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Abstract: In this paper, we report the synthesis and characterization of ultra-high molecular weight
polyethylene (UHMWPE)-lignin composites. During this study four different compositions, namely
UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin
were fabricated by hot pressing. Detailed microstructural studies by scanning electron microscopy
(SEM) showed that UHMWPE and UHMWPE-13 wt. % lignin had a uniform microstructure, whereas
UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples were riddled with pores.
UHMWPE and UHMWPE-13% lignin showed comparable flexural strengths of ~32.2 MPa and
~32.4 MPa, respectively. However, the flexural strength dropped drastically in UHMWPE-25 wt. %
lignin and UHMWPE-42.5 wt. % samples to ~13 MPa and ~8 MPa, respectively. The tribology of
UHMWPE-lignin composites is governed by the tribofilm formation. All the compositions showed
similar µmean values and the specific wear rates (WR) decreased gradually as the concentration of
lignin in UHMWPE was increased.
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1. Introduction

Lignocellulosic biomass is targeted as a potentially economical, non-edible feedstock for various
industrial applications. The carbohydrate portion of biomass (cellulose facilities) typically makes up
two-thirds of the biomass dry matter, comprised of polysaccharides that can be hydrolyzed to sugars
and then fermented to products such as ethanol. Lignin, with 15%–30% of biomass dry weight [1,2],
is one of the most abundant aromatic compounds on earth and, due to its rigid cross-linked structure
and composition, it is the most recalcitrant organic polymer in biomass [3,4]. Currently, most lignin is
produced by the pulp and paper industry which is between 50 and 60 million tons per year, of which
only 2% is used commercially and 98% is burned as a low-cost fuel in the chemical recovery boiler [5,6].
A recent report from the U.S. Department of Energy showed that there will be more than one billion tons
of biomass feedstock available for biofuel production. As result of the biorefinery developments aimed
at replacing fossil feedstocks with lignocellulosic biomass fuels, more lignin could be produced [7].
The chemical structure, molecular weight distribution and degree of crosslinking of lignins are affected
by the type of biomass resources and the isolations methods [8]. Therefore, the heterogeneous nature
of lignin products with non-uniform and non-standard quality and properties makes it difficult to
use as a standard raw material for composites. Cost-effective and reliable methods for the conversion
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and application of lignin other than just simply burning it as a solid fuel are generally technically
challenging due to its recalcitrance.

More recently, lignin has been systematically explored by blending it in polymer matrices [9–11].
Various fundamental studies have been done to understand the effect of unmodified lignin on the
physical properties of thermoplastic [12–19], thermosets [20], and rubbers [21]. Based on these studies,
lignin has been documented to be a promising additive for stabilizing against UV degradation or
thermo-oxidation [9,13,15,16,21]. The mechanical behavior of these composites is dependent on the
interaction between different constituents, for example whether blends can form miscible or can phase
separate [9,18,19,22]. More particularly, as unmodified lignin contains numerous OH groups, the
lignin molecule is thus relatively polar, and will show comparably better affinity toward polar polymer
matrices [9,18,19,22]. By chemical treatments, it is also possible to enhance the lignin compatibility with
non-polar polymer matrices by derivatizing some or all of the OH groups, and exposing non-polar
groups at the chain end [9,22,23]. Clearly, lignin has the potential to be a highly sustainable and
versatile additive in engineering plastics.

Curiously, the tribological behavior of lignin-based polymers is not well documented, although it
is widely reported in review papers that lignocellulose fibers are a promising additive for tailoring
tribological behavior, and compare favorably with conventional fibers [24,25]. There is a huge
potential that lignin particulates can partially replace some portion of plastics such as ultra-high
molecular weight polyethylene (UHMWPE), and can be used for functional components. UHMWPE
and its composites are widely studied systems, and they are routinely used for various engineering
applications, for example bearing components, gears, guide rails, and in food treatment and medical
equipment because of their excellent friction and wear characteristics, corrosion resistance and
mechanical properties [26]. The aim of this paper is to understand the effect of unmodified lignin
additives on the tribological behavior of engineering plastics, and consequently establish a baseline
for future studies for developing triboactive materials by using lignin particulates as additives.
More particularly, synthesis, mechanical and tribological behavior of novel lignin–ultra high molecular
weight polyethylene (UHMWPE) composites is reported in this paper. It is also well known that
the addition of particulates such as kaolin [26], MoS2 [27], and Ti3SiC2 [28] can tailor the tribological
behavior of UHMWPE.

