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Abstract: Nanotechnology is a fundamental component of modern technology. Researchers have
concentrated their efforts in recent years on inventing various algorithms to increase heat transmission
rates. Using nanoparticles in host fluids to dramatically improve the thermal properties of ordinary
fluids is one way to address this problem. The article deals with the bio-convective Walter’s B
nanofluid with thermophoresis and Brownian diffusion through a cylindrical disk under artificial
neural networks (ANNs). In addition, the thermal conductivity, radiation, and motile density of
microorganisms are taken into consideration. The Buongiorno model is utilized to investigate
the properties of nanofluids in motile microorganisms. By using appropriate similarity variables,
a dimensionless system of a differential system is attained. The non-linear simplified system of
equations has been numerically calculated via the Runge–Kutta fourth-order shooting process. The
consequences of flow parameters on the velocity field, temperature distribution, species volumetric
concentration, and microorganism fields are all addressed. Two distinct artificial neural network
models were produced using numerical data, and their prediction performance was thoroughly
examined. It is noted that according to the error histograms, the ANN model’s training phase
has very little error. Furthermore, mean square error values calculated for local Nusselt number,
local Sherwood number, and local motile density number, parameters were obtained as 3.58× 10−3,
1.24× 10−3, and 3.55× 10−5, respectively. Both artificial neural network models can predict with
high accuracy, according to the findings of the calculated performance parameters.

Keywords: motile microorganisms; Walter’s B nanofluid; variable thermal conductivity; Brownian
motion; thermophoresis; artificial neural network

1. Introduction

With the development of artificial intelligence tools, various artificial intelligence tools
have been used in the field of data forecasting in many areas. Artificial neural networks,
developed by simulating the human brain, are one of the widely used artificial intelligence
tools. ANNs, which can predict data with high accuracy thanks to powerful learning
algorithms, are used in many engineering fields and various studies are carried out on this
subject. The ANN model was used by Shafiq et al. [1] to conduct a numerical study to
interpret the properties of the flow of electrically conductive Williamson fluid on a porous
stretched surface. In order to study the heat phenomenon, both the velocity and thermal
shift phenomena must be taken into account. The Galerkin weighted residual technique
was utilized to generate the set of data for the suggested ANN model. The Levenberg–
Marquard algorithm was used in the ANN model with 10 neurons in the hidden layer. The
ANN model’s output and the target values were compared and analyzed. It is indicated
that the ANN model can accurately predict output values. Miandoab et al. [2] studied
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the effects of spunbond splices on heat transport and pressure drop along a horizontal
tube carrying graphene-oxide/water nanofluid. In the numerical study, the flow of the
nanofluid was analyzed by considering the different volume ratios and Re. The inner
tube contains twisted bands that have varying aspect ratios. Provided that the bending
ratio is not too low, solid nanoparticles at high volume fractions and Re levels enhance
heat transfer. Using the obtained numerical data, an ANN model is proposed to estimate
Nu and pressure drop. The results demonstrated that the ANN model can accurately
predict output values. Shafiq et al. [3] used an artificial neural network to optimize the
Darcy–Forchheimer squeezed flow in non-linear stratified liquid under convective con-
ditions. The thermal characteristics of Ree–Eyring liquid with entropy generation and
a non-linear heat source/slot restricted by a double rotating disk were investigated by
Alzahrani et al. [4]. The cases covered in the study include the classical definitions of joule
heating and homogeneous/heterogeneous chemical reactions. Using Darcy–Forchheimer
expressions, the importance of porous media is emphasized and shear effects are incor-
porated on the double spinning disk. The analytical procedure was evaluated by the
homotopic procedure and the problem was formulated with differential equations. In ad-
dition, an ANN model related to physical parameters has been developed. The entropy
generation model and Bejan number were estimated by an ANN model considering flow pa-
rameters. According to the study findings and graphic evaluations, the entropy generation
rate enhanced with the Weissenberg number and slip factor. A neural network developed
by Shafiq et al. [5] on single-walled carbon nanotubes and ethylene glycol nanofluids in
slender needles was based on nanomaterial diameter and solid-fluid interfacial layers.

