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Abstract: The existence of a photon circular orbit can tell us a lot about the nature of the underlying
spacetime, since it plays a pivotal role in the understanding of the characteristic signatures of compact
objects, namely the quasi-normal modes and shadow radius. For this purpose, determination of the
location of the photon circular orbit is of utmost importance. In this work, we derive bounds on the
location of the photon circular orbit around compact objects within the purview of general relativity
and beyond. As we have explicitly demonstrated, contrary to the earlier results in the context of
general relativity, the bound on the location of the photon circular orbit is not necessarily an upper
bound. Depending on the matter content, it is possible to arrive at a lower bound as well. This has
interesting implications for the quasi-normal modes and shadow radius, the two key observables
related to the strong field tests of gravity. Besides discussing the bound for higher dimensional
general relativity, we have also considered how the bound on the photon circular orbits gets modified
in the braneworld scenario, for pure Lovelock and general Lovelock theories of gravity. Implications
of these results for compact objects were also discussed.

Keywords: photon sphere; braneworld scenario; Lovelock gravity; black hole shadow; quasi-normal
modes

1. Introduction

Detecting gravitational waves from the merger of binary black holes and observing
shadow of a supermassive black hole has opened up unprecedented avenues to test gravi-
tational theories in the strong field regime [1–8]. This is pivotal in the search for theories
beyond general relativity. Though it is the most successful theory so far in describing the
gravitational interaction in very many different length scales, there are regimes where even
general relativity fails [9–13]. Such a regime corresponds to the region near the singularity,
both for black holes and cosmological spacetimes. Additionally, (i) the presence of late-time
cosmic acceleration [14–18]; (ii) the violation of strong cosmic censorship conjecture [19–24];
and (iii) flat rotation curves of galaxies [25–28], among others, cannot be explained by clas-
sical general relativity with traditional matter content. These require either postulating
existence of some exotic matter fields or theories beyond general relativity [29–32], or, some
quantum effects must be taken into account [33]. All of this motivates one to look for
alternatives of general relativity, which may help to overcome these issues and to possibly
provide a resolution to the singularity problem. In the weak field regimes, most of the
predictions of these alternative theories are consistent with that of general relativity and
often provide weak experimental and observational bounds [34–37]. However, predictions
of these alternative theories will start to differ significantly from that of general relativity
in the strong field regime, i.e., in the region around the black hole horizon and the photon
sphere. Thus, it is of utmost importance to search for these theories from the gravitational
waves and shadow measurements, probing the near horizon regime of black holes.

Intriguingly, the photon sphere plays a central role in determining the characteristic
properties of black holes. The shadow diameter, for example, is associated with the capture
cross-section of a black hole and is related to the energy and angular momentum of a
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photon moving along the photon circular orbit [38–46]. Similarly, the quasi-normal modes,
which are unique characteristics of a black hole, also depend on the physical properties
of the photon sphere in the eikonal limit [47]. Therefore, all the strong field tests of
gravity available to us at the present instance are intimately tied up with the properties, in
particular, the location of the photon sphere. Another important aspect is the universality
of the photon sphere, i.e., the gravitational wave and shadow observations cannot provide
conclusive evidence regarding the central object being a black hole, but they do agree on
the existence of a photon sphere. Thus, the central compact object, which may or may not
be a black hole, must have a photon sphere [48–52]. Such compact, but non-black hole
objects, known as exotic compact objects (or ECOs), require exotic matter fields for their
support, and have distinct signatures in the quasi-normal mode spectrum. However, they
all have the photon sphere as a common entity [53–57]. Such versatility in the existence
of photon sphere motivates us to study it in more detail in general relativity and theories
beyond the same.

Even though looking for theories beyond general relativity is necessary to understand
the nature of gravity in the strong field regime, it is difficult to break the degeneracy
among those theories, since there are infinite number of them. The situation is improved
by invoking the Oströgradsky instability [58], thereby eliminating all the higher curvature
gravitational theories yielding more than second order gravitational field equations. These
leave a handful of choices—(i) higher dimensional or braneworld models of gravity [59–64];
(ii) Lovelock theories of gravity [65,66]; and (iii) scalar–tensor theories of gravity, e.g., f (R)
theories, Horndeski theories etc. [31,67–69]. The modified theories, listed above, provide
unique predictions for the quasi-normal modes of black holes and of course, for the photon
sphere. In the present work we wish to explore the implications of these beyond general
relativity theories on the location of the photon sphere, which in turn will affect both the
quasi-normal modes and the shadow radius.

The paper is organized as follows. In Section 2, we present the bound on the photon
circular orbit in the context of higher dimensional general relativity, which was contrasted
to the corresponding situation in the braneworld scenario, as discussed in Section 3. Sub-
sequently, we derived the corresponding bound on the photon circular orbit for pure
Lovelock theories in Section 4. Afterwards we have studied the bound on the photon
circular orbit for the Einstein-Gauss-Bonnet theory in Section 5 and its corresponding
generalization to general Lovelock theories is then presented in 6. Applications of these
results for black hole quasi-normal modes and shadow are presented in Section 7, before
concluding with certain remarks and future directions.