2. Materials and Methods

UHMWPE (Product No. 429015, Sigma Aldrich, St. Louis, MO, USA) and lignin (Indulin
AT, MeadWestvaco, Richmond, VA, USA) were used for fabricating the composite samples.
The UHMWPE-lignin composites were designed by adding 13 wt. % (UHMWPE-13 wt. % lignin),
25 wt. % (UHMWPE-25 wt. % lignin) and 42.5 wt. % (UHMWPE-42.5 wt. % lignin) lignin in
UHMWPE matrix, respectively. For comparison, pure UHMWPE samples were also prepared under
similar conditions. All the compositions were dry ball milled in a ball mill (8000 M mixer Mill, SPEX
SamplePrep, Metuchern, NJ, USA) at ~1725 rpm with polymethyl methacrylate (PMMA) balls for 2 min.
The mixed powders were then cold pressed in a cylindrical steel die (~25.4 mm diameter, MTI Corp.,
Richmond, CA, USA) by using a Carver Laboratory press (Model 3853, Carver Inc., Wabash, IN, USA)
at a uniaxial compaction stress of ~86 MPa. All the samples were manufactured hot pressing at 195 ◦C
at ~86 MPa for 2 min.

The three-point flexural bending test was done for the UHMWPE-Lignin composite samples.
The samples were machined into small samples of dimensions ~22 mm (length), ~2 mm (thickness), and
~4 mm (width). For each composition, a set of five samples were tested at a deflection rate of 5 mm/min
in the mechanical testing system (Shimadzu AG-IS UTM, Shimadzu Scientific Instruments Inc.,
Columbia, MD, USA). Flexural strength of the composites was calculated by using Equation (1) [29]:

σf =
3FL
2bd2 (1)
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where F is the maximum load at the which the sample yielded (N), L is the length of the support span,
b is the width of the test beam, and d is the depth or thickness of tested beam.

Samples were mounted on aluminum mounts and coated with Au/Pd using a Balzers SCD 030
sputter coater (BAL-TEC RMC, Tucson, AZ, USA). SE (Secondary Electron) and BSE (Back Scattered
Electron) images were obtained by using a JEOL JSM-6490LV Scanning Electron Microscope (SEM)
(JEOL USA, Inc., Peabody, MA, USA). For microstructure evaluation, UHMWPE and UHMWPE-13%
Lignin samples were finely polished (Ra < 500 nm) by using diamond suspension (MetaDi®II, Buehler,
Lake Bluff, IL, USA). The other compositions were difficult to polish with a fine surface finish, thus
machined or fractured surfaces were used for microstructure evaluation for illustrative purposes.
The pictures of the tribofilms on the alumina surface were also taken by a digital camera (DSC-HX300,
Sony Corporation, Minato, Tokyo, Japan). For the tribology measurements, all the samples were cut
into tabs with dimensions of ~4 mm × ~4 mm (cross-section) × ~3 mm (thickness). Alumina (42 mm
diameter and 2 mm thickness (AL-D-42-2), AdValue Technology, Tucson, AZ, USA) samples were also
polished for used as substrates. A surface profilometer (Surfcom 480A, Tokyo Seimitsu Co. Ltd., Tokyo,
Japan) was used to measure surface finish. All the samples were polished with Ra < 3 µm. All the
tribology studies were then performed by a tab-on-disc tribometer (CSM Instruments SA, Peseux,
Switzerland) at 5 N (~0.3 MPa), 50 cm/s linear speed, 5000 m sliding distance, and ~10 mm track radius.
For every composition, three experimental studies were performed. For data analysis, an average
of all the friction coefficient (µ) reading was used to calculate mean response of a single experiment.
Thereafter, an average of three mean values was calculated and reported in the text as µmean. The mass
of the tabs were measured before and after the testing by a weighing scale (XA 83/220/2X, Radwag,
Radom, Poland). The specific wear rate (WR) was calculated from Equation (2):