The concept of nanoscience has been widely used in the context of challenges associ-
ated with classical heat transfer in order to improve the heat transfer properties of various
fluids. Liquids with low thermal conductivity present a significant obstacle to enhancing
heat transfer in manufacturing frameworks. Fluids having a high thermal conductivity,
on the other hand, are essential, and because of this reason, nanoliquids are essential.
Nanofluids have been shown to be useful in a number of technical and pharmaceutical
applications due to their excellent enhancement in heat capacity. Combining nanofluids
with biotechnological mechanisms could be applied to nutraceuticals, biological sensors,
and agriculture. Nanotechnology makes use of a wide range of nanomaterials, such as
nanoparticles, nanorods, and nanostructures. Magnetic nanofluids contain both magnetic
and liquid characteristics, and can be employed in tunable optical fiber filters, oscillators,
optical switches, and optical panes, among other applications. Nanofluids are used as
refrigerants in a wide range of electrical devices Nanotechnology is also widely used in
the treatment of diseases such as cancer therapy and the development of military applica-
tions. Choi [6] invented the term “nanofluid”, and his research demonstrated that adding
nanoparticles to base fluids strengthens their thermo-physical efficiency. Buongiorno [7]
presented a numerical concept of nanofluids around the same time that thermophoresis
and Brownian motion features are estimated. Radwan et al. [8] found nanofluids for
convection cooling of the diesel engine cylinder head for completely formed turbulent
mode features of β-Al2O3/water. In [9], the authors explored mixed convective fluid anal-
ysis with nanomaterials using computational science. The magnetohydrodynamic heat
transport of a hybrid nanofluid in a square enclosure with a wave conductive cylinder
was investigated by Tayebi et al. [10]. Second-grade fluid flow in two parallel plates was
explored by Dutta et al. [11]. The free convective three-dimensional flow of a second-grade
incompressible fluid through a high porosity matrix consisting of an infinite porous layer
under continuous suction was addressed by Rana et al. [12]. Rasool et al. [13] explored
the Marangoni impact in the convective flow of second-grade liquid of a water-based
nanofluid. Shafiq et al. [14] used response surface methodology to conduct a sensitivity
analysis on carbon nanotubes’ significance in a Darcy–Forchheimer flow towards a ro-
tating disk. Researchers Chu and colleagues [15] studied time-dependent microrotation
blood flow via gold particle conduction and a non-uniform heat sink/source via numeri-
cal simulations. The study focused on the dual stratification of the Walters’ B nanofluid
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flow via radiative Riga plate performed by Shafiq et al. [16]. The rheological effects of
vegetable oil-lubricant, TiO2, MWCNT nano-lubricants, and machining variables were
investigated by Kokpujie et al. [17]. An analysis of the motion of water conveying alumina
nanoparticles past a vertical plate with a convective boundary condition was conducted by
Khan et al. [18].

Although there are various studies in the literature on the determination of various
properties and flow characteristics of nanofluids by ANNs, it is seen that there is no study
on modeling the flow of MHD bioconvective Walter’s B nanofluid towards a cylindrical
disk by an ANN. The study aims to fill an important gap with the feature of being a first in
the literature. This research focuses on the application of artificial neural networks with
variable thermal conductivity and thermal radiation to the thermophoresis and Brownian
diffusion of Walter’s B nanoliquid through a cylindrical disk. The Runge–Kutta fourth-order
shooting process is used to solve the generated differential systems. The flow parameters’
effects on the velocity, temperature, species volumetric concentration, and microorganism
fields are all discussed.

2. Problem Statement

A 3D incompressible MHD bioconvective Walter’s B fluid flow is considered with
gyrotactic motile microorganisms and nanoparticles. The heat and mass transport process
depends on both thermal radiation and thermal conductivity. The flow of Walter’s B fluid is
generated via a cylindrical disk. The flow problem is investigated by applying thermal and
solutal convective conditions. The magnetic field G0 is applied normally to the disk. We
assume that the surface temperature, microorganism, and concentration are

(
T̃w, Ñw, C̃w

)
.(

T̃∞, Ñ∞, C̃∞
)

stand for ambient temperature, concentration, and microorganisms, accord-
ingly. Figure 1 depicts the physical overview of the present analysis. The flow regulating
equations for a three-dimensional steady flow of bioconvection Walter’s B nanofluid via
cylindrical disk were written with these concerns in mind [19,20].
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ũ

∂3ũ
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∂ṽ
∂z1

= −1
ρ̃

∂p
∂y1

+ ν
∂2ṽ
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with:

ũ = (a1 + b1)x1, w̃ = 0, ṽ = (a1 − b1)y1, − k
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(7)

where (ũ, ṽ,w̃) are velocity components of x1, y1, and z1, respectively; the heat capacity
of the nanofluid is ρ̃cp; µ describes dynamic viscosity; DT̃ and DB̃ depict thermal and
Brownian diffusion coefficients; k̃0 indicates the coefficient of viscoelasticity; G0 indicates
the strength of the magnetic field;

(
ρ̃; ρ̃p; ρ̃m

)
demonstrate nanofluid density, nanoparticle

density, and microbe particle density; σ represents electrical conductivity of nanofluid;
Dm̃ is the microorganisms’ diffusivity; τ̌ depicts the ratio of nanoparticle heat capacity
to nanofluid heat capacity; the gravitational force is symbolized by g̃; (βÑ ; βT̃) indicate
concentration and thermal expansion coefficients; Ñ shows the motile density of microor-
ganisms; b̃ the constant of chemotaxis; W̃c is the swimming speed of the strongest cell; b̃W̃c
is considered to be constant;

(
C̃; T̃

)
and

(
C̃∞; T̃∞

)
indicate the concentrations and tempera-

tures of nearby and faraway fluids; heat capacitance is represented by cp; k̃ demonstrates
thermal conductivity; qr displays the radiative heat flux. This is a simplified representation
of temperature-dependent conductivity k
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)
, as in [20]
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where ε is thermal conductivity parameter and k∞ is ambient thermal conductivity. Trans-
formations to be introduced as follows [20]
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After applying the above transformation, we can rewrite the non-dimensional forms
of the system as
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F(0) = 0, F′(∞) = 0, F′(0) = 1, G(0) = 0, G′(0) = 1, G′(∞) = 0, ,

θ′(0)′ + β3(1− θ(0)) = 0, θ(∞) = 0, φ(0) = 1, φ(∞) = 0 (15)

ξ(0) = 1, ξ(∞) = 0.

Here the dimensionless parameters describe

Pr =
υ f

α f
, Rd =

4σ∗1 T̃3
∞

k∗1k
, M =

σ B̃2
0

ρ̃ a1
, Nt =

DT̃
(
C̃w − C̃∞

)
νT̃∞

, Nb =
τ̌DB̃

(
T̃w − T̃∞

)
ν

,

Sc =
ν

DB̃
, β1 =

b1

a1
, β2 =

a1k0

ρ̃ν
, λ1 =

g̃∗βT̃

(
1− C̃ f

)(
T̃w − T̃∞

)
a1

ν
,

Rb =

(
ρ̃p − ρ̃

)(
C̃w − C̃∞

)(
T̃w − T̃∞

)
ρ̃
(
1− C̃∞

)
βT̃

, Rc =
βÑ
(
ρ̃p − ρ̃

)(
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which are the Prandtl number, radiation number, magnetic number, thermophoresis num-
ber, Brownian motion number and Schmidt number, stress-to-strain ratio, viscoelastic
parameter, mixed convection parameter, buoyancy ratio parameter, bioconvection Rayleigh
number, Peclet number, bioconvection Lewis number, and microorganism difference pa-
rameter, respectively.

Figure 1. Analysis of the flow.

2.1. Physical Quantities of Interest

The heat transfer, motile density, and mass transfer rates are the most essential appli-
cations of this topic in industrial and engineering procedures.
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Local Nusselt, Motile Density, and Sherwood Numbers

In terms of physical quantities, the local Nusselt number, motile density, and Sherwood
number can be expressed as follows

Nur =
−k ∂T̃

∂y1

∣∣∣
y1=h(t)

k
(
T̃ − T̃∞

) , Nmd =
−D ∂Ñ

∂y1

∣∣∣
y1=h(t)

K
(

Ñ − Ñ∞
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K
(
C̃− C̃∞

) , (17)

and their dimensionless forms are

− (Rer)
−1/2Nur = −

(
1 +

4
3

Rd

)
θ′(0), (18)

(Rer)
−1/2Nmd = −ξ ′(0), (Rer)

−1/2Sher = −φ′(0). (19)