Notations and Conventions: In the present work, we set all the fundamental constants
c, G, and h̄ to unity and follow the mostly positive signature convention, such that the
flat spacetime metric takes the following form, ηµν = diag.(−1,+1,+1, · · · ). Additionally,
Greek indices α, β, µ, · · · run over the four dimensional coordinates and Roman indices
a, b, c, · · · run over all the spacetime coordinates.

2. Bound on Photon Circular Orbits in General Relativity

It is always wise to first understand the basic premise of a problem, which motivates
us to study the bound on the photon circular orbit in general relativity itself in this section.
This can be considered as a warm up to the subsequent discussions involving theories
beyond general relativity. In what follows, we will derive the relevant bound on the photon
circular orbit, for generic static and spherically symmetric spacetimes in general relativity,
with arbitrary spacetime dimensions. The result can then be easily specialized to the case
of four spacetime dimensions. As a starting point, we will assume the following metric
ansatz for describing a static and spherically symmetric d-dimensional spacetime in general
relativity, which reads,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2
d−2 . (1)
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Substitution of this metric ansatz in the Einstein’s field equations, with anisotropic perfect
fluid as the matter source, yields the following field equations for the unknown functions,
ν(r) and λ(r), in d spacetime dimensions,

rλ′e−λ + (d− 3)
(

1− e−λ
)
= (8πρ + Λ)r2 , (2)

rν′e−λ − (d− 3)
(

1− e−λ
)
= (8πp−Λ)r2 , (3)

where ‘prime’ denotes derivative with respect to the radial coordinate r. It must be
noted that we have incorporated the cosmological constant Λ in the above analysis. The
differential equation for λ(r), presented in Equation (2), can be immediately integrated,
since the left hand side of the equation is expressible as a total derivative term, except for
some overall factor, leading to,

e−λ = 1− 2m(r)
rd−3 −

Λ
(d− 1)

r2 ; m(r) = MH + 4π
∫ r

rH

dr′ρ(r′)r′d−2 . (4)

Here, MH denotes the mass of the black hole, with its horizon radius being rH. This
situation is very much similar to the case of black hole accretion, where ρ(r) and p(r) are,
respectively, the energy density and pressure of matter fields accreting onto the black hole
spacetime. Being spherically symmetric, we can simply concentrate on the equatorial plane
and the photon circular orbit on the equatorial plane arises as a solution to the algebraic
equation, rν′ = 2. Analytical expression for ν′ can be derived from Equation (3), whose
substitution into the equation rν′ = 2, yields the following algebraic equation,(

8πpr2 −Λr2
)
+ (d− 3)

(
1− e−λ

)
= 2e−λ , (5)

which is independent of ν(r) and dependent only on λ(r) and matter variables. At this
stage, it will be useful to define the following quantity,

Ngr(r) ≡ −8πpr2 + Λr2 − (d− 3) + (d− 1)e−λ , (6)

such that on the photon circular orbit rph, we have Ngr(rph) = 0, which follows from
Equation (5). Using the solution for e−λ, in terms of the mass m(r) and the cosmological
constant Λ, from Equation (4), the function Ngr(r), defined in Equation (6), yields,

Ngr(r) = −8πpr2 + Λr2 − (d− 3) + (d− 1)
(

1− 2m(r)
rd−3 −

Λ
(d− 1)

r2
)
= 2− 2(d− 1)

m(r)
rd−3 − 8πpr2 , (7)

which is independent of the cosmological constant Λ. It is further assumed that both the
energy density ρ(r) and the pressure p(r) decays sufficiently fast, so that, pr2 → 0 and
m(r)→ constant as r → ∞. Thus, from Equation (7) it immediately follows that,

Ngr(r → ∞) = 2 . (8)

Note that this asymptotic limit of Ngr(r) is independent of the presence of higher di-
mension, as well as of the cosmological constant and will play an important role in the
subsequent analysis.

It is possible to derive a few interesting relations and inequalities for the matter vari-
ables and also for the metric functions, on and near the horizon. The first of such relations can
be derived by adding the two Einstein’s equations, written down in Equations (2) and (3),
which yields,

e−λ

(
ν′ + λ′

r

)
= 8π(p + ρ) . (9)
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This relation must hold for all possible choices of the radial coordinate r, including the
horizon. The horizon, by definition, satisfies the condition e−λ(rH) = 0, thus if ν′ + λ′ is
assumed to be finite at the location of the horizon, it follows that,

ρ(rH) + p(rH) = 0 . (10)

In addition to the above result, it also follows that e−λλ′ < 0 at the horizon location.
This can be seen as follows: we have e−λ = 0 on the black hole horizon, while e−λ > 0
for rH < r < rC, where rH is the black hole horizon and rC is the cosmological horizon.
Thus, e−λ is an increasing function at the black hole horizon and, hence, it follows that,
∂re−λ > 0 at r = rH, leading to e−λλ′ < 0 at r = rH. Thus from Equation (2) we obtain the
following inequality,

8πr2
Hρ(rH) + Λr2

H = rHλ′(rH)e−λ(rH) + (d− 3) < (d− 3) . (11)

Using this inequality on the black hole horizon, along with the fact that e−λ(rH) = 0, another
inequality can be derived from Equation (6) involving Ngr(r) on the black hole horizon,
which reads,

Ngr(rH) = −8πp(rH)r2
H + Λr2

H − (d− 3) = 8πρ(rH)r2
H + Λr2

H − (d− 3) < 0 (12)

Therefore, being a monotonic function, it follows that Ngr(r) is negative within the radial
range rH ≤ r ≤ rph. This result will be crucial in deriving the bound on the photon circular
orbit subsequently.

