figure S1) gives similar results to the characterization with $\lambda \cdot\left|S^{*}\right|$ (Figure 6). Separations of cases for apparent film $\left(\lambda \cdot\left|S^{* *}\right|>1\right.$), boundary $\left(\lambda \cdot\left|S^{* *}\right|<10^{-3}\right)$, and transitional $\left(10^{-3}<\lambda \cdot\left|S^{* *}\right|<1\right)$ lubrication occurred for similar ranges of $\lambda \cdot\left|S^{* *}\right|$. While the characterizations are similar, it is worth noting that $\left|S^{* *}\right|$ requires more input parameters than $\left|S^{*}\right|$.

Multiplying λ by the dimensionless spreading parameter $S P^{* *}$ does not provide the same insight as λ. $\left|S^{*}\right|$ (Figure 6) or $\lambda \cdot\left|S^{* *}\right|$ Figure S1. When adhesion is greater than cohesion, S^{*} and $S^{* *}$ become small negative numbers, but $S P^{*}$ and $S P^{* *}$ change sign. Since the sign of $S P^{*}$ and $S P^{* *}$ changes, taking the absolute value of either parameter reduces the information they provide.

The ratio of cohesion work to adhesion work $\left(W_{C} / W_{A}\right)$ is another potential dimensionless parameter to describe wetting between a lubricant and a target surface. This ratio can be formulated as a function of the contact angle

$$
\begin{equation*}
\frac{W_{C, \theta}}{W_{A, \theta}} \approx \frac{2}{\cos \theta+1^{\prime}} \tag{S1a}
\end{equation*}
$$

or a function of the disperse and polar coordinates of the surface tension and surface energy

$$
\begin{equation*}
\frac{W_{C, D P}}{W_{A, D P}} \approx \frac{1}{\sqrt{\frac{r_{S}^{D} V_{L}^{D}}{r_{l m}^{2}}+\sqrt{\frac{r_{r_{Y}^{P} P}^{V_{L}}}{r_{l m}^{2}}}} .} \tag{S2b}
\end{equation*}
$$

Like the dimensionless spreading parameters, $W_{C, \theta} / W_{A, \theta}$ and $W_{C, D P} / W_{A, D P}$ were correlated to contact angle (Figure S2a) and linearly correlated with each other (Figure S2b). Like S, S^{*}, and $S^{* *}$, the sign of this ratio does not change with θ and the absolute value increases with increasing contact angle. Like $S^{*}, W_{C, \theta} / W_{A, \theta}$ can be fully determined with a measurement of the contact angle between the lubricant and the target surface.

The ratio of cohesive to adhesive energy $\left(W_{C} / W_{A}\right)$ can can also be used to try to capture the effect of wettability on friction coefficient (Figure S3). Similar regimes are seen on this figure with hydrodynamic lubrication occurring when $\lambda \cdot\left(W_{C} / W_{A}\right)>1$, and moderate and dramatic changes to friction coefficient in the regions defined by $\left(0.01<\lambda \cdot\left(W_{C} / W_{A}\right)<1\right)$, and when $\lambda \cdot\left(W_{C} / W_{A}\right)<1$, respectively. On this figure, the cases where IL 104 was used as a lubricant for Steel-Steel and POM-POM contact fall in at the beginning the transitional region instead of the end of the boundary lubrication region. Like $\left|S^{*}\right|$, it is possible to calculate $\left(W_{C} / W_{A}\right)$ with only θ (Figure S2b).

Figure S1. Friction coefficient as a function of lambda multiplied by the dimensionless spreading parameter $\left(\lambda \cdot\left|S^{* *}\right|\right)$. Data includes cases from [7] where $\left(\lambda \cdot\left|S^{* *}\right|\right)>1$ (white), $\left(\lambda \cdot\left|S^{* *}\right|\right)<0.001$ (black), and $0.01<\left(\lambda \cdot\left|S^{* *}\right|\right)<1$ (gray).

Figure S2. Comparison of (a) $W_{C, D P} / W_{A, D P}$ (closed) and $W_{C, \theta} / W_{A, \theta}$ (open) to the θ and (b) a direct comparison of $W_{C, D P} / W_{A, D P}$ and $W_{C, \theta} / W_{A, \theta}$ for experimental cases in [7,10,16]

Figure S3. Friction coefficient as a function of lambda multiplied by the ratio of cohesion to adhesion formulated using (a) polar and disperse components of surface tension and (b) contact angles. Data includes cases from [7] where $\left(W_{C} / W_{A}\right)>1$ (white), $\left(W_{C} / W_{A}\right)<0.015$ (black), and $0.0125<\left(W_{C} / W_{A}\right)<1$ (gray). Log fits in each regime are provided.