3. Structure of the ANN Models

Two different ANN models were developed to model the bioconvective magnetized
Walter’s B nanofluid flow flowing towards a cylindrical disk. Since the input variables
affecting the LNN, LSHN, and LMDN parameters, which are determined as flow parame-
ters, are different, an ANN model was designed for LNN and LSHN parameters, and a
separate ANN model was designed for the development of the LMDN parameter. Input
and output parameters of two different ANN models designed are given in Table 1. In both
ANN models, the multi-layer perceptron (MLP) network model, which is one of the most
preferred ANN models due to its strong structures, is used [21–23]. MLP networks consist
of layers that are directly connected to each other. The first of the layers is the input layer,
which contains the input data. The hidden layer is after the input layer, and every MLP
network has at least one hidden layer. The next layer after the hidden layer is the output
layer. Figure 2 represents the basic configuration diagram of an MLP network model. Using
the Levenberg–Marquardt training algorithm, the MLP network model is trained, which
is one of the most preferred algorithms due to its high learning capacity [24,25]. MLP
networks employ Tan–Sig and Purelin transfer functions, respectively, on their hidden and
output layers. The transfer functions in use are listed below [26,27]:

f̃ (x) =
1

1 + e−x , purelin(x) = x. (20)

Figure 2. The basic configuration diagram of an MLP network model.
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Table 1. Input and output parameters for developed ANN models.

Input Parameters Output

Rd ε Nb Nt Pr Q1 Le LNN

Rd ε Nb Nt Pr Q1 Le LSHN

Rb Rc Lb Pe δ LMDN

Ideally optimizing and grouping the data to be used in the training of ANN models is
one of the parameters that is important for the performance of the models [28]. The model,
which is widely used in the literature, was preferred for data optimization and grouping of
the developed neural network model [29–31]. Of the 36 datasets used for the development
of LNN and LSHN parameters, 26 were grouped for training the model, 5 for validation,
and 5 for testing. The ANN model developed for estimating the LDMN parameter was
trained with a total of 33 data sets, 23 of which were reserved for training, 5 for validation,
and 5 for testing. In the hidden layers of MLP neural networks, there is a computational
element called a neuron [32]. The lack of a fixed method to determine the number of
neurons to be used in the hidden layer is one of the difficulties in the design of MLP
networks [33,34]. The performances of MLP networks, which were developed using
different numbers of neurons, were examined and the models that gave the most ideal
performance were optimized. As a result of the optimization, 8 neurons were used in the
hidden layer of the first MLP network model and 10 neurons were used in the hidden layer
of the second MLP network. The structural diagrams of the ANN models designed for the
development of LNN, LSHN, and LDMN parameters are shown in Figure 3.

Figure 3. The structural diagrams of the ANN models designed for the development of LNN, LSHN,
and LDMN parameters. (a) 8 neurons were used in the hidden layer; (b) 10 neurons.

In the analysis of training and predictive performance of both ANN models, perfor-
mance parameters that are commonly used in the literature were preferred [35]. The equa-
tions used to calculate the performance parameters mean squared error (MSE) and coeffi-
cient of determination (R) are provided below [36]:

MSE =
1
N

N

∑
i=1

(
Xtarg(i) − Xpred(i)

)2
, (21)
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R =

√√√√√√1−
∑N

i=1

(
Xtarg(i) − Xpred(i)

)2

∑N
i=1

(
Xtarg(i)

)2 . (22)

The equation used to calculate the margin of deviation (MoD) values between the
outputs obtained from the ANN models and the target data is given below [37]:

MoD(%) =

[Xtarg − Xpred

Xtarg

]
× 100. (23)

4. Discussion

Figure 4 explores the consequences of Brownian motion variable Nb on temperature
distribution θ(η). A higher Brownian motion variable Nb results in an improved temper-
ature profile θ(η). During thermal conduction, nanoparticle motion plays a crucial role.
Due to the chaotic movement of the nanoparticles, their kinetic energy rises, increasing the
temperature of the nanofluid. It is also notable that Figure 4 depicts the effect of the ther-
mophoresis parameter Nt on the temperature field θ(η). It appears in this figure that with
an increase in Nt, the temperature field increases. For applications in thermal engineering,
this is a significant result. In a physical sense, Nt tends to enhance the thermophoresis force
that is responsible for moving nanoparticles from hot to cold areas, which causes a more
significant increase in temperature. In Figure 5, the variation in concentration profile φ(η) is
plotted against the thermophoresis parameter Nt. Thermophoresis is known to be induced
by large Nt. Due to these forces, the nanoparticles are prone to migrate in the opposite
direction of the concentration gradient (that is, from hot to cold) causing a non-uniform
nanoparticle distribution. As a result, higher Nt results in an increasing trend in the con-
centration distribution of nanomaterials. The implications of Brownian motion number
Nb on the concentration field are also shown in Figure 5. Larger Nb increases the random
motion and collision of the fluid’s macroscopic particles, lowering the fluid concentration.