The next step is to write down the conservation relation of the energy momentum
tensor. Note that we have expressed the temporal and radial components of the Einstein’s
equations in Equations (2) and (3), respectively, but we have not written down the angular
components. The conservation of the energy momentum tensor will serve as a proxy
for the same. In the context of higher dimensional spacetime, with anisotropic fluid, the
conservation of the energy momentum tensor yields,

p′ +
ν′

2
(p + ρ) +

(
d− 2

r

)
(p− pT) = 0 , (13)

where pT is the angular or, transverse pressure of the fluid, taken to be different from the
radial pressure p. Substitution of the expression for ν′ from the radial Einstein’s equations,
i.e., Equation (3), yields the following expression for (dp/dr) in terms of Ngr(r),

p′(r) =
eλ

2r

[
(p + ρ)Ngr + 2e−λ{−ρ + p + (d− 2)pT} − 2de−λ p

]
, (14)

where Equation (6) is used. Introducing the rescaled pressure P(r), defined as, P(r) ≡
rd p(r), we obtain,

P′(r) =
rd−1eλ

2

[
(p + ρ)Ngr + 2e−λ{−ρ + p + (d− 2)pT}

]
. (15)

Assuming that ρ ≥ 0 everywhere, it is clear from Equation (10) that p(rH) and, hence,
P(rH) ≤ 0. Further assuming that the trace of the energy momentum tensor, −ρ + p + (d−
2)pT, is negative [55], it follows that P′(rph) < 0, since Ngr(rph) = 0. Along identical lines
and from Equation (12), it further follows that P′(rH) < 0 as well. Thus, one readily arrives
at the following condition,

P′(rH ≤ r ≤ rph) < 0 . (16)

This suggests that P(r) decreases as the radial distance increases from the horizon, located
at rH to the photon sphere, at rph. This is because, Ngr is negative in this radial distance
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range and so is the trace of the energy momentum tensor. Therefore, p(rH) ≤ 0, from
which it follows that p(rph) ≤ 0 as well. Thus, from the result Ngr(rph) = 0, substituted
into Equation (7), it follows that,

2− 2(d− 1)
m(rph)

rd−3
ph

≤ 0 . (17)

Since m(rph) <M≡ m(r → ∞), whereM is the ADM mass of the spacetime at infinity,
we finally arrived at the desired bound on the radius rph of the photon circular orbit,

rph ≤ {(d− 1)M}1/(d−3) . (18)

For d = 4, the above inequality immediately suggests rph ≤ 3M, which coincides with the
result derived in [55]. It is worth mentioning that it is also possible, within the context of
general relativity, to arrive at the above bound on the location of the photon circular orbit
using the null energy conditions alone. Following [70], this requires one to define a new
mass function,

M(r) = m(r) +
4π

(d− 1)
rd−1 p− Λrd−1

2(d− 1)
=

rd−3

2

(
1− e−λ

)
+

4π

(d− 1)
rd−1 p− Λrd−1

2(d− 1)

=
rd−3

(d− 1)

[
1− 1

2

{
−(d− 3) + (d− 1)e−λ − 8πr2 p + Λr2

}]
=

rd−3

(d− 1)

[
1−
Ngr

2

]
, (19)

where m(r) is the Hawking–Geroch mass function, which, for static and spherically sym-
metric d-dimensional spacetimes in general relativity, takes the form (rd−3/2)(1− e−λ).
Note that on the photon sphere, M(rph) = rd−3

ph /(d − 1) and on the horizon, M(rH) >

rd−3
H /(d− 1). Moreover, derivative of this modified mass function M(r) takes the form,

M′(r) = (d− 3)rd−4

2

(
1− e−λ

)
+

rd−3λ′

2
e−λ +

4π

(d− 1)
rd−1 p′ + 4πrd−2 p− Λrd−2

2

=
(d− 3)rd−4

2

(
1− e−λ

)
+

(8πρ + Λ)rd−2

2
− (d− 3)rd−4

2

(
1− e−λ

)
+ 4πrd−2 p− Λrd−2

2

+
2πrd−2eλ

(d− 1)

[
(p + ρ)Ngr + 2e−λ{−ρ + p + (d− 2)pT} − 2de−λ p

]
=

2πrd−2eλ

(d− 1)
(p + ρ)Ngr + 4πρrd−2 + 4πrd−2 p +

4πrd−2

(d− 1)
{−ρ + p + (d− 2)pT} −

4πdprd−2

(d− 1)

=
2πrd−2eλ

(d− 1)
(p + ρ)Ngr +

4πr2(d− 2)
(d− 1)