WR = (mi −mf)/(ρ.N.d) (2)

where mi is the initial mass, mf is the final mass, ρ is density of the composite, N is the applied load,
and d is the total distance traversed by the static partner during the tribology testing.

3. Results and Discussion

3.1. Analysis of Microstructure and Mechanical Behavior

Figure 1 shows the microstructure of the UHMWPE-lignin samples. In general, the pristine
UHMWPE sample (Figure 1a) was dense, whereas a small amount of pores was observed
in the UHMWPE-13% lignin sample (Figure 1b); however, as the concentration of lignin was
further increased in the UHMWPE matrix, the samples showed a remarkable amount of pores
and defects (Figure 1c–f). Figure 2 shows the flexural stress versus displacement plot of
lignin-UHMWPE composites. On comparing different stress versus displacement profiles, UHMWPE
and UHMWPE-13% lignin samples showed gradual yielding whereas UHMWPE-25 wt. % lignin
and UHMWPE-42.5 wt. % lignin showed brittle failure. Figure 3 summarizes the flexural strength of
different lignin-UHMWPE compositions. UHMWPE and UHMWPE-13% lignin showed a comparable
flexural strength of ~32.2 MPa and ~32.4 MPa, respectively, but the flexural strength dropped
drastically in UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples to ~13 MPa
and ~8 MPa, respectively.

Kharade et al. [12] explored lignin powder as a filler in low-density polyethylene (LDPE),
high-density polyethylene (HDPE), and polypropylene (PP) up to 30 wt. %. In general, the tensile
strength of all the polymer composites decreased as compared to HDPE samples. For example,
the tensile strength of LDPE reduced from ~10.8 MPa to ~8.9 MPa and ~6.6 MPa after the addition
of 10 wt. % and 30 wt. % lignin in the LDPE matrix, respectively. Comparatively, the tensile
strength of HDPE reduced from ~31.7 MPa to ~19.7 and ~15 MPa after the addition of 10 wt. %
and 30 wt. % lignin in the HDPE matrix, respectively. Alexy et al. [13] also observed similar behavior
in blending lignin with LDPE and PP blends. For example, the tensile strength of LDPE reduced from
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~13.5 MPa to ~13 MPa and ~5.5 MPa after the addition of 10 wt. % and 30 wt. % lignin in the LDPE
matrix, respectively. Comparably, the present study showed that 13 wt. % lignin can be used in the
UHMWPE matrix without affecting its mechanical behavior drastically, but at higher concentrations,
the mechanical behavior decreased sharply.Lubricants 2016, 4, 31 4 of 10 
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Figure 3. Plot of flexural strength versus lignin addition (wt. %) in the UHMWPE matrix.

3.2. Tribological Behavior

Figure 4 shows the comparison of µ versus the distance profile of different UHMWPE-lignin
compositions. All the compositions showed a similar trend. Initially, the µ was marginally high
(Region I); thereafter, it reached steady state after sliding for ~1000 m for all the compositions (Region II).
Figure 5 compares the µmean (Y1 axis) and WR (Y2 axis) of different compositions. Comparatively,
the µmean of all the samples were similar and maintained similar values for all the compositions.
However, the WR of UHMWPE increased gradually from ~2.1 × 10−6 mm3/N.m in UHMWPE to
~4.4 × 10−6 mm3/N.m, ~9.5 × 10−6 mm3/N.m, and ~2.6 × 10−5 mm3/N·m in UHMWPE-13 wt. %
lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples, respectively. Table 1 shows
a comparison of the tribological behavior of different composite systems. The WR of UHMWPE-13%
lignin compares favorably as compared to UHMWPE and other tribocouples.
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Table 1. Summary of tribology results of different UHMWPE-based tribosystems.

