
Lubricants 2015, 3, 493-521; doi:10.3390/lubricants3030493
OPEN ACCESS

lubricants
ISSN 2075-4442

www.mdpi.com/journal/lubricants

Article

Probability of Face Contact for a High-Speed Pressurised Liquid
Film Bearing Including a Slip Boundary Condition
Nicola Y. Bailey 1, Andrew Cliffe 2, Stephen Hibberd 2 and Henry Power 3,∗

1 University Technology Centre in Gas Turbine Transmission Systems, Faculty of Engineering,
University of Nottingham, Nottingham, NG7 2PB, UK; E-Mail: nicola.bailey@nottingham.ac.uk

2 School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2PB, UK;
E-Mails: andrew.cliffe@nottingham.ac.uk (K.A.C.); stephen.hibberd@nottingham.ac.uk (S.H.)

3 Faculty of Engineering, University of Nottingham, Nottingham, NG7 2PB, UK

* Author to whom correspondence should be addressed; E-Mail: henry.power@nottingham.ac.uk;
Tel.: +44-(0)-115-84-66232.

Academic Editors: Romeo P. Glovnea and Michel Fillon

Received: 29 January 2015 / Accepted: 11 June 2015 / Published: 24 June 2015

Abstract: An initial deterministic mathematical model for the dynamic motion of a simple
pressurised liquid film bearing is derived and utilised to evaluate the possibility of bearing
contact for thin film operation. For a very thin film bearing the flow incorporates a Navier slip
boundary condition as parametrised by a slip length that in general is subject to significant
variability and is difficult to determine with precision. This work considers the formulation
of a modified Reynolds equation for the pressurised liquid flow in a highly rotating
coned bearing. Coupling of the axial motion of the stator is induced by prescribed axial
oscillations of the rotor through the liquid film. The bearing gap is obtained from solving a
nonlinear second-order non-autonomous ordinary differential equation, via a mapping solver.
Variability in the value of the slip length parameter is addressed by considering it as a random
variable with prescribed mean and standard deviation. The method of derived distributions
is used to exactly quantify the impact of variability in the slip length with a parametric
study investigating the effect of both the deterministic and distribution parameters on the
probability of contact. Additionally, as the axial rotor oscillations also have a random aspect
due to possible varying excitations of the system, the probability of contact is investigated
for both random amplitude of the periodic rotor oscillations and random slip length, resulting
in a two parameter random input problem. The probability of contact is examined to obtain
exact solutions and evaluate a range of bearing configurations.
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1. Introduction

Pressurised liquid film bearings are considered in this work consisting of two structural components,
a rotor and stator, separated by a thin liquid film which experiences relative rotational motion. The thin
liquid film is used to maintain a separation between the rotating and stationary elements under external
axial loads on the bearing through the generation of a local film pressure. In practice, these bearings
operate as a combined hydrostatic and hydrodynamic bearing where the fluid gap is maintained by the
pressurised fluid and the dynamics of the bearings rotational motion. In some practical applications
such bearings operate at very high rotational speeds, requiring the inclusion of additional centrifugal
inertia effects which are not considered in the classical lubrication formulation of this type of problems
(Reynolds equation). Under these conditions, the bearing design requires precise detailed knowledge of
variation in the bearing gap during operating condition in order to evaluate possible contact between the
rotor and stator.

Analysis of a pressurised fluid film bearing with parallel surfaces is given for a Newtonian flow with
a no-slip condition by Garratt et al. [1] where the bearing structure was coupled to the pressurised fluid
flow and the dynamics investigated when the lower face undergoes prescribed periodic axial oscillations.
A more general geometry with the inclusion of a coned rotor (tapered surfaces) was considered by
Bailey et al. [2], allowing more extensive bearing gap investigations. The bearing axial dynamics
were examined for prescribed periodic axial oscillations including those of amplitude larger than the
equilibrium film thickness. Results indicated that the film thickness can become very small, even
reaching film gaps at nano and micro scales. At these scales, surface effects start to dominates over
volume related phenomena, requiring accurate details of the flow surface interaction. In a continuous
approximation of fluid motions at very small scales, nano and micro, surface slip velocity conditions
are typically considered to take into account the additional surface effects. Incorporation of a slip
condition on the bearing faces in the analysis of highly rotating parallel bearings with a small face
clearance by Bailey et al. [3] showed the bearing faces do not have contact, although the fluid film can
become very small. However, for the case of a coned bearing geometry with a slip boundary condition,
Bailey et al. [4] showed face contact is possible.

Thin film gas flow regimes over an atomically smooth surface are classified by the Knudsen number,
Kn = l/ĥ0, where l is the fluid mean free path corresponding to the collision distance between molecules
(for air at atmospheric conditions l = 68 nm) and ĥ0 is the characteristic fluid thickness. For flow with
a Knudsen number between 10−3 and 10−1, denoting micro and nano scales, a continuum flow model
with a slip boundary condition is usually employed. Navier [9] was the first to predict the existence of
velocity slip, proposing a slip model based on a linear relationship between the tangential shear rate and
the fluid-solid tangential velocity difference, and with the slip length as the proportionality constant.

The slip condition for liquid flows are however not as well defined as in gas flows. For liquid flowing
over a hydrophobic solid surface, an apparent slip velocity has been observed just above the solid surface,
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with a slip length of the order of 1 µm and even of the order of 50 µm in the case of super hydrophobic
surfaces [11,12]. For a hydrophilic surface, a no-slip boundary condition is usually employed in the
analysis of liquid flows at micro and nano scale. However experimental studies examining specific
chemical and electrochemical conditions of both the solid and liquid showed slip velocities can exist,
which are attributed to the effect of the extra reactions on the wettability of the liquid and the potential
absorption into the solid surface [13,14]. Typical experimental and theoretical studies on the existence
of slip velocity at micro and nano scales, are given by [5–8].

The numerical simulation of a thin film, with thickness of the order of magnitude of the irregular
surface roughness, becomes extremely difficult due to the requirement of imposing the no-slip velocity
condition on the corresponding irregular boundary. In these cases, it is possible to replace the no-slip
boundary condition over the irregular surface by an effective slip boundary condition onto an equivalent
smooth surface, with the slip length of the order of the size of the surface roughness (see [15]
and [16]). An example is the average surface roughness, Ra, of stainless steel that can range from
0.1µm≤ Ra ≤ 1µm, according with surface finishes technology employed. An approach employed by
several authors is to find an asymptotically equivalent slip length for small-scale variations of the surface
roughness boundary using homogenization theory, (see [17]).

More generally the mathematical formulation and associated numerical simulation of fluid film flow
motions, at the nano and micro scale, makes use of slip velocity conditions, where the slip length can
range from the size of the surface roughness to the fluid thickness or higher.

This work considers the dynamic analysis of liquid film bearing under extreme conditions, where the
fluid gap can attain a thickness of nano or micro scale size. Included are hydrophobic surface bearings,
with slip length of the order of the liquid film thickness or larger, as well as hydrophilic surfaces, where
the slip length is of the order of the bearings surface roughness.

Precise evaluation of the slip length is restricted due to limitations of the simulations [18] and
incorrect interpretation of results [19]. Experimental investigation of the slip length requires length scales
comparable to the slip length to be examined, therefore extremely accurate techniques with high spatial
resolution, capable of interfacial flow measurements are needed [20]. Indirect experimental methods
measure macroscopic flow quantities [21] but can suffer from limited spacial resolution, with the slip
velocity inferred from using techniques which can rely on tentative theoretical models [22]. Direct
methods also suffer from limited spatial resolution [23], with the fluid flow velocity, which may measure
only a few nanometres, are typically determined in an interrogation area which is several hundred
nanometres in size [24] leading to potential errors in measurements.

Increased interest exists on accounting for greater predictability of the dynamic behaviour in industrial
bearing designs. These are typically complex, with associated mathematical models involving large
numbers of parameters that may only be known approximately. Sources of uncertainty in a bearing
model include the slip flow at the fluid-solid interface and from the random axial motion of the rotor due
to external excitations.