(ρ + pT) , (20)

where in the second line we used Equation (14). From our previous analysis, we observe
that Ngr ≥ 0 for r ≥ rph and the null energy condition ensures that (ρ + p), as well as
(ρ + pT) are positive definite quantities. Thus, both the terms in the above expression
for M′(r) are positive; hence, it follows that M′(r) ≥ 0 as well. From the positivity of
M′(r), for r ≥ rph, it follows that the mass function M(r) is an increasing function of the
radial coordinate and, hence, M(rph) ≤ M, which is the ADM mass of the spacetime.
As mentioned earlier, on the photon sphere, we have M(rph) = rd−3

ph /(d− 1) and, hence,
Equation (18) follows immediately. Therefore, it is indeed possible to arrive at the desired
bound using only the null energy condition. Note that the cosmological constant has no
influence on the bound on the photon circular orbit, while the bound indeed depends on
the spacetime dimensions. In what follows, we will demonstrate that such bounds on the
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photon circular orbits indeed exists for theories of gravity beyond general relativity, though
it is not necessarily a lower bound.

3. Bound on Circular Photon Orbits in Braneworld Gravity

In the previous section, we had derived an upper bound on the location of the photon
circular orbit in the presence of a cosmological constant and higher spatial dimensions in
the context of general relativity. In this section, we will discuss a similar higher dimen-
sional situation, but in the context of effective gravitational field theories, as observed
by an observer on the four dimensional brane. As a consequence, the gravitational field
equations on the brane will inherit additional corrections due to the presence of higher
dimensions [71,72]. In the subsequent discussion, we will try to understand how these
additional terms in the effective gravitational field equations may affect the bound on the
photon circular orbit.

To start with, we assume a static and spherically symmetric metric ansatz, as presented
in Equation (1), with ν(r) and λ(r) as two unknown functions of the radial coordinate
r and the angular part dΩ2

d−2 is being replaced by dΩ2
2, as a fit for the four dimensional

braneworld scenario. In this context, the temporal and the radial part of the field equations,
with an effective four dimensional cosmological constant read,

e−2λ(r)
(

1
r2 −

2λ′

r

)
− 1

r2 = −8πG4ρ

(
1 +

ρ

2λb

)
− 24πG4Ũ(r)−Λ4 , (21)

e−2λ(r)
(

2ν′

r
+

1
r2

)
− 1

r2 = 8πG4

{
p +

ρ

2λb
(ρ + 2p)

}
+ 8πG4

(
Ũ + 2P̃

)
−Λ4 . (22)

Here, λb is the brane tension, G4 is the four dimensional gravitational constant, and Λ4 is
the brane cosmological constant. The other quantities, except the physical pressure p and
density ρ, correspond to the dark radiation Ũ and dark pressure P̃, respectively, inherited
from the higher dimensional spacetime. These are derived from the projected bulk Weyl ten-
sor Eµν on the brane, such that, Ũ = 2G4U(8πG4)

−2λ−1
b , where U = −(G4/G5)

2Eµνuµuν,
with G5 being the five dimensional gravitational constant and uµ is the four velocity of a
static observer in the spacetime. Similarly, the dark pressure term P̃ can also be derived
from the projected bulk Weyl tensor Eµν, such that, P̃ = 2G4P(8πG4)

−2λ−1
b , with P being

(G4/G5)
2Eµνrµrν, where rµ is orthogonal to the four-velocity of the static observer, such

that, rµuµ = 0.
Having discussed the content of the above equations in some detail, let us rewrite

these gravitational field equations, i.e., Equations (21) and (22), such that we obtain the
following ones,

e−2λ(r)
(

1
r2 −

2λ′

r

)
− 1

r2 = −8πG4ρeff −Λ4; ρeff = ρ

(
1 +

ρ

2λb

)
+ 3Ũ(r) , (23)

e−2λ(r)
(

2ν′

r
+

1
r2

)
− 1

r2 = 8πG4 peff −Λ4; peff =

{
p +

ρ

2λb
(ρ + 2p)

}
+
(

Ũ + 2P̃
)

. (24)

As far as the transverse pressure is concerned, it is given by peff
T = p + (ρ/2λb)(ρ + 2p) +

(Ũ − P̃). Thus, structurally, this is identical to the result presented in the previous section
with d = 4 with ρ, p, and pT replaced by ρeff, peff, and peff

T , respectively. Thus, one would
naively suggest that the bound on the photon circular orbit, namely rph ≤ 3M, should
remain valid, whereM is the ADM mass of the spacetime.

However, the validity of the result derived in Section 2 requires a series of assumptions
to hold true. Since the extra piece originating from the extra dimensions is not required to
satisfy the energy conditions, the bound may get violated. Let us then discuss which of the
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assumptions presented in the earlier derivation may get violated. First of all, the solution
for e−λ will now read,

e−λ = 1− 2m(r)
r
− Λ4

3
r2; m(r) = MH + 4π

∫ r

rH

dr′ρeff(r′)r′d−2 (25)

which will be assumed to vanish at some radius r = rH, which is the black hole horizon
and also at r = rC, the cosmological horizon. Here, MH is the mass of the black hole. As we
subtract Equations (23) and (24), it immediately follows that ρeff(rH) + peff(rH) = 0, since
e−λ(ν′ + λ′) vanishes at the horizon. Following which, one may argue that peff(rH) < 0,
if the effective density at the horizon, is a positive definite quantity. For the matter en-
ergy density ρ, this is certainly true; however, for the contribution from the bulk Weyl
tensor, similar results cannot be accounted for, i.e., Ũ can be negative and, hence, the total
effective energy density ρeff need not be a positive definite quantity. Thus, if the matter
contribution is larger than the bulk contribution, ρeff is positive definite and the previous
bound on the photon circular orbit still applies. On the other hand, if the bulk contribution
dominates, then ρeff is negative, which would imply that peff(rH) > 0, in contrast to the
previous scenario.

