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Abstract: The present study explores the characteristics of 2D MHD melting with reference to mass
and heat transportation upon stagnation point Powell–Eyring nanofluid flow on an extensible surface.
Melting is an important phenomenon that is involved in many procedures such as permafrost melting,
solidification of slag, defrosting frozen ground etc., all of which are examples of soil freezing and
melting that involve heat trafficking through a coil in a grounded pump. A mathematical model is
developed for the boundary layer flow. The differential equations are solved through a numerical
algorithm which makes use of the boundary value problem solver bvp4c, applying MATLAB software.
The numerical variations of embedded parameters on velocity lineation, temperature figuration,
and concentration delineation are represented graphically, as are the width of the boundary layer
value and the delineation rate for the increasing velocity parameter. The velocity function shows a
decremental response for M while the opposite behavior is seen against the concentration field.

Keywords: MHD; melting effects; Powell–Eyring nanofluids; Brownian motion; stagnation point;
chemical reaction; mass transfer

1. Introduction

Owing to the broad thermal applications of nanoparticles, scientists have specified
different applications of such tiny particles in engineering systems, industrial phenomenon
and real-world problems. Many challenges related to low-cost energy options can be solved
efficiently with modern reforms in nanotechnology, reforms that have given attention to
nanoparticles that are considered to have thermal features. In the same way, the versatile
significance of this type of metallic nanoparticle also has applications in the medical field,
such as destruction of cancer tissues, the diagnosis of various diseases, creation of artificial
lungs, and the curing of heart diseases and brain tumors. The improvements to cooling
procedures, that enhance different thermal engineering phenomena, mean that solar systems
can be upgraded with the use of nanomaterials when compared with base fluids. Nanofluids
have recently attracted many researchers to investigate their improved thermal characteristics.
Choi [1] proposed the fundamental work on nanofluids. Later, many different investigations
were performed on this topic. Buongiorno [2] developed a mathematical model for convective
nanofluid flow that included Brownian diffusion and thermophoresis effects. The importance
of thermophoresis and Brownian motion effects in nanoparticle/base-fluid slide processes
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cannot be overstated. Kuznetsov et al. [3] proposed an analytical solution to the problem
of fluid flow under a convective boundary layer across a vertical plate in the presence of
nanoparticles. They utilized the influence of thermophoresis and Brownian motion to combine
the nanofluid model. Khan and Pop [4] explored effects of nanoparticles on heat transmission
and boundary layer flow past a linearly stretching surface. Prasad et al. [5] observed the
phenomenon of the heating impact of Williamson nanofluid confined by a rotating disk with
mixed convection. Hassan et al. [6] assessed the thermal impact of nanofluids when base
fluid viscosity is high. Nadeem et al. [7] investigated a Jeffrey liquid flow model across a
stretched surface with nanoparticles. Ramesh et al. [8] expanded on the same experiment
but also applied an internal source of heat and magnetic flux. The particle concentration
impact on a dusty fluid flow model via porous surface has been explored by Geisha et al. [9].
Ibrahim et al. [10] studied the stagnation point of magneto-hydrodynamic flow with heat
transmission of a nanoliquid on a stretchable surface. Madhu and Kishan [11] studied the
impact of nanoparticles in a power-law non-Newtonian fluid on an extended sheet with heat
source/sink and thermal radiation. Kumari and Gorla [12] presented a theoretical analysis for
warm nanoliquid flow to a horizontal melting plate.

In the advanced technology process, melting and solidification phenomena are critical.
The melting phenomena of the solid–liquid phase shift have a large scale of applications,
including welding, crystal formation, thermal protection, heat transfer, permafrost melt-
ing, and semiconductor material preparation. In the beginning, Robert [13] reported the
defrosting of ice slabs in heated steam. Hayat et al. [14] investigated the stagnation point
flow of Maxwell liquid over a stretchable surface with these melting phenomena. Similarly,
the melting process in MHD fluid flow towards a movable surface in heat radiation was
explored by Das [15]. Epstein and Cho [16] performed a numerical simulation of melting
heat transmission in a stationary panel. Animasaun et al. [17] illustrated mixed convection
Newtonian fluid flow towards an upper horizontal thermally stratified melting surface of a
paraboloid of revolution. Some related studies are referred in [18–27]. Animasaun et al. [28]
explored the impact of the random movement of nanoparticles on various physical dynamic
characteristics of fluids. Smith et al. [29] demonstrated how the addition of aluminum
oxide nanoparticles augment the viscoelasticity and filtration effects of muds under an
HPHT state.

