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Abstract: The behavior of pools of water for lubrication under a point of contact between a glass
disk and a steel ball is studied here, employing a home-built apparatus. A deformed water pool is
found to form around the contact region under different rolling speeds. To investigate the effect of
rolling speed on the water pool, two parameters (advancing angle and receding angle) are introduced
to describe the shape of the water pool. Two distinct glass surfaces, namely a smooth surface and
a microgrooved surface, are observed. In the case of the smooth surface, the advancing/receding
angle of the water pool significantly decreases with increasing rolling speed before the rolling speed
reaches a critical value (80 mm/s). At speeds higher than 80 mm/s, the water pool is in a stable
state and the advancing/receding angle remains steady. In the case of the microgrooved surface, the
influence of the microgroove on water lubricating flow disappears when the rolling speed reaches a
critical value (1030 mm/s).
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1. Introduction

The use of water lubrication in engineering can be traced back to about 2400 BC, when people used
water as a lubricant in transporting statues in Egypt [1]. Water lubrication is widely used in a range
of industrial application fields such as biomedical devices, rail/wheels and microelectromechanical
systems [2–4].

The low cost, environmental friendliness, and the excellent cooling effect of water have attracted
many researchers to investigate the tribological performance of different materials under water
lubrication [5–13]. Lei et al. evaluated the tribological behavior of micro and nano-crystalline
diamond films in water lubricating conditions [5]. Gao et al. investigated the tribological behaviors of
epoxy composites under water lubrication conditions at both varying and constant sliding speeds [6].
Dong et al. studied the stick-slip behaviors of ultra-high molecular weight polyethylene, synthetic
rubber and fiber resin composite polymer materials with ZCuSn10Zn2 plates under water-lubricated
conditions [7]. Ma et al. studied the friction between a 440C stainless steel ball and a 440C
stainless steel plate in water lubrication [8]. Niu et al. studied the friction and wear properties of
titanium alloys against tungsten carbide under water-lubricated conditions using a ball-on-flat sliding
friction apparatus [9]. Mamada et al. [10] systematically studied the friction properties of polyvinyl
alcohol-hydrogel(PVA-H)/steel ball contact under water lubrication conditions. Wang et al. [11–13]
comparatively investigated the tribological behaviors of several polymers under the lubrication of sea
water. Liu et al. [14–18] systematically studied the forming characteristics of lubricating water films.
In these systems, water in the contact region between two surfaces forms a lubrication film, which
serves to prevent adhesion and wear and to reduce friction [17,18].
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The properties of water confined in the contact region are very complex and have been studied in
detail using experimental and simulative methods; e.g., atomic force microscopy [19,20], interfacial
force microscopy [21,22], surface force apparatus [2,3], numerical simulation [23] and molecular
dynamic simulation [24,25]. However, there have been few studies reporting the direct observation of
water flow behaviors in points of contact under water lubrication, which is a significant prerequisite
for understanding the properties of flowing water. In this paper, there is an emphasis on the direct
observation of the dynamic behaviors of lubricating water films. The results of this study help to
improve the understanding of the behavior of lubricating films in water lubrication.

2. Experimental Conditions

In this work, the lubricating water film is formed between the surface of a 160 mm diameter
glass disk and the surface of a 7/8 inch diameter steel ball. The steel ball used in our tests was
swallowed partly in a water tank; the lubricating water comes from the water tank, and the water
pool was formed by the rolling motion of the steel ball, as schematically shown in Figure 1. The glass
disc coated with a semireflective chromium (Cr) layer had a surface roughness Ra of approximately
0.5 nm. The roughness of the surface of the highly-polished steel ball (AISI 52100) is around 3.7 nm.
The water would be entrained toward the contact region during the process of the glass disk being
driven by a motor; the ball was driven by the disk, and can therefore be regarded as nominally pure
rolling. The dynamic process during the rolling motion was recorded completely through the optically
transparent glass disk using a digital camera. In addition, a light microscope was used to acquire the
accurate localization of the contact region. The water level of the water tank was filled approximately
halfway up the ball, as shown in Figure 1, so that the water as lubricant can be entrained into the contact
region by the rolling motion of the ball. The load applied was 30 N corresponding to a maximum
contact pressure of 0.53 GPa, which was calculated by Hertz’s theory, and the test temperature was
maintained at 25 ◦C for all measurements. Water was distilled and deionized by using a milli-Q system
(resistivity: 18 MΩ·cm). All the parts, including the steel ball and glass disk, were all cleaned by
ultrasonic cleaning in organic solvents before every set of tests.
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fringes, recorded by a charge coupled device camera. The fluid of the water layer around the contact
region is observed using another camera.
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3. Results and Discussion