Surface Countersurface Filler Conditions WR (mm3/N.m) µ Reference

0 11 × 10−6 0.3 [26]
11 wt. % Kaolin

(mixing) 9 × 10−6 0.31

ASTM 1045 Steel
(Ring) UHMWPE (Block) 26.5 wt. % Kaolin

(mixing)
Block-on-Ring,

105 N, and 0.42 m/s 11 × 10−6 0.31

11 wt. % Kaolin
(polymerization) 6 × 10−6 0.28

26.5 wt. % Kaolin
(polymerization) 7 × 10−6 0.31

0 30 µm2/N ‡ 0.1
7 wt. % MoS2 3 µm2/N ‡ 0.1 [27]

9SMnPb28k
type steel UHMWPE (Plate) 9 wt. % MoS2

Roller-on-Plate,
40 N, and 0.25 m/s 0.5 µm2/N ‡ 0.1

(Roller) 17 wt. % MoS2 20 µm2/N ‡ 0.12
25 wt. % MoS2 70 µm2/N ‡ 0.18

UHMWPE 0 1.5 × 10−6 0.22
UHMWPE-5%
Ti3SiC2 (Tab) Alumina (Disc) 5 vol % Ti3SiC2

Tab-on-Disc, 5 N,
50 cm/s 2 × 10−6 0.19 [28]

UHMWPE-20%
Ti3SiC2 (Tab) 20 vol % Ti3SiC2 3.4 × 10−6 0.22

UHMWPE-35%
Ti3SiC2 (Tab) 35 vol % Ti3SiC2 12 × 10−6 0.20

‡ Reported in different units.

3.3. Fundamentals of Tribofilm Formation

Figure 6a,b show the digital picture of the alumina surface after tribology testing. During testing
against UHMWPE, no visible tribofilm was observed on the alumina surface, where as a light brown
color tribofilm was observed while testing against UHMWPE-42.5 wt. %. On further investigation
(Figure 6c,d), SE SEM micrographs showed that both the UHMWPE (Figure 6c) and the corresponding
alumina surface (Figure 6d), and UHMWPE-42.5 wt. % (Figure 6e) and the corresponding alumina
surface (Figure 6f) are covered with polymer wear debris due to abrasive wear of the UHMWPE and
UHMWPE-42.5 wt. % surfaces, respectively. Clearly, the tribofilm formed between UHMWPE and
alumina is thinner and more transparent as compared to the tribofilm between UHMWPE-42.5 wt. %
and the alumina surface which is visible to the naked eye.
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Figure 6. Digital pictures of alumina discs after tribological testing against, (a) UHMWPE and
(b) UHMWPE-42.5 wt. % and SE SEM micrographs of (c) UHMWPE; (d) alumina surface;
(e) UHMWPE-42.5 wt. % and (f) alumina surface (inset shows the morphology of polymer wear
debris) after tribological testing.

The tribology of UHMWPE is governed by the formation of tribofilms [26–28,30]. Wang et al. [30]
observed the formation of tribofilms composed of reprocessed debris during the steady-state wear of
UHMWPE against steel. We saw similar behavior during this study. Bahadur [31] has documented
the characteristics of tribofilms during the tribology of polymers. Particulate materials used as the
fillers in polymers may either increase or decrease the WR of the tribocouple. For example, WR is
increased if the fillers decompose and generate reaction products which enhance bonding between the
transfer film and the counterface, whereas the fillers decrease the wear resistance because they generate
more discontinuities in the material. UHMWPE-kaolin composites sliding against steel formed very
adherent, and thin transfer film showed a better tribological response [26]. Similarly, for example,
the addition of Al2O3 in polyphenylene sulfide (PS) composites lowered the wear resistance of the
Al2O3-PPS composite due the destruction of transfer films [32].