Uncertainty in a bearing model and dynamical system originating from external excitations has
been examined using a variety of methods, typically based on Monte Carlo techniques [25]. In this
case, sampling is directly from the random input parameter with the output of the deterministic model
evaluated at each input sample. This is a robust process able to deal with complex situations and a
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large number of uncertain input parameters, however an extensive number of code executions may be
required to produce sufficiency accurate results. To minimise cost and efficiency additional theoretical
methods for uncertainty quantification have been developed, such as polynomial chaos, Gaussian process
emulator and Markov Chain Monte Carlo method.

In Zigang et al. [26], the dynamic response and vibration characteristics of two in-line rotor bearing
systems are examined to quantify the effects of uncertainty. The equations of motion of the rotor system
are derived and stochastic modelling for uncertainty in the damping and nonlinear support stiffness is
developed, based on the polynomial chaos expansion technique in a stochastic framework. Monte-Carlo
simulation is used as a comparison, with good agreement reported between the two methods. Response
statistics and the dynamic behaviour of the stochastic system are examined through the mean and
probability density function. Results show the uncertainties in the nonlinear support stiffness and
damping have a significant effect on the predicted behaviour of the rotor system, and increasing the
random intensities causes the realisation amplitudes to span a wider band of amplitudes.

In the special case where a comprehensive deterministic mathematical model is available, a subjective
interpretation of probability, the method of derived distributions [27], can be used to exactly quantify
the effects of random input parameters. Describing the random input parameters by a probability
distribution function and using the deterministic relationship between the input and output parameters
enables the probability density function and cumulative density function of the output to be determined
exactly. Statistical analysis can be conducted on the resulting realisations allowing the relevant statistical
properties of the process to be extracted.

A main focus of this work is to analyse the probability of contact in an important application requiring
a mathematical and numerical model for a high speed pressurised liquid film coned bearing with a slip
boundary condition and prescribed periodic axial oscillations of the rotor; the deterministic model is
based on the work by Bailey et al. [4]. The governing Reynolds equation for slip flow is derived by
incorporating a constant slip model with a linear relationship between the tangential shear rate and the
fluid-wall velocity differences with a slip length as the proportionality constant. The probability of
bearing face contact is examined using the method of derived distributions to investigate the lack of
precise knowledge of the slip length. To account for variability in the slip length and amplitude of rotor
oscillations, these parameters are considered as random variables with prescribed mean and standard
deviation to investigate the probability of face contact through a parametric study.

Although in liquid film bearings design, the use of a tapered surface is considered to increase the
liquid loading force in order to maintain a desirable film thickness at operating conditions, in this work it
has been found that this can lead to undesirable aspects under extreme conditions. If during the dynamic
response of the bearing, under an external force, the liquid gap reaches a thickness of nano or micro
scale, the tapered surface can induce possible stator-rotor collision (contact) dependant on the liquid slip
velocity condition.

An approach is provided for determining the probability of contact at different operating conditions
to inform bearing design criteria. It is noted that for controlling the possible displacements of the rotor
due to external forces, using structural constraints, the dynamic response of the bearing may encounter
very small fluid gaps and the use of a tapered surface needs to be carefully evaluated. This may be only
used where necessary and the corresponding angle needs to be limited to a small value.
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2. Deterministic Mathematical Model

A simplified mathematical model of a high speed pressurised fluid film bearing for a coned rotor
and incorporating a slip boundary condition is developed, following Bailey et al. [4]. A model for
the incompressible fluid flow through the bearing is derived from the Navier-Stokes momentum and
continuity equations in axisymmetrical coordinates. To express the mathematical formulation of the
problem in dimensionless variables, a characteristic bearing radius r̂0, film thickness ĥ0, rotor velocity
Ω̂r̂ and differential pressure ∆P̂, due to imposed pressure at inner radius r̂I and outer radius r̂O are defined
with dimensionless time variable t = ω̂ t̂ where ω̂ is the angular frequency. Dimensionless velocities are
taken to be û/ĥ2

0∆P̂(µ (r̂O− r̂I))
−1, v̂/Ω̂r̂0 and ŵ/ĥ0T̂−1 with dimensionless radius and height given by

r = r̂/r̂0 and z = ẑ/ĥ0 respectively. The dimensionless slip length is given by ls = l̂s/ĥ0 and for a thin
film bearing the aspect ratio δ0 = ĥ0/r̂0 is small δ0� 1.

The rotor has a fixed coning angle, assumed to be small giving cos β̂ ' 1 and sin β̂ ' β̂ , leading
to the scaling β̂ = βδ0 with β = O(1), giving consistency with the lubrication condition, such that
∂hr/∂ r '−β . Cases of a positively and negatively coned bearing are considered separately as is
shown in Figure 1, referred to as a PCB and NCB, respectively. For a bearing containing a coned rotor
undergoing prescribed periodic oscillations, the dimensionless film thickness is given by

h(r,β , t) = hs(t)− ε sin t +(r−a)β for β > 0

h(r,β , t) = hs(t)− ε sin t +(r−1)β for β < 0 (1)

where hs(t) is the height of the axially displaced stator, ε sin t the axial forcing of the rotor with amplitude
ε and a = r̂I/r̂0 is a measure of the bearing width, 0 < a < 1.
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Figure 1. Axially symmetric geometry and notation of a positively coned bearing (PCB)
β > 0 and negatively coned bearing (NCB) β < 0.

The associated radial Reynolds number is given by ReU = ρ̂ ĥ0Û/µ̂ , where ρ̂ is the density and µ̂

the dynamic viscosity. To ensure that the effects of viscosity are retained at leading order the pressure
is scaled as P̂ = µ̂ r̂0Û/ĥ2

0. Classical lubrication theory neglects inertia due to the reduced Reynolds
number ReU δ0� 1, however, as in Garratt et al. [1], the centrifugal inertia is retained to include cases
of high rotational speed bearing operations for which terms of the order ReU δ0(Re∗)2 are considered to
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be of O(1), with (Re∗)2 = (Ω̂r̂0/Û)2 � 1. The squeeze number σ̃ = r̂0/(ÛT̂ ) characterises any time
dependent effects whilst the Froude number Fr = Û/(ĝĥ0)

1/2, where ĝ is the acceleration due to gravity,
parametrises the importance of the gravitational effects relative to the radial flow. However, gravity
can be neglected given ReU δ0Fr−2� 1; this is consistent with lubrication theory provided the Froude
number is O(1).

In the case of slip flow, as considered by Bailey et al. [4], the velocity boundary condition on a bearing
face comprise of a jump in the tangential velocities across the fluid-solid interface corresponding to the
slip velocity induced due to wall shear, i.e., a Navier slip condition. Continuity of the normal velocity
across the fluid-solid interface is imposed along with a no flux condition. Thus the velocity boundary
conditions on the rotor and stator, denoted by superscript r and s, respectively, are given by

û · t̂1− ûr · t̂1 = 2l̂sêi jn̂r
jt̂1,i, û · t̂2− ûr · t̂2 = 2l̂sêi jn̂r

jt̂2,i, û · n̂r− ûr · n̂r = 0, at ẑ = ĥr

û · t̂3− ûr · t̂3 = 2l̂sêi jn̂s
jt̂3,i, û · t̂4− ûr · t̂4 = 2l̂sêi jn̂s

jt̂4,i, û · n̂s− ûr · n̂s = 0, at ẑ = ĥs (2)

where the right hand side of the above equations are due to the surface shear stress with proportionality
constant l̂s and rate of strain tensor êi j. The rotor velocity components are given by ûr = (∂ ĥr/∂ t̂,0,Ω̂r̂)
corresponding to prescribed axial motion and fixed azimuthal rotation and the stator is allowed to move
axially due to the interaction with the fluid, giving the stator velocity as ûs = (∂ ĥs/∂ t̂,0,0).

Due to the additional slip component on the bearing face both the normal and tangential velocities on
the rotor and stator are required. A PCB and NCB are considered separately, denoted by subscripts +

and −, respectively, in the coordinate system (ẑ, r̂, θ̂) with velocities û = (ŵ, û, v̂). Figure 1 shows the
normal rotor vector n̂r and two orthogonal tangential vectors t̂1 and t̂2 on the rotor face in the cases of a
PCB and NCB. The normal and azimuthal tangent are given by

n̂r = (cos β̂ ,sin β̂ ,0), t̂2 = (0,0,1) (3)

respectively, and the axial tangents are

t̂1,+ = (−sin β̂ ,cos β̂ ,0), t̂1,− = (sin β̂ ,−cos β̂ ,0) (4)

Cases of a PCB and NCB, respectively, requiring separate radial velocity boundary conditions to
be derived.