Non-Newtonian nanofluid flow over a stretchable surface has fascinated many scien-
tists due to its wide applications in the field of manufacturing. Its uses in industrial sectors
include hot lamination, extruders, manufacturing of fiberglass, melt by fusion, rubber
sheets production, the cooling of metallic panels that will be utilized as electrolytes, etc.

Industries produce polymer slips and strings by extruding polymer and winding it up
through rollers that stand at a designated distance from one another. The rate of widening of the
surface is roughly comparable to the reserve of the hole described by Vleggaar [30]. A detailed
description of Powell and Eyring’s classical fluid is given in [31]. Therefore, several advantages
are concluded for non-Newtonian fluid simulations in the future, including simplicity, the pros-
perity of calculation and physical strength. The realization of the kinetic theory of fluid, instead
of the observed relative, for both share and special rates, contracts Newtonian performance. A
stretch tube with adjustable viscosity under certain margin sheet conditions resulted in the flow
of Powell–Eyring fluid, as observed by Malik et al. [32]. Powell–Eyring liquid flows, described
by Hayat et al. [33], were studied on a shrinking surface under conductive border conditions.
There is a Powell–Eyring fluid mentioned in some of the communications of advanced models.
In their paper [34], Islam et al. discussed lubricants that disturb Powell–Eyring fluids through
homotopy perturbations. Makinde et al. [35] have discussed the dynamics of Casson fluids
subject to Lorentz force applied on stratified melting space.

Motivated by these facts, it is noteworthy to explore the volume fraction of nanoparticle
impacts on the MHD stagnation point flow of Powell–Eyring liquid with heat and mass
transmission. The melting and Brownian effects are considered in the present study. A
suitable update is employed to convert the nonlinear PDE’s into simple ODE’s which are
then solved numerically. To demonstrate the effect of pertinent parameters, the result
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of concentration, velocity and temperature configurations are drawn pictorially and are
represented in tabulated form. To validate the method’s accuracy, the present findings
show superb accuracy with those previously obtained by [36–40].

The aim of the current research is to present the thermal inspection of heat and mass
transfer phenomenon for Powell–Eyring nanofluid subjected to a stagnation point flow. The
applications of viscous dissipation and chemical reaction have been endorsed. The analysis
is further modified by incorporating the melting heat phenomenon. The motivations for
considering the Powell–Eyring fluid model is justified as a limiting case for viscous fluid
models that are attained at any shear rate [41–43]. The modelling of this model is based
on the theory of kinetic energy of gasses. The numerical computations are based on the
shooting technique.

2. Mathematical Modelling

The present analysis focuses on the incompressible stagnation spot of Powell–Eyring
nanofluid flow with melting heat transport against a stretched surface at y = 0, which
can be understood through Figure 1. For the given sheet, we considered x and y axes
perpendicular to the surface. This stream is limited to y ≥ 0. The free stream velocities
are assumed as ue(x) = ax and extendable surface as uw(x) = cx (a and c indicate positive
constants), considering two equal forces in magnitude with opposite direction in such
a way that the panel is fixed to the starting point. Hence, the stagnation point flow is
calculated. We further considered T∞ to be larger in value than Tm, which depicts ambient
temperature and Tm, which represents melting surface temperature respectively.
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u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − k (c− c∞), (4)

with boundary conditions:

u = uw = cx, T = Tm, C = Cw, k
(

∂T
∂y

)
y=0

= ρ[λ+cs(Tm−

T0)]v(x, 0), at y = 0,
(5)

u = ue(x), T → T∞, C → C∞, as y→ ∞. (6)

where u and v are velocity components along x and y directions, respectively, ρ is fluid
density, β is material parameter, T is fluid temperature, k is thermal conductivity, cp is the
specific heat, ν is kinematic viscosity, λ is latent heat, cs is heat capacity and T0 is melting
surface temperature.

By applying similarity transformation, we have,

η = y
√

c
v , u = cx f ′(η), v = −

√
cv f (η), θ(η)= T−T∞

Tw−T∞
,

ϕ(η)= C−C∞
Cw−C∞

(7)

The following reduction can be achieved when Equation (6) is used to reduce
Equations (1)–(4).