Let us proceed further to understand how this behaviour of the effective pressure
will affect the bound on the photon circular orbit. First of all, the photon circular orbit
on the equatorial plane is a solution to the algebraic equation, rν′ = 2, which on using
Equation (24), yields the following algebraic equation,(

8πpeffr2 −Λ4r2
)
+
(

1− e−λ
)
= 2e−λ , (26)

which is independent of the metric degree of freedom ν(r) and is dependent only on λ(r),
the matter variables and the dark radiation and pressure inherited from the bulk spacetime.
Following the situation in general relativity, let us define the following quantity,

Nbrane(r) ≡ −8πpeffr2 + Λ4r2 − 1 + 3e−λ . (27)

As evident from Equation (26), on the photon circular orbit rph, we have Nbrane(rph) = 0.
Using the solution for e−λ from Equation (25), the function Nbrane(r) yields,

Nbrane(r) = −8πpeffr2 + Λ4r2 − 1 + 3
(

1− 2m(r)
r
− Λ

3
r2
)
= 2− 6m(r)

r
− 8πpeffr2 , (28)

which is independent of the brane cosmological constant Λ4. It is further assumed that
both the matter energy density ρ(r) and the pressure p(r) decays sufficiently fast, so that
pr2 → 0. In addition, the dark radiation and dark pressure terms are also assumed to
decay sufficiently fast, such that m(r) → constant as r → ∞. Thus, from Equation (28) it
immediately follows that,

Nbrane(r → ∞) = 2 . (29)

Note that this asymptotic limit is independent of the presence of higher dimensions.
Furthermore, note that the result λ′e−λ < 0 at the black hole horizon will hold irrespective
of the sign of ρeff and, hence, Nbrane(rH) < 0 will follow. Further, the conservation of
energy momentum tensor will follow an identical route to the one adopted in Section 2,
ultimately resulting in the following:

P′eff(r) =
r3eλ

2

[
(peff + ρeff)N + 2e−λ

{
−ρeff + peff + 2peff

T

}]
, (30)

where Peff ≡ r4 peff. Intriguingly, the contributions from the bulk Weyl tensor is traceless
and, hence, only the matter energy density and pressure contributes in Equation (30). Then,
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even on the brane, we have the following relation, −ρeff + peff + 2peff
T < 0 [55]. Hence,

P′eff(rph) < 0 and so is the case on the horizon as well. Thus, Equation (16) holds true
even in this situation. However, since peff(rH) can be positive; this means that peff(rph)
can also be positive. The fact that p(r) decreases with radial distance is taken care of by
the result that p(r) must depend on inverse powers of the radial distance r, which follows
from the asymptotic fall-off conditions. This, in turn, implies that p(rph) ≥ 0 and, hence,
the bound on the photon circular orbit now translates into rph ≥ 3m(rph) > 3MH, where
MH is the mass of the black hole and is less than the ADM mass, which is obtained as the
limiting procedure, m(r → ∞). Therefore, when the contribution from the bulk spacetime
dominates over the matter sector and is negative, it follows that the photon sphere has a
lower bound, rather than an upper bound, given by,

rph ≥ 3MH . (31)

This is in complete contrast with the previous scenario, and also from the case in which
matter energy density on the brane dominates over the bulk contributions, where, instead
of an upper bound, we have arrived at a lower bound on the photon circular orbit (see
also [73]). To see that this is indeed the situation in case of a braneworld black hole, consider
the solution presented in [74], where both ρ and p are vanishing while Ũ ∼ −Ũ0/r4 and
P̃ = −2Ũ. Thus, the effective energy density ρeff = 3Ũ is negative, while the pressure
peff = Ũ + 2P̃ is positive. The black hole solution for the above configuration has the
following structure,

eν = e−λ = 1− 2M
r
− q

r2 −
Λ4

3
r2 , (32)

with the photon sphere being located at the solution of the algebraic equation,

2
(

1− 2M
r
− q

r2 −
Λ4

3
r2
)
= r
(

2M
r2 +

2q
r3 − 2

Λ4

3
r
)

, (33)

which is also equivalent to the following one: r2 − 3Mr− 2q = 0. This has the following
solution for the radius of the photon sphere: rph = (1/2)(3M +

√
9M2 + 8q) > 3M,

consistent with the bound derived in Equation (31). We must point out that since the
function Ũ, inherited from the higher dimension, is not necessarily a positive definite
quantity, the Hawking–Geroch mass is not guaranteed to be positive, unlike the general
relativistic scenario, discussed above. This is why we have not pursued the alternative
approach to arrive at the bound on the photon circular orbit in the present context, rather,
we leave it for a future work.