The stator lies parallel to the radial direction, giving the normal vector n̂s in the negative ẑ direction
and two orthogonal tangential components, t̂3 and t̂4 on the face of the stator in the radial and azimuthal
direction, respectively.

Velocity boundary conditions on the rotor in (2) are given by

ûcos β̂ − ŵsin β̂ = −∂ ĥr

∂ t̂
sin β̂ + l̂s

((
∂ û
∂ ẑ

+
∂ ŵ
∂ r̂

)(
cos2

β̂ − sin2
β̂

)
+2
(

∂ û
∂ r̂
− ∂ ŵ

∂ ẑ

)
cos β̂ sin β̂

)
v̂− Ω̂r̂ = l̂s

(
r̂

∂

∂ r̂

(
v̂
r̂

)
sin β̂ +

∂ v̂
∂ ẑ

cos β̂

)
ŵcos β̂ + ûsin β̂ =

∂ ĥr

∂ t̂
cos β̂ (5)

using the normal and tangent vectors given in (3) and (4) and the rate of strain tensor components as given
in Batchelor [28] (p. 602). In an axisymmetric configuration the azimuthal derivatives do not appear.
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The velocity boundary conditions on the stator (2), give

û =−l̂s

(
∂ û
∂ ẑ

+
∂ ŵ
∂ r̂

)
, v̂ =−2l̂s

∂ v̂
∂ ẑ

, ŵ =
∂ ĥs

∂ t̂
(6)

Under these conditions, the leading order non-dimensional rotor and stator velocity boundary
conditions given in (5) and (6), respectively, become

u = ls
∂u
∂ z

, v = r+ ls
∂v
∂ z

, w =
∂hr

∂ t
− u

σ̃
β , at z = hr

u =−ls
∂u
∂ z

, v =−ls
∂v
∂ z

, w =
∂hs

∂ t
, at z = hs (7)

as δ0 � 1. The only dependence on the coning angle is given in the axial rotor velocity
boundary condition.

A governing equation for a bearing with narrow gap, satisfying the slip boundary conditions, is readily
obtained from the leading order thin film approximation of the continuity equation, where formally terms
of O(δ0) are neglected, giving the modified Reynolds equation as

σ
∂h
∂ t
− 1

r
∂

∂ r

(
r

∂ p
∂ r

(h3 +6lsh2)

)
+

λ

r
∂

∂ r

(
r2

(h+2ls)2

(
h5 +10h4ls +

70
3

h3l2
s +20h2l3

s

))
= 0 (8)

The speed parameter λ = 3ReU δ0(Re∗)2/10 characterises the importance of centrifugal inertia and
squeeze number σ = 12σ̃ is rescaled. The Reynolds Equation (8) has no explicit dependence on the
coning angle and expresses the relationship between the pressure p and film thickness h. Similar
Reynolds equations have been derived for slip flow in a bearing [29–31], but neglecting the effects
of centrifugal inertia and in [3,4] including inertia effects. Pressure boundary conditions at the inner and
outer radii of the bearing are defined in Appendix A, Equation (37).

Axial displacement of the stator is modelled using a spring-mass-damper model, where the stator
equilibrium position at steady flow conditions is given by

ĥ0 = ĥ0s−
m̂ĝ
K̂z

for β ≥ 0

ĥ0 = ĥ0s− (r̂O− r̂I)β̂ −
m̂ĝ
K̂z

for β < 0 (9)

with m̂ĝ as the stator weight and K̂z as the restoring force coefficient (stiffness), respectively. The
corresponding dynamic equation of the stator axial position in dimensionless variables is given by

d2hs

dt2 +Da
dhs

dt
+Kz(hs−1) = αF(t) for β > 0

d2hs

dt2 +Da
dhs

dt
+Kz(hs− (1−a)β −1) = αF(t) for β < 0 (10)

where Da = D̂a/m̂ω̂ and Kz = K̂z/m̂ω̂2 are dimensionless linear damping and restoring force coefficients,
respectively. In (10) D̂a is the damping coefficient and F(t) is the resultant dimensionless axial force
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on the stator, defined in Appendix A by Equation (45). The force coupling dimensionless parameter is
given by α = µ̂Û/m̂ω̂2δ 3

0 and considered to be of O(1).
The dynamic Equation (10) for the axial position of the stator, provides the corresponding

dimensionless stator equilibrium bearing height, corresponding to the geometric configuration in
Figure 1 with film thickness h = 1 at the inner radius for PCB and at the outer radius for NCB; giving
hs = 1 for PCB and hs = 1+(1−a)β for a NCB, according to Equation (9).

To solve the Reynolds Equation (8) and stator Equation (10) simultaneously, it is mathematically
convenient to introduce the time dependent minimum face clearance (MFC) as

g(t) = hs(t)−hr(a, t) = h(a, t)− (r−a)β , if β > 0

g(t) = hs(t)−hr(1, t) = h(1, t)− (r−1)β , if β < 0 (11)

Integration of the Reynolds equation gives explicit analytic expressions for the pressure field and
force on the stator, given in Appendix A, Equations (38) and (46), respectively. Substituting the
force expression (46) and MFC (11) into the stator Equation (10) yields a nonlinear second-order
non-autonomous ordinary differential equation for the MFC given by

d2g
dt2 +D(g, ls,β )

dg
dt

+S(g,λ , ls,β ) = ε((1−Kz)sin t−Da cos t) (12)

where

D(g, ls,β ) = Da−απB(g, ls,β ), S(g,λ , ls,β ) = Kz(g−1)−απA(g,λ , ls,β )

(13)

for a PCB. Expression for A and B are given in Appendix A, Equations (47) and (48) respectively. A
NCB only differs in the term; S(g,λ ,β , ls) = Kz(g− (1− a)β − 1)−απA(g,λ ,β , ls). Dynamically
Equation (12) corresponds to a harmonically forced oscillator with nonlinear damping coefficient
D(g, ls,β ) and effective restoring force S(g,λ , ls,β ).

The total stiffness of the system KzT is found by differentiating the effective restoring force with
respect to the MFC, giving

KzT =
∂S
∂g

= Kz−απ
∂A
∂g

(14)

where Kz is the contribution from the structure and the fluid contribution is given by

Kz f = −απ
∂A
∂g

= −απ(2(pO− pI)−λ (1−a2))

(
∂GI(g)

∂g
1

G(g,1)
− GI(g)

G(g,1)2
∂G(g,1)

∂g

)
(15)

using the definition for A in (47). The functions G and GI/g are given in Appendix A,
Equations (42) and (50), respectively, with derivatives ∂G/∂g and ∂GI/∂g taken as the derivative with
respect to the MFC.

In the case of a non-pressurised parallel bearing the fluid stiffness is given by

Kz f = λαπ
ls2g(7g+30ls)

3(g+6ls)2(g+2ls)3

(
1−a4 +

(1−a2)2

lna

)
(16)
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It is noted that in the case of a non-pressurised parallel bearing using classical lubrication theory,
i.e., neglecting inertial effect and slip condition, predictions give zero contribution of the stiffness of the
system from the fluid component.

2.1. Numerical Scheme

It is anticipated that for a fixed value of the slip length, ls, and rotor oscillation of period T , the
nonlinear non-autonomous dynamic system (12) admits periodic solutions. Numerical schemes that are
able to predict periodic solutions of nonlinear differential equations are not always reliable and require
special considerations. In this work a numerical technique is implemented using a stroboscopic map to
obtain the solution in a prescribed period T .

Periodic solutions to Equation (12) are denoted by the vector g(g(t), f̃ (t)) with f̃ = dg/dt and
corresponding values of (g(t), f̃ (t)) at the beginning of the period given by g(t0) = g0, and f̃ (t0) = f̃0,
which are denoted here as the initial conditions of the periodic motion and considered as unknown in the
numerical algorithm for increasing slip lengths. Periodicity is obtained when the values of the solution
at the end of the period are identical to their initial conditions, i.e., g(T ) = g0, and f̃ (T ) = f̃0.