(1 + ε) f ′′′+ f f ′′ − f ′
2− ∈ δ f ′′

2
f ′′′ + A2 −M f ′ = 0, (8)

1
Pr

θ′′ + f θ′ + Nbϕ′θ′ + Ntθ′
2
+ (δ + MEc) f ′

2
= 0, (9)

ϕ′′ + Le f ϕ′ +
Nt
Nb

θ′′ − K0 ϕ = 0, (10)

The corresponding dimensionless boundary conditions are

f ′(0) = 1,θ(0) = 0,ϕ(0) = 1, Pr f (0) + Nθ′(η) = 0, (11)

f ′(∞) = A,θ(∞) = 1, ϕ(∞) = 0. (12)

where ε = 1/µBc and δ = c3x2/2νc2 are Eyring fluid parameters, A = a
c is velocity ra-

tio of a free stream, N = c f (T∞−Tm)/λ + cs (Tm − To) is melting heat transfer parameter,
Nb = τ(Cw − C∞)DB/ν is Brownian motion parameter, Nt = τ(Tw − T∞)DB/T∞ν is ther-
mophoresis parameter, M = σB0

ρc is the Hartmann number, Le = α
DB

is the Lewis number,

and Ec = u2
w

cp(Tw−T∞)
is the Eckert number. The dimensionless form of the wall shear force

and local Nusselt numbers are [37]:

C f Rex
1
2 = (1 + ε) f ′′ (0)− ε

3
δ f ′′3(0), NuxRex−

1
2 = −θ′(0) (13)

3. Numerical Scheme

The numerical calculations are achieved by using the shooting technique. The numer-
ical chart of the shooting technique is presented in Figure 2. In simulating the numerical
computations, the first order system of the problem is attained by the following assumptions:

f = m1, f ′ = m2, f ′′ = m3, f ′′′ = m′3,θ = m4, θ′ = m5, θ′ ′ = m′5
ϕ = m6, ϕ′ = m7, ϕ′′ = m′7

The dimensionless system (810) in view of the above defined variables becomes:

m′3. = − 1
(1 + ε + δεm1)

(m1m3 + m2
2 − A2 + M f ′) (14)
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m′5 = Pr(−m1m5 − Nbm6m5 − Ntm5
2 − (δ + MEc)m2

2) (15)

m′7 = −Le m1m6 −
Nt
Nb

m′5 + K0 ϕ, (16)

The corresponding dimensionless boundary conditions are

m2(0) = 1,m4(0) = 0,m6(0) = 1, Prm1(0) + Nm5(0) = 0, (17)

m2(∞) = A,m4(∞) = 1, m6(∞) = 0. (18)
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4. Validation of Results

The obtained numerical results are verified in Table 1 as a limiting case. The results
are compared with the work of Hayat et al. [37] for which analytical computations are
performed by using the homotopy analysis method. A fine accuracy between both studies
is noted.

Table 1. Comparative analysis for obtained numerical results for f ′′(0) due with variation of A when
M = δ = M = N = Ec = 0, Pr = 0.7.