3.1. Observation on Water Flow between Smooth Surfaces

The snapshots of de-ionized (DI) water film flowing between the steel ball and smooth disk
under different rolling speeds from the camera are presented in Figure 2. The red arrow indicates
the direction of liquid flow. The water layer in equilibrium state can be divided into three different
regions, shown in Figure 2c. The region surrounded by the red dashed line is a water pool which
surrounds the contact region. The low part of the water pool, indicated by two yellow dashed
lines, is the inflow region, as shown in the C region in Figure 2c. The B region, surrounded by two
green dashed lines, is the outflow region. The shape of the water pool is a manifestation of the flow
characteristics. At a relatively low speed of 20 mm/s, the shape of the contact line between the water
film and glass disc appears non-circular when the water is entrained into the area around the contact
region (Figure 2a). When the speed is increased to 80 mm/s, the shape of the water film becomes
elliptic, as shown in Figure 2c. The interference images of the water film near the contact region can
be clearly observed in Figure 2a-1–c-1. The width of the outlet region becomes larger and the optical
intensity of the central contact region decreases when the rolling speed increases. As a result, if the
rolling speed increases, more water would be entrained into the contact region, forming a thicker film.
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in Figure 3a. It should be noted that the red dashed line was indicative of the water pool. To 
quantitatively study the dynamic angle of the water pool, we extracted the shape of the water pool 
from the recorded images using standard image analysis techniques. The digital image shown in 
Figure 3b was analyzed using ImageJ2× software (ImageJ2×, National Institutes of Health, Bethesda, 
MD, USA). 

Figure 2. Typical photographic sequence (a–c) and interference patterns (a-1–c-1) of water flow between
smooth surfaces at various speeds. The corresponding rolling speeds were as follows: (a) 20 mm/s;
(b) 40 mm/s; (c) 80 mm/s. The dotted arrow symbol shows the direction of the rolling of the steel ball.
Scale bar: 70 µm.

To investigate the effect of the rolling speed of the steel ball on the variation in the shape of
the water pool, two parameters (advancing angle, θA, and receding angle, θR) were introduced as
shown in Figure 3a. It should be noted that the red dashed line was indicative of the water pool.
To quantitatively study the dynamic angle of the water pool, we extracted the shape of the water pool
from the recorded images using standard image analysis techniques. The digital image shown in
Figure 3b was analyzed using ImageJ2× software (ImageJ2×, National Institutes of Health, Bethesda,
MD, USA).

The advancing and receding angle of the snapshots were measured using ImageJ2× software
to summarize the relationship between the dynamic angle and rolling speed, as shown in Figure 4.
The dynamic behaviors of the lubricating water film in the A region is characterized by an advancing
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angle, θA (◦), of about 90, 82 and 73 for a rolling speed of 0, 40 and 80 mm/s, respectively. In phase A,
the advancing angle was observed to be remarkably sensitive to the rolling speed and significantly
decreased with increasing rolling speed. However, when the rolling speed was increased, the
advancing angle did not change with rolling speed in phase B. The speed was named as the critical
rolling speed Vc (mm/s). It is clear that the critical rolling speed was around 80 mm/s under our
working conditions. The variation of the receding angle, θR (◦), is similar to that of the advancing
contact angle, but the advancing contact angle is larger than the receding angle. The difference between
the advancing and receding angles is known as angle hysteresis.2017, 5, 36 4 of 10 
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Figure 4. The effects of rolling speed on the dynamic angle of the water pool between smooth surfaces.
In phase A, the advancing angle decreased with increasing rolling speed; In phase B, the advancing
angle did not change with rolling speed.