In the numerical algorithm, the second order differential Equation (12) is expressed as the following
system of first order coupled differential equations:

dg
dt

= f̃ and
d f̃
dt

=−D(g(t)) f̃ −S(g(t))+Y sin(t +φ) (17)

The numerical scheme consists of developing a mapping function that advances any initial condition
g0 at time t0 by a time T , defining a stroboscopic map φ ′(T ;g0, t0). This ℜ2 → ℜ2 map integrates
the system of Equations (17) forward through one period of the rotor oscillations. To identify
periodic solutions, the fixed points of the stroboscopic map g(t) = g(t +T ) are found iteratively which
corresponds to the condition

g(T )−g(t0) = φφφ
′(T ;g0, t0)−g0 = G(φφφ ′(T ;g0, t0),g0) = 0 (18)

giving periodic solutions g(g(t), f̃ (t)).
Solutions are found numerically from an iterative Newton’s method, given an initial guess value g̃0.

Successively improved iterates g0 are given from the numerical iterative scheme

g0n+1 = g̃0n−J(T )−1(g(T )− g̃0n) (19)

where the Jacobian matrix is given by

J(T ) =
∂G(φφφ ′,g0)

∂g0
=

∂g(T )
∂g0
−1 ∂g(T )

∂ f̃0
∂ f̃ (T )

∂g0

∂ f̃ (T )
∂ f̃0
−1

 (20)

To find the elements of the Jacobian matrix J(T ), the following auxiliary system of first-order
differential equations is defined;

∂

∂ t

(
∂g
∂g0

)
=

∂ f̃
∂g0

,
∂

∂ t

(
∂ f̃
∂g0

)
=−∂D

∂g
∂g
∂g0

f̃ −D
∂ f̃
∂g0
− ∂S

∂g
∂g
∂g0

∂

∂ t

(
∂g
∂ f̃0

)
=

∂ f̃
∂ f̃0

,
∂

∂ t

(
∂ f̃
∂ f̃0

)
=−∂D

∂g
∂g
∂ f̃0

f̃ −D
∂ f̃
∂ f̃0
− ∂S

∂g
∂g
∂ f̃0

(21)
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with initial conditions

∂g
∂g0

= 1,
∂ f̃
∂g0

= 0,
∂g
∂ f̃0

= 0,
∂ f̃
∂ f̃0

= 1 (22)

The values of the elements of the Jacobian matrix are given by the values of the auxiliary variables at
the end of the period, t = T .

For any given initial condition, a solution of the system of Equations (17) and (21) for t0 ≤ t ≤ T can
be found using Matlab ode15s. This procedure is repeated recursively, with the improved value of g0

used in the system of Equation (17). The scheme is successively repeated until a prescribed tolerance,
tol, is achieved, i.e., | g(T )−g0(t0) |≤ tol and a periodic solution is obtained.

Periodic solutions for increasing slip lengths ls +4ls, are determined from successive new initial
conditions. An Euler scheme (parameter continuation), includes the slip length as a variable parameter;
g(T ) = φφφ

′(T ;g0, t0, ls0).
To define a new initial condition g0 for ls +4ls, first the derivative of G(φφφ ′(T ;g0, tt),g0) =

φφφ
′(T ;g0, tt)−g0 = 0 is taken with respect to the slip parameter ls, i.e.,

∂G
∂g0

∂g0

∂ ls
+

∂φφφ
′

∂ ls
= J(T )

∂g0

∂ ls
+

∂g(T )
∂ ls

= 0 (23)

An Euler predictor step is then performed as

g0(ls +4ls) = g0(ls)+
∂g0

∂ ls
4 ls = g0(ls)−J(T )−1 ∂g(T )

∂ ls
4 ls (24)

to give an updated initial condition g0 for ls +4ls. The inverse of the Jacobian matrix is as found
previously, at the value of ls for which a periodic solution was obtained.

To find the values of ∂g(T )/∂ ls the following auxiliary system of first-order differential equations
is defined;

∂

∂ t

(
∂g
∂ ls

)
=

∂ f̃
∂ ls

∂

∂ t

(
∂ f̃
∂ ls

)
= −∂D

∂ ls
f̃ − ∂D

∂g
∂g
∂ ls

f̃ −D
∂ f̃
∂ ls
− ∂S

∂ ls
− ∂S

∂g
∂g
∂ ls

(25)

with initial conditions

∂g
∂ ls

= 0,
∂ f̃
∂ ls

= 0 (26)

This system of equations can be coupled with the previous augmented system of equations and solved
using the same Matlab routine.

For this new value of the initial condition, the above Newton’s method is repeated, with successive
refinement of4ls if necessary, until convergence is achieved and a periodic solution for ls+4ls is found.
With the use of this approach a consistent new initial condition for an incremented value of the parameter
is defined.

A major advantage of the formulated numerical (Euler) procedure in the stroboscopic map solver is
that it can be directly extended to find threshold values of the slip length ls corresponding to a specified
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value of gmin, with the limiting case of contact given by gmin = 0. In this approach the slip length ls
is taken as a new dependent variable in the Newton scheme requiring the value of the unknown vector
g = (g(T ), f̃ (T ), ls) to be determined given an initial guess value g0 = (g0, f̃0, ls0). Correspondingly an
additional constraint equation gmin− g∗ = 0 is added, with g∗ as the prescribed value of gmin and the
corresponding Jacobian matrix is given by

J =


∂g(T )

∂g0
−1 ∂g(T )

∂ f̃0
∂g(T )

∂ ls
∂ f̃ (T )

∂g0

∂ f̃ (T )
∂ f̃0
−1 ∂ f̃ (T )

∂ ls
∂gmin
∂g0
−1 ∂gmin

∂ f̃0
∂gmin

∂ ls

 (27)

The additional terms in the Jacobian matrix (27) with respect to (20), i.e., the last row and
column in (27), are obtained from the solution of the augmented system of first-order differential
Equations (21)–(25). The values in the last row are determined at the time when gmin is achieved. The
threshold slip length value is calculated at g∗, which can be stepped down successively to the point of
contact, g∗ = 0. Continuation is used for a new value of g∗ to get

g0(g∗+4g∗) = g0(g∗)−J−1 ∂g
∂g∗
4g∗ (28)

with the Jacobian matrix as defined in (27) and4g∗ < 0. The value of ∂g/∂g∗ is evaluated numerically
by a first-order forward finite difference approximation, in terms of the obtained solution g(g∗) and a
new auxiliary solution g(g̃∗), corresponding to a specified gmin, g̃∗ = g∗+ε4g∗ with ε� 1. This leads
to a new initial condition being defined, allowing a periodic solution for a decreased specified value of
gmin, g∗+4g∗ to be found.

2.2. Deterministic Results

Deterministic results obtained from the stroboscopic map solver are examined to investigate the value
of the slip length parameter at decreasing values of a prescribed minimum value of the MFC over the
period (gmin). A PCB and NCB are examined under external (pO = 2, pI = 1) and internal (pO = 1,
pI = 2) pressurisation, respectively, as these configurations generally give the better operating conditions.
Figure 2 shows the MFC over a period of a rotor oscillation in the case of a PCB with non-zero slip
length. The MFC follows the path of a distorted negative sine curve, which is effectively constant and of
very small magntiude between t = 1.32 and t = 2.05, with gmin = 4.97×10−4. Physical dimensions of
the the bearing corresponding to the result in Figure 2 are; ĥ0 = 2×10−4 m, r̂0 = 0.1 m, r̂I = 0.02 m, ,
∆P̂ = 105 Pa, Ω̂ = 228.21s−1 and amplitude of rotor oscillation 1.8×10−4. Considering an oil film with
ρ̂ = 800Kgm−3 and µ = 10−1Kgm−1s−1 gives the associated radial Reynolds number Re = 0.8, radial
velocity Û = 0.5ms−1, Re∗ = 2.08×103 and speed parameter λ = 1.
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Figure 2. Minimum face clearance (MFC) over a period of rotor oscillation in the case of
a PCB β = 0.2 with slip length ls = 0.29 and amplitude of rotor oscillation ε = 1.4 with
gmin = 4.97×10−4; a = 0.2, σ = 1, λ = 1, α = 1, Kz = 10 and Da = 1.