On the other hand, as emphasized earlier, if a matter field is present on the brane, then
there will be a competition between the term Ũ and the terms involving ρ and ρ2. If the con-
tribution from the bulk Weyl tensor Ũ dominates over and above the contribution from the
brane matter, the photon circular orbit will again satisfy Equation (31). While, if the matter
contributions from the brane dominate, the photon circular orbit satisfies Equation (18).
A direct illustration of the above result can be achieved by considering Maxwell field on
the brane. In which case, the metric elements take the structure of Equation (32) with −q
replaced by Q2 − q, where Q2 corresponds to Maxwell charge 1. Thus, the location of
photon circular orbit corresponds to rph = (1/2)(3M +

√
9M2 − 8Q2 + 8q). As evident,

for Q2 > q, i.e., when Maxwell charge dominates it yields rph ≤ 3M, while for Q2 < q, the
contribution from bulk Weyl tensor dominates and hence rph ≥ 3M. This is in complete
consonance with our earlier discussion. Thus, in the braneworld scenario, the bound on the
photon circular orbit exists, but whether it is an upper bound or a lower bound depends
on whether the effect from bulk Weyl tensor dominates over and above the brane matter
distribution or not.
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4. Bound on Photon Circular Orbit in Pure Lovelock Gravity

Having discussed the effect of extra dimensions on the location of the photon sphere,
both within the purview of general relativity as well as for effective four dimensional
theories, we will discuss the corresponding situation within the context of higher curvature
theories of gravity in this section. As one of the most important sub-class of higher
curvature theories, we will consider possible bound on the photon circular orbit in the
context of pure Lovelock gravity. As we have seen in the earlier sections, the presence of
the cosmological constant has no effect on the photon circular orbits and, hence, we will
exclusively work with the asymptotically flat scenario. For that purpose, once again, we
start with the static and spherically symmetric metric ansatz, as presented in Equation (1).
The field equations for pure Lovelock gravity, involving the two unknowns, namely ν(r)
and λ(r), in the presence of perfect fluid takes the following form,

8πρ(r) =
(
1− e−λ

)N−1

2N−1r2N

[
rNλ′e−λ + (d− 2N − 1)

(
1− e−λ

)]
, (34)

8πp(r) =
(
1− e−λ

)N−1

2N−1r2N

[
rNν′e−λ − (d− 2N − 1)

(
1− e−λ

)]
. (35)

Here, d stands for the spacetime dimensions and N corresponds to the order of the pure
Lovelock polynomial, e.g., N = 1 corresponds to general relativity, N = 2 corresponds
to the Gauss–Bonnet term and so on. We further assume that there is a radius r = rH,
such that, e−λ(rH) = 0, signalling the presence of a horizon at this radius. From these
results, it follows that e−λ(λ′ + ν′) = 0 at r = rH, while from the previous discussions we
observe that e−λλ′ < 0 on the horizon as well. These two conditions will form the main
ingredient of this section. Proceeding further, we observe that, similar to the previous
scenarios considered here, as the above two field equations, presented in Equations (34)
and (35) are being added up, on the black hole horizon rH, the following relation holds,

p(rH) + ρ(rH) = 0 . (36)

Thus, for normal matter fields, satisfying ρ(r) > 0, for all possible choices of r, it follows
that p(rH) < 0. This will turn out to be a useful relation in deriving the bound on the
photon circular orbit. Determination of the photon circular orbit involves two steps: first,
one must solve for the metric coefficient ν′ starting from the above gravitational field
equations, in particular Equation (35); and then the corresponding expression must be
substituted in the algebraic relation, given by rν′ = 2. This procedure, in the present
context, results in the following algebraic equation,

2e−λ =
(d− 2N − 1)(1− e−λ)

N
+

8π

N
2N−1r2N p(r)
(1− e−λ)N−1 . (37)

This prompts one to define, in analogy with the corresponding general relativistic counter
part, the following quantity

Nlovelock(r) = (d− 1)e−λ − (d− 2N − 1)− 8π
2N−1r2N p(r)
(1− e−λ)N−1 , (38)

which, by definition vanishes at the photon circular orbit, located at r = rph. To understand
the behaviour of the function Nlovelock(r) at the black hole horizon, it is desirable to write
down the expression for λ′ on r = rH. Starting from the gravitational field equation
presented in Equation (34), we obtain,

rHNλ′(rH)e−λ(rH) = −(d− 2N − 1) + 8π × 2N−1r2N
H ρ(rH) . (39)
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Since, from our earlier discussion it follows that λ′(rH)e−λ(rH) < 0, it is immediate that the
term on the right hand side of Equation (39) is negative, when evaluated at the location of
the horizon. Therefore, the quantity Nlovelock(rH), becomes,

Nlovelock(rH) = −(d− 2N − 1)− 8π × 2N−1r2N
H p(rH) = rHNλ′(rH)e−λ(rH) < 0 . (40)

The last bit follows from the result ρ(rH) = −p(rH), presented in Equation (36). Addition-
ally, in the asymptotic limit, for pure lovelock theories, the appropriate fall-off conditions
for the components of the matter energy momentum tensor are such that: p(r)r2N → 0 and
e−λ → 1. Thus, we obtain the asymptotic form of the function Nlovelock(r) to read,

Nlovelock(r → ∞) = (d− 1)− (d− 2N − 1) = 2N . (41)

As evident, for pure Lovelock theory of order N the asymptotic value of the quantity
Nlovelock(r) is dependent on the order of the Lovelock polynomial. For general relativity,
which has N = 1, the asymptotic value of Nlovelock(r) is 2, consistent with earlier observa-
tions.