The first step in analyzing the performance of the ANN model is to ensure that the
training phase is optimally completed. Figure 6 depicts histograms of the error values
attained during the training phase. When the error histogram information is examined,
it is discovered that the error values obtained for the three data groups are concentrated
around the zero error line. The histograms show that the numerical values of the errors
are also very low. The error histogram results show that the errors in the ANN model’s
training phase are very low. Figure 7 shows training performance graphs for both MLP
neural networks. The graphs show that the MSE values, which are high at the start of
the training phase, decrease as the epochs progress. According to the MSE values, which
decrease with each epoch and gradually approach zero, the values between the output and
target are getting closer to zero. The lowest error value of the MLP networks was achieved
with the ideal validation value, and the training stage was completed. Figure 8 shows the
calculated MSE values for each data set used for the training phase of the ANN models.
The closeness of the MSE values to zero demonstrates the low errors obtained during the
model training phase. When the data line showing the calculated MSE values for each
output value is examined, it can be seen that they are very close to the zero error values.
The MSE values revealed that the training stages of both ANN models were completed
optimally. Figure 9 depicts the outputs and target values gained from the ANN models
in order to assess estimation accuracy. When the graphs are investigated, it is clear that
the points representing the target and output values are perfectly aligned. This agreement
between the output values and the target values demonstrates that both ANN models
were designed to make accurate predictions. Figure 10 depicts the calculated MoD values
for each data point. When the MoD values that demonstrate the proportional deviation
among the output values of the ANN models and the target values are inspected, they are
found to be very low. The closeness of the curve expressing the MoD values to the zero
error line demonstrates that the deviation among the ANN model outputs and the target
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values is very small. The MoD values show that the developed ANN models can predict
with very low deviations. The differences between the target values and the output values
were calculated in order to examine the error rates of both ANN models in greater depth.
When the difference values given for each data point in Figure 8 are examined, it is seen
that the difference values calculated for each data point are very low. The low differences
between the target values and the output values show that the developed ANN models
can predict with very low errors. While the target values are on the x-axis of Figure 11,
the outputs obtained from the ANN model are on the y-axis. When the positions of the
data points are analyzed, it is seen that, in general, all data points are located on the zero
error line. However, it should be noted that the data points are within the ±10% error band.
The results obtained from Figure 12 are another proof that both ANN models developed
can make predictions with high accuracy. The performance parameters calculated for
the developed ANN models are given in Table 2. The fact that the MSE values are quite
low, the R value is close to 1, and the MoD values are very low shows that the developed
ANN models were developed to predict the LNN, LSHN, and LMDN values with very
high accuracy.

Table 2. The performance parameters calculated for the developed ANN models.

Input Parameters MSEav R MoDav

LNN −3.58 × 10−3 0.98537 0.1

LSHN 1.24 × 10−3 0.98537 0.1

LMDN 3.55 × 10−5 0.99269 0.02

Figure 4. Impact of Nt and Nb on θ(η).

Figure 5. Impact of Nt and Nb on φ(η).
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Figure 6. Error histogram for the ANN models. (a) For LNN and LSHN; (b) For LMDN.

Figure 7. Training performance graphs of both MLP neural networks. (a) For LNN and LSHN;
(b) For LMDN.

Figure 8. The calculated MSE values for each data used for the training phase of the ANN models.
(a) For LNN; (b) For LSHN. (c) For LMDN.

Figure 9. The target and outputs values obtained from the ANN models. (a) For LNN; (b) For LSHN.
(c) For LMDN.
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Figure 10. The MoD values calculated for each data point. (a) For LNN; (b) For LSHN. (c) For LMDN.

Figure 11. The differences between the target values and the output values. (a) For LNN; (b) For
LSHN. (c) For LMDN.

Figure 12. The numerical values and the ANN outputs. (a) For LNN; (b) For LSHN. (c) For LMDN.