Table 1 shows the value of the slip length parameter when gmin reaches a prescribed tolerance of
decreasing magnitude 1×10−3 ≥ gtol ≥ 0 in the case of a PCB and NCB with increasing amplitude of
rotor oscillations, the smallest of which is close to where contact first occurs. Increasing the amplitude
of rotor oscillations gives lower values of slip length for a given prescribed tolerance. The slip length
values increase for decreasing prescribed tolerances, with tolerances gtol = 1×10−5 and gtol = 0 having
effectively the same values; the former is significantly more straightforward to compute requiring
typically only one run of the code opposed to multiple runs of the code with decreasing step size in
gmin for the later. A numerical approximation of face contact is adopted, when gmin becomes less than a
prescribed tolerance taken in this case as gtol = 1×10−5.

Table 1. Values of slip length for a given tolerance 0.001 ≥ gtol ≥ 0 in the case of a
PCB β = 0.2 and NCB β = −0.2 for increasing values of amplitude of rotor oscillations
1.25≤ ε ≤ 1.60 and 1.12 ≤ ε ≤ 1.60, respectively; a = 0.2, σ = 1, λ = 1, α = 1, Kz = 10
and Da = 1.

gggtol === 111×××111000−3 gggtol === 111 ×××111000−4 gggtol === 111×××111000−5 gggtol === 000

ε = 1.25 2.20 2.34 2.35 2.35
β = 0.2 ε = 1.40 0.283 0.295 0.296 0.296

ε = 1.60 0.0542 0.0568 0.0570 0.0570

ε = 1.12 2.39 2.58 2.60 2.60
β =−0.2 ε = 1.30 0.835 0.877 0.822 0.822

ε = 1.60 0.0802 0.0877 0.0887 0.0887

To compute the probability of contact, the values of the slip length and amplitude of rotor oscillations
where contact first occurs are evaluated as shown in Figure 3. Configurations of a PCB and NCB, in
the case of decreasing annulus and angle, are examined where face contact initially occurs for values
of the slip length and amplitude of rotor oscillations on the curve in Figure 3. For parameter choices
of slip length and amplitude of rotor oscillations above the curve, face contact occurs but a fluid film is
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maintained between the bearing faces for parameter choices under the curve. In the cases considered,
for decreasing bearing width 0.8 ≥ (1− a) ≥ 0.2 face contact first occurs at lower values of amplitude
of rotor oscillations for a given slip length, with the exception of a NCB with sufficiently large angle
and slip length. Decreasing the coning angle of the rotor gives contact first occurring at larger values of
slip length and amplitude of rotor oscillations. The contact curves exhibit non-smooth behaviour which
is more distinct in a NCB than a PCB. The existence of this feature has been verified by using values
of the slip length and amplitude of rotor oscillations close to the contact curve in the stroboscopic map
solver, resulting in solutions of gmin tending to the contact tolerance gtol = 1× 10−5, and thus to the
current contact curve. Analogous contact plots are produced for slip length against amplitude of rotor
oscillations for a PCB and NCB with decreasing angle and increasing speed parameter in the case of a
wide and narrow annulus. These results will be used to calculated the probability of contact during the
parameter study. From a bearing design aspect, if the fluid gap becomes very small the tapered surfaces
need to be limited to a small angle.
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Figure 3. Contact plots of slip length against amplitude of rotor oscillations in the case of (a)
PCB and (b) NCB with angle (1) | β |= 0.3, (2) | β |= 0.2 and (3) | β |= 0.1 with decreasing
annulus 0.8≥ (1−a)≥ 0.2; λ = 1, α = 1, Kz = 10, σ = 1 and Da = 1.
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3. Uncertainty in Slip Length

Initially the slip length parameter is considered as a random variable reflecting the typical lack of
knowledge of its precise value and the resulting uncertainty on the magnitude of gmin is determined.
Taking a constant slip length along the surface of the rotor and stator whose value is not known with
certainty, a subjective interpretation of probability is used to model this lack of knowledge. Using the
method of derived distributions, the corresponding effect of variability in the slip length parameter can
be exactly determined, when it is expressed as a random variable. To incorporate that the slip length is
always positive, a truncated log-normal probability density function (pdf) distribution is used providing
a non-negative value with possible value ranging from the magnitude of bearing surface roughness to the
order of the film thickness, or larger according to the nature of the fluid and solid material.

The truncated log-normal pdf and cumulative distribution function (CDF) used for the slip length are
given by

fLs(ls; µls,σls ,3) =
f̃Ls(ls; µls,σls)

F̃Ls(3; µls,σls)
and FLs(ls; µls,σls,3) =

F̃Ls(ls; µls,σls)

F̃Ls(3; µls,σls)
(29)

in terms of the untruncated pdf, f̃Ls and CDF, F̃Ls , with mean µls and standard deviation σls . The
untruncated log-normal CDF is defined in terms of the untruncated pdf by

F̃Ls(ls; µls,σls) =

ls∫
−∞

f̃Ls(t; µls,σls)dt

=
1

√
2π

√
ln
(

1+
σ2

ls
µ2

ls

)
ls∫

−∞

1
t

exp


−

(
ln t− ln

(
µ2

ls√
σ2

ls
+µ2

ls

))2

2

√
ln
(

1+
σ2

ls
µ2

ls

)2

dt (30)

For example when a carbon surface is used, which is known to have large value of slip length, the
log-normal distribution is right truncation at ls = 3. Initially the average value and standard deviation
will be taken as 0.1, with the effect of alternative average values and standard deviations examined later.

Truncating the distribution however may lead to the specified mean not being representative of the
average value of the distribution. Figure 4 shows the pdf and CDF with standard deviation σls = 0.1 and
effective median M at the desired average value, Mls = 0.1, requiring the prescribed mean to be larger
than the average value; µls = 0.127. The discrepancy between the effective median and prescribed mean
increases as the standard deviation increases. Therefore throughout this work the prescribed mean of
the distribution is such that the effective median is representative of the desired average value of the
slip length.
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Figure 4. Probability density function (pdf) and cumulative distribution function (CDF) of
slip length with standard deviation σls = 0.1 and Mls = 0.1, with prescribed mean µls = 0.127.

Describing the slip length by a pdf allows the corresponding pdf of gmin to be found using the change
of variables, fGmin(gmin) =| ∂ ls/∂gmin | fLs(ls), where the derivative is found from the stroboscopic map
solver. The CDF of gmin can also be calculated, giving the probability gmin is less than or equal to a given
tolerance, thus the probability of contact is given when gmin ≤ 1x10−5. To calculate the CDF of gmin, the
set of deterministic slip lengths giving gmin less than or equal to each possible specified value is required;
namely Alsgmin = {Ls : χε(ls) ≤ gmin}. In this set, χε denotes the deterministic relation between the slip
length and gmin which can be found for different amplitude of rotor oscillations ε using the mathematical
model. The untruncated CDF of the minimum face clearance is calculated by

F̃Gmin(gmin) = P(Gmin ≤ gmin) = P(χε(Ls)≤ gmin) = P({Ls : χε(ls)≤ gmin})

=
∫

Alsgmin

f̃Ls(ls; µls,σls)dls (31)

Thus the truncated CDF for gmin is given by

FGmin(gmin) =

∫
Alsgmin

f̃Ls(ls; µls,σls)dls

F̃Ls(3; µls,σls)
(32)

using the untruncated functions given in (30).
Comparison of the CDF of gmin obtained from the Monte Carlo method and by using the method of

derived distributions is given in Figure 5. In this case the Monte Carlo method is run with an increasing
number of steps and the slip length values are taken at random from the truncated distribution. Obtaining
the values of gmin for each chosen slip length via the stroboscopic map solver allows the CDF and 95%
upper and lower confidence bounds to be computed. The CDF computed by the method of derived
distributions uses Equations (32) and the deterministic relation between the slip length and gmin to find
the set of values Alsgmin . Increasing the number of steps used in the Monte Carlo method gives the CDF
converging to the result computed via the method of derived distributions. The Monte Carlo method was
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computationally more expensive, requiring 10,000 steps to achieve the same level of accuracy as the
method of derived distributions. For further calculations the method of derived distributions was used
to produce subsequent results. The bearing configuration in this case gives gmin ≥ 0.210, giving a zero
probability of contact.
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Figure 5. CDF of gmin calculated using the method of derived distributions and a
Monte-Carlo method with (a) 100, (b) 1000 and (c) 10,000 steps for the case of a PCB
β = 0.2 with wide annulus and slip length distribution with median Mls = 0.1, standard
deviation σls = 0.1; a = 0.2, σ = 1, λ = 1, α = 1, Kz = 10, Da = 1.