To proceed further, we need to solve for the metric coefficient e−λ. This can be achieved
by first writing down the differential equation for λ(r), presented in Equation (34), as a
first order differential equation, whose integration yields,

e−λ = 1− 2
(

m(r)
rd−2N−1

)1/N
; m(r) = MH + 4π

∫ r

rH

dr′ ρ(r′)r′d−2 , (42)

where MH = (rd−2N−1
H /2N) is the mass of the black hole spacetime and is less than the

ADM mass M, which contains contribution from the matter energy density ρ as well.
The final ingredient necessary for the rest of the computation is the conservation of the
matter energy momentum tensor, which does not depend on the gravity theory under
consideration, and it reads

p′(r) +
ν′

2
(p + ρ) +

(
d− 2

r

)
(p− pT) = 0 . (43)

One can solve for ν′ from the above equation, which when equated to the corresponding
expression from the gravitational field equations, namely from Equation (35), results in a
differential equation for the radial pressure p(r). This differential equation can be further
simplified by introducing the quantity Nlovelock(r), which ultimately results into,

p′(r) =
eλ

2Nr

[
(p + ρ)N + 2Ne−λ{−ρ + p + (d− 2)pT} − 2dNe−λ p(r)

]
. (44)

Following our previous considerations, we can define another quantity, P(r) ≡ rd p(r),
where d stands for the spacetime dimensions. Then, the differential equation satisfied by
P(r) takes the following form,

P′(r) = rd p′(r) + drd−1 p(r)

=
rd−1eλ

2N

[
(p + ρ)N + 2Ne−λ{−ρ + p + (d− 2)pT} − 2dNe−λ p(r)

]
+ drd−1 p(r)

=
rd−1eλ

2N

[
(p + ρ)N + 2Ne−λ{−ρ + p + (d− 2)pT}

]
. (45)

When evaluated at the location of the black hole horizon, r = rH, this differential equation
for P(r) yields the following inequality,
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P′(rH) =
rd−1

H eλ(rH)

2N

[
{p(rH) + ρ(rH)}N (rH) + 2Ne−λ(rH){−ρ(rH) + p(rH) + (d− 2)pT(rH)}

]
< 0 , (46)

which follows from the result that e−λ vanishes at r = rH and Nlovelock(rH) < 0 (see
Equation (40) for a derivation). Further, note that even when evaluated at r = rph, the
object P′(r) is negative. This is because, N (rph) = 0 by definition and the trace of the
energy-momentum tensor −ρ + p + (d− 2)pT is also assumed to be negative. Thus, we
finally arrive at the following condition,

P′(rH ≤ r ≤ rph) < 0 , (47)

for black holes in pure Lovelock theories of gravity. This means that the quantity P(r) and
hence p(r) decreases as the radius is increasing from the black hole horizon to the photon
circular orbit. Since p(rH) < 0, it immediately follows that p(rph) < 0 as well. Using this
result along with N (rph) = 0, yields,

(d− 1)e−λ(rph) − (d− 2N − 1) = 8π2N−1 r2N p(rph)

(1− e−λ)N−1 < 0 (48)

Substitution of the corresponding expression for e−λ from Equation (42) results in the
following upper bound on the location of the photon circular orbit,

rph ≤
[(d− 1

2N

)N
2M

]1/(d−2N−1)
. (49)

As evident, for d = 4 and N = 1, the right hand side becomes 3M, while for arbitrary d
with N = 1, we obtain our previous result, presented in Equation (18). Hence, the general
relativistic limit is reproduced for any spacetime dimensions. Thus, the above provides the
upper bound on the location of the photon circular orbit rph for any pure Lovelock theory
of order N, in any spacetime dimension d.

5. Bound on Photon Circular Orbit in Einstein-Gauss Bonnet Gravity

Having discussed the case of pure Lovelock gravity in the previous section, we will
now take up the case of general Lovelock theories. As a warm up to that direction, we
present a brief analysis of five dimensional Einstein–Gauss–Bonnet gravity in the present
section and the associated bound on the location of the photon circular orbit. To start with,
we write down the gravitational field equations in the Einstein–Gauss–Bonnet gravity,
which takes the following form,

8πr2ρ(r) = rλ′e−λ + 2
(

1− e−λ
)
+ α

(1− e−λ)

r2 × 2rλ′e−λ , (50)

8πr2 p(r) = rν′e−λ − 2
(

1− e−λ
)
+ α

(1− e−λ)

r2 × 2rν′e−λ . (51)