When the steel ball and the glass disk are static, the total forces impacted on the water pool were
symmetrical, resulting in the water pool being completely circular, as schematically shown in Figure 5a.

The total force
→
F tol−S (N) of the static water pool is listed below:

→
F tol−S = G +

→
F NG +

→
F NS +

→
r wd +

→
r wg +

→
r wb +

→
P0 (1)

where G is the gravity (N),
→
F NG is the normal adhesion force (N) which is acting perpendicular to

the interface between the water and the glass disk,
→
F NS is the normal adhesion force (N) which is

acting perpendicular to the interface between the water and the steel ball,
→
r wd is the interfacial tension
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(mN/m) between the water and the disk,
→
r wg is the interfacial tension (mN/m) between the water

and the gas,
→
r wb is the interfacial tension (mN/m) between the water and the ball, and

→
P0 is the

atmospheric pressure (Pa). The gravity G is as follows,

G =
∫ ∫ ∫

ρgdv (2)

where ρ is the water density (kg/m3), g is the acceleration of gravity (N/kg), and dv is unit volume of
the water pool.
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Figure 5. Left column: top view of the schematic diagram of the dynamic process of the water flow
between smooth surfaces. Right column: side view of the schematic diagram of the force analysis.
(a) Rolling speed was 0 mm/s; (a-1) Schematic diagram of the force analysis for Line A in the static
water pool (corresponding to (a)); (b) Rolling speed was 80 mm/s; (b-1) Diagram of the force analysis
for Line A in the static water pool (corresponding to (b)). the orange dashed line in (b) indicated the
rolling track.

As the rolling speeds of the steel ball and the glass disk were increased, the water entered the
inlet region by means of the entrainment role. Some water went directly through the Hertzian contact
region along the rolling direction, and the rest went through both sides of the contact region, as shown

in Figure 5b. The total force
→
F tol−M of the motive water pool is as follows,

→
F tol−M = G +

→
F NG +

→
F NS +

→
F SG +

→
F SS +

→
r wd +

→
r wg +

→
r wb +

→
P0 (3)

where
→
F SG is the interfacial shear force (N) parallel to the interface of the water and the glass disk

indicating the effect of the adhesion in the shear direction, and
→
F SS is the interfacial shear force (N)

parallel to the interface between the water and the steel ball indicating the effect of the adhesion in the
shear direction. The water flow played a shear role on the water pool, resulting in the fact that the
water pool was elongated along the rolling direction and the advancing/receding angle significantly
decreased with increasing rolling speed, as shown in Figure 4. When the rolling speed of the ball
reaches a critical value (80 mm/s), the water pool is in a stable state and the advancing/receding angle
is a fixed value.
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3.2. Observation on Water Flow between Microgrooved Surfaces