Figure 6 shows the deterministic relationship between the slip length and gmin and the corresponding
pdf and CDF of gmin for increasing amplitude of rotor oscillations in the case of a PCB and slip
length distribution; median Mls = 0.1, standard deviation σls = 0.1. The deterministic results show the
amplitude of rotor oscillations taking ε = 1.00 and 1.07 with increasing slip length have gmin decreasing
asymptotically to a constant value. However for larger amplitude of rotor oscillations ε = 1.10, gmin

decreases until face contact at ls = 0.186. The pdf of gmin shows smaller values are likely to occur as the
amplitude of rotor oscillations increase, with the CDF showing the smallest value of gmin with probably
1 decreases as the amplitude of rotor oscillations increase. The probability of contact is given when
the CDF intercepts the y-axis, giving P(contact) = 0 for ε = 1.00 and 1.07 but P(contact) = 0.185 for
ε = 1.10.
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Figure 6. Probability density function (pdf) of slip length, deterministic relationship between
gmin and slip length, pdf of gmin and CDF of gmin for increasing amplitude of rotor oscillations
(a) ε = 1.00, (b) ε = 1.07 and (c) ε = 1.10 in the case of a PCB β = 0.2 with narrow annulus
and slip length distribution with median Mls = 0.1, standard deviation σls = 0.1; a = 0.8,
σ = 1, λ = 1, α = 1, Kz = 10, Da = 1.

For parameter studies of the probability of contact, it is convenient to compute the probability of
contact directly using

P(contact) =

∫
Alsgtol

f̃Ls(ls; µls,σls)dls

F̃Ls(3; µls,σls)
(33)

where Alsgtol = {Ls : χε(ls)≤ gtol} is the set of discrete values of the slip length parameter which give face
contact for different deterministic values of the amplitude of rotor oscillations. Therefore the probability
of contact is given as a function of the amplitude of rotor oscillations. The set Alsgtol can be found using
the deterministic contact curves in Figure 3 and analogous plots for increasing speed parameter in the
case of wide and narrow annuli.

The probability of contact against amplitude of rotor oscillations for increasing speed parameter in
the case of a PCB and NCB is shown in Figure 7. In the case of a PCB increasing the amplitude of
rotor oscillations increases the probability of contact, with the probability of contact increasing from
0 to 1 over a small range of amplitude of rotor oscillations. For a given value of amplitude of rotor
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oscillations the probability of contact increases for an increasing speed parameter due to a PCB being
externally pressurised and the effects of inertia overcoming the differential pressure to decrease gmin and
therefore increase the probability of contact. On the other hand a NCB has P(contact) remaining less
than 1, see Figure 7b, although it becomes large at the upper limit of amplitude of rotor oscillations
ε = 2. Increasing the speed parameter reduces the probability of contact for a given amplitude of rotor
oscillations as a NCB is internally pressurised giving the effects of inertia coinciding with the differential
pressure to increase gmin and thus decrease the probability of contact.
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Figure 7. Probability of contact against amplitude of rotor oscillations for increasing speed
parameter 0 ≤ λ ≤ 5 in the case of (a) PCB; β = 0.2 and (b) NCB β = −0.2 with wide
annulus and slip length distribution median Mls = 0.1, standard deviation σls = 0.1; a = 0.2,
σ = 1, α = 1, Kz = 10, Da = 1.

The probability of contact against amplitude of rotor oscillations for a PCB and NCB in the case
of decreasing angle is given in Figure 8, where increasing the amplitude of rotor oscillations increases
the probability of contact. Decreasing the coning angle in a PCB and NCB decreases the probability
of contact for a given amplitude of rotor oscillations, tending to the limit of a parallel bearing which
has zero probability of contact under the conditions considered in this work. It is important to observe
that the non-contact condition found for a parallel bearing is due to the inclusion of inertial effect not
considered in classical lubrication theory. Under non-pressurisation conditions and zero inertial effect
the fluid stiffness (16) is zero and consequently contact is expected under extreme conditions. A PCB has
zero probability of contact for larger amplitude of rotor oscillations than a NCB, but larger probabilities
of contact for amplitude of rotor oscillations larger than a given value which is less than ε = 1.50 for
all the cases considered. The non-smooth behaviour in these plots is due to the discontinuity in the
deterministic solutions as shown in Figure 3.
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Figure 8. Probability of contact for (a) PCB and (b) NCB with decreasing coning angle with
wide annulus and slip length distribution median Mls = 0.1, standard deviation σls = 0.1,
µls = 0.127; a = 0.2, λ = 1, σ = 1, α = 1, Kz = 10, Da = 1.

The effect of decreasing bearing width on the probability of contact is shown in Figure 9 over
increasing amplitude of rotor oscillations for a PCB and NCB, where increasing the amplitude of
rotor oscillations increases the probability of contact. Deceasing the bearing width gives an increased
probability of contact for a given amplitude of rotor oscillations, with a PCB having larger increases than
a NCB. In the case of a narrow annulus a = 0.8, a NCB has a larger probability of contact than a PCB
for a given amplitude of rotor oscillations, whereas other bearing widths considered have a PCB or NCB
having a larger probability of contact depending upon the magnitude of amplitude of rotor oscillations.
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Figure 9. Probability of contact for (a) PCB; β = 0.2 and (b) NCB; β = −0.2 with
decreasing annulus 0.2 ≤ a ≤ 0.8 with slip length distribution median Mls = 0.1, standard
deviation σls = 0.1, µls = 0.127; λ = 1, σ = 1, α = 1, Kz = 10, Da = 1.
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The effect of the probabilistic parameters on the probability of contact is examined by considering
the case of a fixed median with increasing standard deviation and increasing median with fixed standard
deviation as shown in Figure 10 for a PCB. Increasing the standard deviation of the slip length causes
the probability of contact to increase for a given amplitude of rotor oscillations in the case of ε < εc, but
to decrease otherwise, with critical value εc = 1.52 where the probability of contact curves intersect in
Figure 10a. This situation arises as increasing the standard deviation gives slip lengths over a greater
range, with ε < εc leading to an increase in the probability of contact. Whereas for ε > εc the range of
slip lengths which do not give contact increases and thus decreases the probability of contact. The effect
of slip lengths with increased median is shown in Figure 10b where a larger probability of contact for a
given amplitude of rotor oscillation, with the transition of probability of contact increasing over a shorter
range of amplitude of rotor oscillations.
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Figure 10. Probability of contact for a wide PCB with (a) fixed median Mls = 0.1, increasing
standard deviation 0.05 ≤ σls ≤ 0.5 and (b) increasing median 0.05 ≤ Mls ≤ 1.0, fixed
standard deviation σls = 0.1; β = 0.2, a = 0.2, σ = 1, λ = 1, α = 1, Kz = 10 and Da = 1.

Corresponding plots for a NCB give a similar trend to a PCB with a small magnitude change. For
sufficiently large amplitude of rotor oscillations a NCB has larger probability of contact than a PCB,
otherwise the reverse situation is true.

4. Uncertainty in Slip Length and Amplitude of Rotor Oscillations

An additional source of uncertainty in bearing operation is from the axial oscillations of the rotor
which are subject to a random excitation. A simplified case where oscillations are considered periodic
with random amplitude is given by Hou et al. [32]. For the current study the oscillations are considered
periodic with constant amplitude, but the value is not known with certainty, allowing an exact solution
for a two parameter random input problem to be obtained. Expressing the slip length and amplitude of
rotor oscillations as random variables, and using the deterministic results for the relation between the
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values of slip length and amplitude of rotor oscillations at contact (for example Figure 3), allows the
probability of contact to be calculated.