Figure 7 shows a simple schematic of the tribofilm formation between alumina and
UHMWPE-lignin composites. Due to the lower mechanical strength of the UHMWPE-lignin
composites as compared to UHMWPE (Figure 3), the UHMWPE-lignin samples undergo abrasive
wear from alumina surfaces at the tribocontact points (Figure 7a) which results in the formation of
brown-colored tribofilms on the alumina surface (Figure 6b) as compared to the transparent tribofilms
formed by the UHMWPE sample on the alumina surface (Figure 6a). Consequently, the tribofilms
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formed by lignin-UHMWPE composites against alumina substrates are discontinuous (Figure 6c,d and
Figure 7b), and are not able to prevent further wear. It is recommended that future studies should focus
on increasing the interaction between lignin and UHMWPE by engineering the lignin particles using
chemical treatments [9,22]. In addition, different additives should be explored which can enhance the
adherence of tribofilms to substrates for the enhancement of tribological behavior [31,32].
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development; and (b) formation of discontinuous tribofilm formation by abrasive wear of UHMWPE-
lignin surface. 

4. Conclusions 

Four different samples, namely UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. % 
lignin and UHMWPE-42.5 wt. % lignin, were fabricated by hot pressing. Detailed microstructural 
studies showed UHMWPE and UHMWPE-13 wt. % lignin had a uniform microstructure, whereas 
UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples were riddled with pores. 
Flexural testing showed that the UHMWPE matrix composites can retain their properties until the 
addition of 13 wt. % lignin, whereas with further additions, the properties of the UHMWPE 
compositions decreased. For example, UHMWPE and UHMWPE-13% lignin showed comparable 
flexural strengths of ~32.2 MPa and ~32.4 MPa, respectively, but flexural strength dropped drastically 
in the UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % samples to 13 MPa and 8 MPa, 
respectively.  

The tribology of UHMWPE-lignin composites is governed by the tribofilm formation. All the 
compositions showed similar a µ versus distance profile, and had similar µmean values for all the 
compositions. However, the WR of UHMWPE increased gradually from ~2.1 × 10−6 mm3/N.m in 
UHMWPE to ~4.4 × 10−6 mm3/N.m, ~9.5 × 10−6 mm3/N.m, and ~2.6 × 10−5 mm3/N.m in UHMWPE-13% 
lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples, respectively. By 
analyzing the mechanical and tribological performance, it can be concluded that 13 wt. % untreated 
lignin can be used as an environmentally friendly additive in UHMWPE without compromising the 
mechanical and tribological behavior.  
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4. Conclusions

Four different samples, namely UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. %
lignin and UHMWPE-42.5 wt. % lignin, were fabricated by hot pressing. Detailed microstructural
studies showed UHMWPE and UHMWPE-13 wt. % lignin had a uniform microstructure, whereas
UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples were riddled with pores.
Flexural testing showed that the UHMWPE matrix composites can retain their properties until
the addition of 13 wt. % lignin, whereas with further additions, the properties of the UHMWPE
compositions decreased. For example, UHMWPE and UHMWPE-13% lignin showed comparable
flexural strengths of ~32.2 MPa and ~32.4 MPa, respectively, but flexural strength dropped drastically
in the UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % samples to 13 MPa and 8 MPa, respectively.

The tribology of UHMWPE-lignin composites is governed by the tribofilm formation. All the
compositions showed similar a µ versus distance profile, and had similar µmean values for all the
compositions. However, the WR of UHMWPE increased gradually from ~2.1 × 10−6 mm3/N.m
in UHMWPE to ~4.4 × 10−6 mm3/N.m, ~9.5 × 10−6 mm3/N.m, and ~2.6 × 10−5 mm3/N.m
in UHMWPE-13% lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples,
respectively. By analyzing the mechanical and tribological performance, it can be concluded that
13 wt. % untreated lignin can be used as an environmentally friendly additive in UHMWPE without
compromising the mechanical and tribological behavior.
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