Tables 3 and 4 display the LNN, LMDN, and LSHN values for various values of
the variables under consideration. It should be observed that LNN improves with an
increase in Brownian motion number Nb. Moreover, it has been discovered that LNN
reduces as the radiation number Rd, thermal conductivity parameter ε, thermophoresis
parameter Nt, Prandtl numbers Pr, heat generation number Q1, and Lewis number Le
increase. From Table 4 we also note that LSHN reduces as the thermophoresis parameter
Nt, Brownian motion number Nb and thermal conductivity parameter ε increase, while it
increases when radiation number Rd, Prandtl numbers Pr, heat generation number Q1 and
Lewis number Le increase. Table 4 shows that increasing LMDN increases buoyancy ratio
parameter Rb, bioconvection Lewis number Lb, Peclet number Pe, and microorganisms
difference parameter δ. On the other hand, the opposite behavior is noted for the increment
in bioconvection Rayleigh number Rc. The accuracy of the numerical modeling and the
ANN model are very close.
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Table 3. The values of LNN and LSHN for various values of physical parameters.

−(Rer)
−1/2Nur (Rer)

−1/2Sher

Rd ε Nb Nt Pr Q1 Le Numerical ANN Numerical ANN

0.0 0.3 0.2 0.1 1.0 0.5 1.5 0.00706623 0.007120861 0.982473 0.97897501
0.1 0.00585829 0.005821774 0.997541 0.98950042
0.2 0.00572972 0.005711059 0.997733 0.99436298

0.5 0.0 0.2 0.1 1.0 0.5 1.5 0.0594894 0.059154763 0.974766 0.96693118
0.1 0.0416794 0.041330512 0.985207 0.98928310
0.2 0.0289821 0.028794055 0.991531 0.99989813
0.3 0.0201370 0.020248731 0.995604 0.99948123
0.4 0.0144062 0.014506383 0.996893 0.99240511
0.5 0.0105187 0.010580637 0.996327 0.99003848
0.6 0.0075922 0.007567344 0.994418 0.99592816

0.5 0.3 0.1 0.1 1.0 0.5 1.5 0.0029765 0.002969022 1.142050 1.14788526
0.2 0.0201370 0.020213487 0.995604 0.99948123
0.3 0.0388217 0.038513639 0.901250 0.90153594
0.4 0.0664982 0.066123094 0.805869 0.80230088
0.5 0.1055840 0.105204524 0.711609 0.71249690
0.6 0.1426990 0.143756818 0.651097 0.64930150
0.7 0.1823790 0.183142094 0.608822 0.60762012

0.5 0.3 0.2 1.5 1.0 0.5 1.5 0.3488190 0.347577697 0.672576 0.67037292
1.6 0.3388980 0.337247923 0.628460 0.62831733
1.7 0.3306660 0.331810197 0.573616 0.57453589
1.8 0.3234070 0.323858413 0.522936 0.52209556

0.5 0.3 0.2 0.1 1.0 0.5 1.5 0.3019310 0.302487310 0.879359 0.87948123
1.1 0.0064014 0.006410842 1.006070 1.00356818
1.2 0.0057237 0.005713821 1.010830 1.00678515
1.3 0.0041842 0.004170770 1.011430 1.00237659

0.5 0.3 0.2 0.1 1.0 0.6 1.5 0.5307090 0.527078283 0.001060 0.00105056
0.7 0.4553460 0.458079375 0.703808 0.70252241
0.8 0.4541080 0.455081465 0.880447 0.88167512
0.9 0.3824030 0.383862892 1.339640 1.33749294

0.5 0.3 0.2 0.1 1.0 0.5 1.0 0.357312 0.354579621 0.525635 0.52597711
1.1 0.341071 0.342211522 0.581446 0.58248946
1.2 0.327225 0.326213719 0.654565 0.65716262
1.3 0.316405 0.315009302 0.774718 0.77586484
1.4 0.308013 0.306337044 0.811257 0.81242199
1.5 0.301931 0.302873098 0.879359 0.87848123
1.6 0.297064 0.294190117 0.94344 0.94395369

Table 4. The values of LMDN for various values of physical parameters.

(Rer)
−1/2Nmd

Rb Rc Lb Pe δ Numerical ANN

0.4 0.3 0.5 0.5 0.4 1.10653 1.102680744
0.5 1.16505 1.167071986
0.6 1.22508 1.225074698
0.7 1.45868 1.458678604
0.8 1.55096 1.559421692

0.5 0.3 0.5 0.5 0.4 0.929259 0.927071986
0.4 0.927242 0.927791210
0.5 0.925283 0.923907224
0.6 0.924153 0.922095005
0.7 0.922385 0.924749807
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Table 4. Cont.