The rotor oscillations are described by hr = ε sin t, where the amplitude ε is defined as a random
variable instead of a fixed parameter. Following the approach adapted in the previous section the slip
length is described by a truncated log-normal pdf. The amplitude of the rotor oscillations is modelled
by a double truncated normal function, to include the expectation of little skewing. Truncation of the
normal distribution is required to ensure the amplitude of rotor oscillations is non-negative and, as in
realistic applications, the amplitude of rotor oscillations is restricted; in the results shown the upper limit
is set at ε = 2 which is twice the equilibrium gap g = 1. Initially the average value of the amplitude of
rotor oscillations is taken as ε = 1.2 to reflect extreme conditions, with the amplitude of rotor oscillations
larger then the equilibrium gap. The standard deviation is taken as σε = 0.1, with the effects of changes
in the average value and standard deviation examined later.

The truncated normal pdf and CDF for the amplitude of the rotor oscillations are given by

fE(ε; µε ,σε ,0,2) =
f̃E(ε; µε ,σε)

F̃E(2; µε ,σε)− F̃E(0; µε ,σε)
(34)

FE(ε; µε ,σε ,0,2) =
F̃E(ε; µε ,σε)− F̃E(0; µε ,σε)

F̃E(2; µε ,σε)− F̃E(0; µε ,σε)

with mean µε and standard deviation σε . The untruncated pdf, f̃E and CDF, F̃E are defined by

F̃E(ε; µε ,σε) =
∫

ε

−∞

f̃E(t; µε ,σε)dt =
1

σε

√
2π

ε∫
−∞

exp
(
−(t−µε)

2

2σ2
ε

)
dt

(35)

It is assumed the amplitude of rotor oscillations and slip length random variables are statistically
independent, giving the joint pdf as the product of their marginal pdf fE,Ls(ε, ls) = fE(ε) fLs(ls). To
compute the probability of contact the deterministic contact curves are used, as given in Figure 3,
to find the set of amplitude of rotor oscillations Aεgtol = {E : Gmin ≤ gtol} and slip lengths
Alsgtol = {Ls : Gmin ≤ gtol} which give gmin less than or equal to the contact tolerance gtol = 1× 10−5.
The probability of contact is computed numerically using

P(Gmin ≤ 0) = P({Ls : Gmin ≤ gtol})P({E : Gmin ≤ gtol})

=
∫

Alsgtol

fLs(ls)dls
∫

Aεgtol

fE(ε)dε

(36)

whose value is represented by the area above the contact curve in the probability space. The probability
of contact is computed numerically using Matlab.

The probability of contact for differing bearing geometries in a PCB and NCB are shown in Figure 11
with decreasing coning angle and bearing width. Decreasing the bearing width (1− a) increases the
probability of contact, with greater increases as the bearing width decreases. Decreasing the coning
angle in a PCB and NCB reduces the probability of contact for all given bearing widths. A PCB and
NCB with small coning angle | β |= 0.1 have similar probabilities of contact, whereas for increasing
coning angles a PCB has consistently lower probability of contact than a NCB.
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Figure 11. Probability of contact against bearing width for (a) PCB and (b) NCB with
decreasing angle; Mε = 1.2, σε = 0.1, Mls = 0.1, σls = 0.1, σ = 1, λ = 1, α = 1, Kz = 10
and Da = 1.

Table 2 shows the probability of contact for a PCB and NCB in the case of a wide (a = 0.2) and
narrow (a = 0.8) annulus with increasing speed parameter. Results show increasing the coning angle
consistently increases the probability of contact and the probability of contact is greater in a bearing
with a narrow annulus compared to a wide annulus. Increasing the speed parameter has an opposing
effect between the two bearing types, a PCB has the probability of contact increasing whereas a NCB
has a decreased probability of contact. As a PCB is externally pressurised, the effects of inertia overcome
the differential pressure giving contact at a smaller value of ls and therefore a larger probability of contact
as the speed parameter increases. Whereas a NCB is internally pressurised giving the effects of inertia
coinciding with the differential pressure to give contact at a larger value of ls as the speed parameter
increases and thus a smaller probability of contact. A NCB has a larger probability of contact than a
PCB, with the exception of a sufficiently large speed parameter as indicated by the shaded region in
Table 2. In these cases, the contact curves for a PCB sit below those for a NCB, with contact at smaller
values of slip lengths and amplitude of rotor oscillations.

Table 2. Probability of contact for a NCB (β < 0) and PCB (β > 0) in the case of a wide
a = 0.2 and narrow a = 0.8 annulus with increasing speed parameter 0 ≤ λ ≤ 5; Mε = 1.2,
σε = 0.1, Mls = 0.1, σls = 0.1, σ = 1, Kz = 10, α = 1 and Da = 1.

wide, a = 0.2 narrow, a = 0.8

λλλ === 000 λλλ === 111 λλλ === 555 λλλ === 000 λλλ === 111 λλλ === 555

β = 0.1 0.00162 0.00281 0.0414 0.328 0.343 0.409
β = 0.2 0.00288 0.00819 0.291 0.598 0.602 0.665
β = 0.3 0.00624 0.0231 0.609 0.709 0.724 0.781

β =−0.1 0.00337 0.00319 0.00264 0.357 0.344 0.292
β =−0.2 0.0184 0.00826 0.00326 0.680 0.671 0.627
β =−0.3 0.179 0.0902 0.00381 0.852 0.836 0.785
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To evaluate the effect of values associated with the distribution parameters, the probability of contact
is examined for increasing standard deviations with fixed medians and increasing medians with fixed
standard deviations. Figure 12 shows the probability of contact against the standard deviation of the
amplitude of rotor oscillations with increasing standard deviation of the slip length and against median of
amplitude of rotor oscillations with increasing median of the slip length in the case of a PCB. Increasing
the standard deviation of the amplitude of rotor oscillations increases the probability of contact. The
effect of increasing the standard deviation of the slip length however depends on the size of the standard
deviation of the amplitude of rotor oscillations with respect to a critical value σεc, given as the value
where the probability of contact curves intersect in Figure 12a. Increasing the standard deviation of
the slip length gives the probability of contact increasing (decreasing) for standard deviations of the
amplitude of rotor oscillations below (above) the critical value σεc = 0.424, due to more values of the
slip length giving contact (no contact) being included. Results in Figure 12b show increasing the median
value of the amplitude of rotor oscillations gives negligible probability of contact until ε ≤ 1. Increasing
the median of the slip length increases the probability of contact.
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Figure 12. Probability of contact against (a) standard deviation of the amplitude of rotor
oscillations with increasing standard deviation of the slip length 0 ≤ σls ≤ 1; Mε = 1.2,
Mls = 0.1 and (b) median of the amplitude of rotor oscillations with increasing median of
the slip length 0.1 ≤M ≤ 1.0; σε = 0.1, σls = 0.1 in the case of a PCB with wide annulus;
a = 0.2, σ = 1, λ = 1, α = 1, Kz = 10 and Da = 1.

Corresponding plots for a NCB show the probability of contact for increasing standard deviation of
the slip length and amplitude of rotor oscillations has a similar trend but with a decrease in magnitude
for a given choice of probabilistic parameters. In the case of increasing median of the slip length and
amplitude of rotor oscillations a NCB has a similar trend to a PCB but with a small magnitude shift. For
the cases considered in Figure 12; small slip length medians, Mls = 0.05 and 0.1 give a larger probability
of contact in a PCB than a NCB, effectively the same for median Mls = 0.5 and for larger slip length
median Mls = 1.0 a NCB has larger probability of contact than a PCB.
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5. Conclusions and Summary

A deterministic mathematical model is extended for a high speed pressurised thin film bearing
containing a rigid coned rotor with a slip length boundary condition imposed on the bearing faces.
The axial motion of the stator is modelled as a spring-mass-damper system to investigate a fully coupled
unsteady bearing when subject to uncertainty in amplitude of rotor oscillations and slip length parameter.
In an initial deterministic analysis of the film the Reynolds equation and stator equation are given in terms
of the time dependent minimum face clearance, allowing explicit analytic expressions for the pressure
field, force on the stator and a nonlinear second-order non-autonomous ordinary differential modified
stator equation to be derived. A stroboscopic map solver is implemented to find periodic solutions. The
performance of two coned bearing configurations, a PCB and NCB are considered under external and
internal pressurisation, respectively and examined under extreme operating conditions.