A Hayat [37] Present Results

0.10 −0.96802 −0.968021

0.20 −0.91692 −0.916920

0.50 −0.66722 −0.667222

2.00 2.0175 2.01762

3.00 4.7291 4.72925

5. Results and Discussions

The physical interpretation of parameters governing the flow are observed in this section.
The onset of melting parameter N on velocity f ′(η) is predicted in Figure 3. An enhancing
impact in velocity against larger N has been noted. Figure 4 reports the aspect of temperature
profile θ(η) for enlarging N. A decreasing variation in temperature profile is exhibited for
larger N. Therefore, it is concluded that the melting phenomenon is important to control the
thermal phenomenon. Physically, this declining trend is due to fluctuation in temperature in
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the melting surface and ambient surface. The observations summarized in Figure 5 reflect the
significant of melting parameters N on the concentration profile. For larger melting phenomena,
the rate of concentration improved. Figure 6 preserved the observations for f ′(η ) due to
Powell–Eyring fluid parameter ε. A rich profile of velocity due to larger ε is noted. Physically,
this trend is due to applications of viscoelastic forces. The change in temperature θ(η) due
to the enhanced impact of ε is determined in Figure 7. An increasing fluctuation in θ(η) for
ε is deduced. However, the declining behavior of φ(η) for ε is evaluated and is reported in
Figure 8. The graphical impact of dissipation parameter δ on θ(η) is reflected via Figure 9.
The presence of viscous dissipation reflects the strength of the thermal profile. However, the
reducing observations for φ(η) are assessed for δ (Figure 10). The impact of the velocity ratio
parameter A on θ(η) and φ(η) is examined via Figures 11 and 12, respectively. The enhancing
change in θ(η) for large A is claimed. However, contrary observations for φ(η) are depicted for
φ(η). The Brownian motion parameter Nb has an impact on temperature θ(η) and concentration
φ(η) and is explained in Figures 13 and 14. An enhancing impact of Nb on θ(η) is evaluated.
Physically, enhancing change in θ(η) for Nb is due to the Brownian phenomenon. The Brownian
phenomenon is based on the random motion of fluid particles due to collision which increases
the rate of heat transfer. However, declining aspect of Nb on φ(η) is examined in Figure 14.
The lower concentration due to Nb is noted. In fact, a reverse relation of Nb has been noted in
the dimensionless concentration equation. Figure 15 shows the onset of the thermophoresis
parameter Nt on the concentration profile. An increasing impact of Nt on the concentration
profile has been observed. The graphical results summarized in Figure 16 convey the role of
Eckert number Ec on f ′(η). An increment assigning to Ec reports a more enhanced profile of
f ′(η). Physically, such observations are due to applications of the kinetic energy of particles. The
effect of Le on φ(η) is displayed in Figure 17. A decline in the concentration profile results when
the Lewis number obtains an increasing trend. This decrement in concentration is associated
with the low mass diffusivity against an increasing Schmidt number. Figure 18 explains a
relation between φ(η) and chemical reaction parameter K0. It is observed that the concentration
profile φ(η) declines for a larger value of K0. Figures 19 and 20 represent the role of the magnetic
parameters M on the concentration profile and velocity field, respectively. A suppression of
velocity is noted for larger M. This trend is physically associated with the application of Lorentz
forces. However, the concentration profile is enhanced for increasing M.

The wall shear force and Nusselt number variation for numerous values of flow
parameters are listed in Table 2. For increasing Pr and ε, an increase in skin friction factor
and Nusselt number is noted. However, lower numerical values for these quantities are
claimed for A and N.
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Table 2. Calculation of f ′′ (0) and −θ′ (0) for N, Pr, ε, and A when δ = 0.5.

N Pr ε A (1+ε)f”(0)− ε
3 δf’’3 (0)−θ’(0)

0.0 1.0 0.5 1.1162 0.7088

0.3 0.7750 0.6910

0.5 0.5490 0.6953

0.8 0.2214 0.7116

0.8 0.5552 0.7540

1.0 0.5652 0.8629

1.2 0.5729 0.9630

0.0 0.4400 0.8444

0.5 0.5652 0.8629

1.0 0.6749 0.8766

1.2 0.7157 0.8813

0.0 0.7037 0.7496

0.2 0.5652 0.8629

0.5 0.2750 1.0463
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6. Conclusions

The thermal impact of Powell–Eyring nanofluid has been studied for stagnation point
flow. The application of viscous dissipation and chemical reaction have been considered.
The numerical outcomes are presented with the help of the shooting technique. The major
outcomes of the analysis are:

â An enhanced impact in velocity due to the melting heat transfer parameter has been
observed.

â An increase in the thermal profile is observed for melting heat transfer parameter and
Powell–Eyring fluid parameter.

â The temperature profile was enhanced due to Powell–Eyring fluid parameters.
â With increasing velocity ratio and chemigation reaction constant, the concentration

profile declined.
â For larger Eckert numbers, increasing observations for temperature profile are claimed.
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Nomenclature

(u, v) velocity components
ρ fluid density
β material parameter
T fluid temperature
k thermal conductivity
cp specific heat
v kinematic viscosity
λ latent heat
cs heat capacity
T0 melting surface temperature.
∈, δ Eyring fluid parameters
A velocity ratio of a free stream
N melting heat transfer parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
M Hartmann number
Le Lewis number
Ec Eckert number
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