(Rer)
−1/2Nmd

Rb Rc Lb Pe δ Numerical ANN

0.8 0.898653 0.895988520
0.9 0.841132 0.841954530

0.5 0.5 0.3 0.5 0.4 0.760761 0.760580071
0.4 0.851282 0.851445091
0.5 0.925283 0.923907224
0.6 0.990710 0.987201151
0.7 1.050930 1.050969904
0.8 1.107430 1.109965904
0.9 1.162840 1.155655059

0.5 0.5 0.4 0.2 0.4 0.578026 0.577950752
0.3 0.671149 0.671444988
0.4 0.761970 0.761496607
0.5 0.851282 0.851445091
0.6 0.940008 0.939732709
0.7 1.026480 1.026473051
0.8 1.116070 1.115985529

0.5 0.5 0.4 0.3 0.2 0.633349 0.635564192
0.3 0.653085 0.653024429
0.4 0.671149 0.671444988
0.5 0.689128 0.689475657
0.6 0.706883 0.706904971
0.7 0.724439 0.724183974
0.8 0.741400 0.741447652

5. Concluding Remarks

The study investigated the bio-convective transport of Walter’s B nanofluid in the
presence of thermophoresis and Brownian diffusion through a cylindrical disk using
artificial neural networks. Variable thermal conductivity, thermal radiation, and motile
microorganisms are also considered. The non-linear simplified equations were numerically
calculated using the Runge–Kutta fourth-order shooting procedure. The study’s key
findings include the following:

• In thermal engineering applications, thermophoresis and Brownian motion play sig-
nificant roles.

• Thermophoresis number Nt tends to enhance the thermophoresis force that is respon-
sible for moving nanoparticles from hot to cold areas, which causes a more significant
increase in temperature.

• As indicated by the MoD value, the developed ANN models are capable of making
very accurate predictions.

• According to the error histograms, there is very little error in the training phase of the
ANN model.

• MSE values calculated for LNN, LSHN, and LMDN parameters were obtained as
3.58× 10−3, 1.24× 10−3, and 3.55× 10−5, respectively.

• The R value for the ANN model developed for estimating LNN and LSHN values
is 0.98537.

• The R value calculated for the ANN model developed to estimate the LMDN value
is 0.99269.

• The average MoD value for LNN and LSHN values was calculated as 0.1% and the
average MoD value for LMDN value was calculated as 0.02%.

• The findings obtained as a result of the calculation and analysis of the performance param-
eters clearly showed that both ANN models can make predictions with high accuracy.
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Nomenclature

θ dimensionless temperature
T̃w surface temperature
(F, G) dimensionless velocity
g̃∗ gravitational force
φ dimensionless concentration
ρ̃ density of nanofluid
ξ dimensionless motile density
G0 magnetic field(
βÑ ; βT̃

)
coefficients of concentration and thermal

ūw(x1) stretching velocity
cp specific heat
Ñ∞ ambient microorganisms concentration
ρ̃p density of nanomaterials
ρ̃cp heat capacity of nanofluid
ρ̃m microbe particle density
DT̃ thermal diffusion coefficient
DB̃ Brownian motion coefficient
σ∗1 Stefan–Boltzmann constant
Dm̃ microorganism diffusivity
k
(
T̃
)

temperature dependent conductivity
µ viscosity of nanofluid
W̃c maximum speed of swimming cell
b̃W̃c constant
Ñ motile density of microorganisms
qr radiative heat flux
(ũ, ṽ,w̃) velocity components in (x1, y1, z1) directions, respectively
h̃a heat transfer coefficient
β2 viscoelastic parameter
β1 stress-to-strain ratio
T̃∞ ambient temperature
b̃ chemotaxis constant
C̃ concentration of nanoparticles
k̃0 coefficient of viscoelasticity
σ nanoliquid’s electrical conductivity
τ̌ ratio of heat capacity of nanoparticles by the heat capacity of nanofluid
C̃∞ ambient nanoparticles concentration
Nb Brownian motion number
Pr Prandtl number
Pe bioconvection Pecelt number
Le Lewis parameter
Rd radiation number
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M magnetic number
Lb bioconvection Lewis number
β1 stress-to-strain ratio
Nt thermophoresis number
β2 viscoelastic parameter
Rc bioconvection Rayleigh number
λ1 mixed convection number
δ microorganisms difference parameter
Rb buoyancy ratio parameter
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