Recognising the realistic implications of uncertainty in the model parameter values the slip length
parameter is taken as a random variable with prescribed mean and standard deviation together with
similar attributes for the amplitude of the axial rotor oscillations. The value of the prescribed mean is
such that the effective median of the random parameter is representative of the required average value.
The deterministic mathematical model is used to find the relation between the slip length and gmin,
allowing the pdf of gmin to be computed. The CDF of gmin is found via the method of derived distributions
from which the probability of contact can be found; a numerical approximation of face contact is used to
significantly reduce the computational requirement without loss of accuracy. The probability of contact
is determined directly for the parameter studies.

A detailed study is provided to evaluate the effects of uncertainty in values of the slip length parameter
on potential bearing geometries associated with coning angle, bearing width and rotational speed.
Results show an increase in the probability of contact as the amplitude of rotor oscillations increase,
a wide bearing has a lower probability of contact than a narrow bearing and a small angle giving a
reduced probability of contact compared to a large angle. Increasing the speed parameter causes a
decreased probability of contact for a NCB but increased probability in a PCB due to the inertial effects
overcoming the differential pressure effects. Examining the effects of different distribution parameters
shows increasing the median of the slip length increases the probability of contact and increasing the
standard deviation for an amplitude of rotor oscillation below a critical value εc increases the probability
of contact whereas for amplitude of rotor oscillation ε > εc decreases the probability of contact.

To reflect operational bearing conditions the slip length and amplitude of rotor oscillations parameters
are considered as random variables with a prescribed mean and standard deviation and the method
of derived distributions is used to calculate the probability of contact. Results show decreasing the
bearing width and increasing the coning angle increases the probability of contact. Increasing the speed
parameter gives the probability of contact increasing in a PCB but decreasing in a NCB. Increasing the
slip length standard deviation causes the probability of contact to increase for standard deviations of the
amplitude of rotor oscillations below a critical value σε < σεc, but decrease for σε > σεc. Increasing the
median of the slip length and amplitude of rotor oscillations increases the probability of contact.



Lubricants 2015, 3 517

Acknowledgments

This work was supported by funding from the EPSRC Doctoral Prize grant No. EP/M506588/1
and was carried out at the University Technology Centre in Gas Turbine Transmission Systems at the
University of Nottingham.

Author Contributions

The project and general approach was conceived as a work of Nicola Bailey in collaboration with
K. Andrew Cliffe, Stephen Hibberd, and Henry Power. Nicola Bailey derived the mathematical model
and performed the numerical analysis based on a numerical approach devised by K. Andrew Cliffe. All
authors were involved in the manuscript preparation and editing for final submission.

Conflicts of Interest

The authors declare no conflict of interest.

A. Derivation Equations

Dimensionless pressure boundary conditions are given by

p = pI at r = a, and p = pO at r = 1 (37)

Analytic expression for the pressure is given by

p(g(t),r) = pI +(pO− pI)
G(g(t),r)
G(g(t),1)

+
σ

2
dg
dt

(
H(g(t),r)− H(g(t),1)

G(g(t),1)
G(g(t),r)

)
+λ

(
L(g(t),r)− L(g(t),1)

G(g(t),1)
G(g(t),r)

)
(38)

where the integrals G(r), H(r) and L(r) are calculated from

G(g,r) =
∫ r

a

1
x((g+(x−a)β )3 +6ls(g+(x−a)β )2)

dx (39)

H(g,r) =
∫ r

a

x
(g+(x−a)β )3 +6ls(g+(x−a)β )2 dx, (40)

L(g,r) =
∫ r

a

x
(
(g+(x−a)β )5 +10(g+(x−a)β )4ls

)
((g+(x−a)β )3 +6ls(g+(x−a)β )2)(g+(x−a)β +2ls)2

+
x
(70

3 (g+(x−a)β )3l2
s +20(g+(x−a)β )2l3

s
)

((g+(x−a)β )3 +6ls(g+(x−a)β )2)(g+(x−a)β +2ls)2 dx (41)
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for a PCB. Exact evaluations are given by

G(g,r) =
1

g−aβ +6ls

(
1

(g−aβ )2 ln
(

gr
a(g+(r−a)β

)
+

1
g−aβ

(
1
g
− 1

g+(r−a)β

)
+

1
36l2

s

(
ln
(

g(g+(1−a)β +6ls)
(g+(1−a)β )(g+6ls)

)
+6ls

(
1

g+(r−a)β
− 1

g

)))
(42)

H(g,r) =
1

β 2

((
1
g
− 1

g+(r−a)β

)
+

g−aβ +6ls
36l2

s

(
ln
(

g(g+(1−a)β +6ls)
(g+(1−a)β )(g+6ls)

)
+6ls

(
1

g+(r−a)β
− 1

g

)))
(43)

L(g,r) =
r2−a2

2
+

ls
β 2

(
4
3

ls(g−aβ +2ls)
(

1
g+(r−a)β +2ls

− 1
g+2ls

)
+

3
2
(g−aβ +6ls) ln

(
(g+6ls)(g+(r−a)β +2ls)
(g+2ls)(g+(r−a)β +6ls)

)
− 14

3
ls ln

(
g+(r−a)β +2ls

g+2ls

))
(44)

respectively. Similar expressions are computed for a NCB. Equations for a no-slip bearing are given
in [2].

The force on the stator is defined as

F(t) = 2π

∫ 1

a
(p− pa)rdr (45)

where pa is the ambient pressure above the stator.
The force on the stator is obtained in the form

F(t) = π

(
A(g(t))+

dg
dt

B(g(t))
)

(46)

using the force integral in (45) and pressure in (38). Expressions for A and B are defined as

A(g,λ , ls,β ) = (1−a2)(pI− pa)+2(pO− pI)
GI

G(g,1)
+2λ

(
LI−

L(g,1)
G(g,1)

GI

)
(47)

B(g, ls,β ) = σ

(
HI−

H(g,1)
G(g,1)

GI

)
(48)

Integrals GI , HI and LI are given by

GI(g) =
∫ 1

a
rG(g,r)dr, HI(g) =

∫ 1

a
rH(g,r)dr, LI(g) =

∫ 1

a
rL(g,r)dr (49)
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with exact evaluations for a PCB given by

GI =
1

g−aβ +6ls

(
− 1

2(g−aβ )2 ln
(

a(g+(1−a)β )
g

)
+

(1−a)(g−aβ −β )

2βg((g−aβ )

+
1

72β 2l2
s

(
6ls(1−a)β

(
g−aβ −β

g

)
+
(
(g−aβ +6ls)2−β

2) ln
(

g(g+(1−a)β +6ls)
(g+(1−a)β )(g+6ls)

)))
(50)

HI =
1

β 2

(
−(1−a)(2g− (1+a)β )

2βg
+

3(g−aβ +2ls)
2β 2 ln

(
g+(1−a)β

g

)
+

g−aβ +6ls
72β 2l2

s

(
6ls(1−a)β (g− (1+a)β )

g

+
(
(g−aβ +6ls)2−β

2) ln
(

g(g+(1−a)β +6ls)
(g+(1−a)β )(g+6ls)

)))
(51)

LI =
(1−a2)2

8
+

2ls2a(1−a2)

3β (g+2ls)
+

ls2

2β 2 (8a+1−9a2)− 4(1−a)ls2

β 3 (g+5ls)

+ ln
(

g+6ls
g+(1−a)β +6ls

)(
−3lsa(1−a2)

4β

3ls
4β 2 (g+6ls)(1−3a2)+

9lsa
4β 3 (g+6ls)2

− 3ls
4β 4 (g

3 +18lsg2 +108ls2g+216ls3)

)
+ ln

(
g+(1−a)β +2ls

g+2ls

)(
−3lsa(1−a2)

4β

ls
12β 2 (9g+26ls)(1−3a2)

− lsa
4β 3 (9g2 +52gls +68ls2)+

ls
4β 4 (3g3 +26lsg2 +68ls2g+56ls3)

)
(52)

Similar expressions are computed for a NCB. Equations for a no-slip bearing are given in [2].
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