After a smooth glass disk is worn by a steel ball, a microgroove is formed because of the worn
Cr layer during the rolling motion in the contact region. The width of the surface microgroove is
around 200 µm, as shown in Figure 6. Figure 7 shows a series of images recorded when water flows
between the steel ball and the microgrooved disk. It is clearly seen that a heart-shaped contact line
first appears in the A zone of Figure 7a and then is continuously elongated as rolling speed increased,
as shown in Figure 7b–d. When the rolling speed of the ball is 800 mm/s, the heart-shaped contact
line disappears (Figure 7e). Finally, when the rolling speed is 1030 mm/s, the water layer around the
contact region is divided into two regions, along with the artificial microgroove, as indicated by the
yellow double-dotted dashed line (Figure 7f). It can be seen that the disturbed flow appears in the
G region of Figure 7f. Figure 8b,c shows the interference patterns of contact regions in Figure 7e,f.
The interference patterns of the I and J region in Figure 7b, c are asymmetric. The interference patterns
can be used to calculate the thickness of the water film in the contact region. Hence, the thickness
distribution of water film in the contact region is asymmetric, which is attributed to the centrifugal
effect of water film.
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In order to extract quantitative information, the advancing angle and receding angle from the
snapshots in Figure 9b were measured directly using ImageJ2×. The relationship between dynamic
angle and rolling speed is summarized in Figure 10. These measurements reveal four distinct dynamic
phases. In phase A (rolling speed < 200 mm/s), the receding angle was observed to be remarkably
sensitive to the rolling speed and significantly decreased with increasing rolling speed, which is similar
to that between the steel ball and smooth disk, shown in Figure 11b. However, the advancing angle
significantly increased with rolling speed in phase A, which is different to that between the steel ball
and smooth disk, shown in Figure 11a. When the rolling speed of the ball ranges from 200 to 500 mm/s,
as shown in phase B, it behaves as showing a nearly constant angle (advancing angle: 137◦; receding
angle: 24◦). When the rolling speed ranges from 500 to 800 mm/s, as shown in phase C, the advancing
angle was observed to be significantly decreased with increasing rolling speed, and the receding angle
was a nearly constant angle. In phase D, the advancing angle was a nearly constant angle and the
receding angle was observed to be significantly increased with rolling speed. In phase D, the final
values of the receding angle and advancing angle are similar between the microgrooved surface and
smooth surface, shown in Figure 11.
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Figure 10. Effects of rolling speed on the dynamic angle of the water pool between microgrooved
surfaces. In phase A, the receding angle decreased with increasing rolling speed, while the advancing
angle significantly increased with increasing rolling speed; In phase B, the two angles behaves as
showing a nearly constant angle; In phase C, the advancing angle decreased with increasing rolling
speed, while the receding angle was a nearly constant angle. In phase D, the advancing angle was a
nearly constant angle, while the receding angle increased with rolling speed.
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From a mechanistic perspective, it is necessary to discuss some related theoretical issues. A force
analysis of the dynamic process of the water flow between microgrooved surfaces was carried out, as

schematically shown in Figure 12. The total force
→
F tol−M−M (N) of the motive water pool between

microgrooved surfaces is as follows,

→
F tol−M−M = G +

→
F NG +

→
F NS +

→
F SG +

→
F SS +

→
r wd +

→
r wg +

→
r wb +

→
r wm +

→
P0 (4)

where
→
r wm is the interfacial tension (mN/m) between the water and the microgroove. When the rolling

speed is <500 mm/s, the interfacial tension between the water and the microgroove restrains the motion
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of water flow around the microgroove, so that a heart-shaped contact line appears in Figure 7a–d.
When the rolling speed is >500 mm/s, the kinetic energy of water flow around the microgroove is
enhanced, and the influence of interfacial tension between the water and the microgroove weakens.
Finally, the influence of the microgroove on lubricating water flow disappears when the rolling speed
is 1030 mm/s.
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Figure 12. Top view of the schematic diagram of the dynamic process of the water flow between
microgrooved surfaces. (a) Contact area between the water pool and microgroove under point of
contact; (b,c) the force analysis of the motive water pool during rolling; (d) the total force of the motive
water pool between microgrooved surfaces.

4. Conclusions

In this study, the behavior of a pool of water lubricating under a point of contact between a
glass disk and a steel ball is investigated. A deformed water pool was found to form around the
contact region under different rolling speeds. Two angles (advancing angle and receding angle) were
introduced to investigate the effect of the rolling speed on the variation in the shape of the water
pool. Two kinds of glass surfaces (smooth surface and microgrooved surface) were observed. In the
case of the smooth surface, the advancing/receding angle significantly decreased with increasing
rolling speed before the rolling speed reached a critical value,the water pool was in a stable state,
and the advancing/receding angle was a fixed value after the rolling speed reached the critical value.
In the case of the microgrooved surface, the influence of the microgroove on lubricating water flow
disappeared when the rolling speed reached a critical value. Additionally, there are four distinct
dynamic phases summarized from the relationship between the dynamic angle and rolling speed
between the water pool and microgrooved surfaces under the point of contact. The current result
emphasizes the direct observation, and could further our understanding of water lubrication behavior,
such as the starvation in the inlet region and the subsequent occurrence of lubrication failure in the
application of water-based lubrication of bearings.
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