Here, α is the Gauss–Bonnet coupling, which is the coefficient of the (R2 − 4RabRab +
RabcdRabcd) term in the five-dimensional gravitational Lagrangian. As usual, the algebraic
equation, e−λ(r) = 0, defines the location of the horizon rH, while our previous analysis
guarantees that λ′(rH)e−λ(rH) < 0. Then, from the addition of the above field equations, it
follows that ρ(rH) + p(rH) = 0, owing to the fact that λ′(rH) + ν′(rH) is finite, but e−λ(rH)

is vanishing. Thus, for positive matter energy density, it follows that the pressure on the
horizon must be negative. This will be a crucial result in obtaining the bound on the photon
circular orbit.
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The equation involving the unknown metric coefficient λ(r), from Equation (50), can
be expressed as a simple first order differential equation, whose integration yields the
following solution for 1− e−λ(r),

1− e−λ = − r2

2α
+

r2

2α

√
1 +

8αm(r)
r4 ; m(r) = MH + 4π

∫ r

rH

dr′ρ(r′)r′3 . (52)

Here, MH is the mass of the black hole and the above solution is so chosen, such that the
spacetime is asymptotically flat. The pressure equation, i.e., Equation (51), on the other
hand, can be solved to obtain an expression for ν′. When used in the algebraic expression
for the photon circular orbit, i.e., in the relation rν′ = 2, we obtain,

2e−λ(rph) =
8πr2

ph p(rph) + 2
(

1− e−λ(rph)
)

1 + 2α
r2

ph

(
1− e−λ(rph)

) . (53)

This helps to define the following function,

NEGB(r) ≡ 4e−λ − 2− 8πr2 p(r) +
4α

r2 e−λ
(

1− e−λ
)

. (54)

Motivated by the results presented in the previous sections, expressions for the quantity
NEGB on the horizon, on the photon circular orbit and also the asymptotic value of NEGB
are of importance. These values are given by,

NEGB(rph) = 0 ; NEGB(r → ∞) = 2 , (55)

NEGB(rH) = −2− 8πr2
H p(rH) = −2 + 8πr2

Hρ(rH) =

[
rH +

2α

rH

]
λ′(rH)e−λ(rH) < 0 . (56)

In the five dimensional static and spherically symmetric spacetime, which is a solution
of the Einstein–Gauss–Bonnet theory, the matter energy momentum tensor conservation
takes the following form,

p′(r) +
ν′

2
(p + ρ) +

3
r
(p− pT) = 0 , (57)

where pT corresponds to the transverse pressure. Substituting the value for ν′ from Equa-
tion (51), we obtain the following expression for (dp/dr), after simplifications,

p′(r) =
eλ

2r
1

1 + 2α
r2 (1− e−λ)

[
(p + ρ)NEGB + 2e−λ(−ρ + p + 3pT)

{
1 +

2α

r2 (1− e−λ)

}

− 10pe−λ

{
1 +

2α

r2 (1− e−λ)

}]
. (58)

Taking a cue from the earlier considerations, we may now define a rescaled radial pressure,
P(r) ≡ r5 p(r), whose derivative becomes,

P′(r) = r5 p′(r) + 5r4 p(r)

=
r4eλ

2
1

1 + 2α
r2 (1− e−λ)

[
(p + ρ)NEGB + 2e−λ(−ρ + p + 3pT)

{
1 +

2α

r2 (1− e−λ)

}]
. (59)

As evident, since NEGB(rph) = 0 and NEGB(rH) < 0, it follows that, P′(rH ≤ r ≤ rph) < 0.
Thus, it follows that p(rph) < 0 as well, since p(rH) must be negative and the radial
pressure p(r) is a monotonically decreasing function within the range rH ≤ r ≤ rph. Thus,
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from the fact that NEGB(rph) = 0, we obtain that, on the photon sphere, the following
algebraic relation holds true,

2e−λ(rph) +
2α

r2
ph

e−λ(rph)
(

1− e−λ(rph)
)
≤ 1 . (60)

The above being an inequality on the quadratic function of e−λ(rph), demands that on the
photon sphere the following inequality must hold true,

e−λ(rph) ≤ 1
2

1 +
r2

ph

2α
−

√
1 +

r4
ph

α2

 . (61)

Substituting the solution for e−λ(rph) in the above inequality, we obtain the following bound
on the radius of the photon circular orbit,

rph ≤
[
16m(rph)

2 − 8αm(rph)
]1/4
≤ 2
√
M . (62)

Note that the substitution, m→ (Gm/6π2) will make the above inequality coincide2 with
the one derived in [75]. Since the ADM massM of the spacetime involves contribution
from the matter fields falling within the black hole horizon, through the term ρ(r), it follows
that m(rph) ≤M. This is used to arrive at the final inequality, as presented above. Thus,
we demonstrated the versatility of the method depicted here, as it yielded the desired
upper bound on the location of the photon circular orbit, in terms of the ADM mass of the
spacetime.

6. Bound on the Photon Circular Orbit in General Lovelock Gravity

After discussing the bound on the photon circular orbit in Einstein–Gauss–Bonnet
gravity, let us determine the corresponding bound for general Lovelock Lagrangian, where,
along with Einstein Lagrangian, several other higher order Lovelock terms appear. Let us
work in d-dimensions, involving N Lovelock polynomials, with the maximum order of
the Lovelock polynomial being Nmax = (d− 2)/2. This is because, for Lovelock theories
involving N > Nmax, there are no propagating gravitational degrees of freedom. In partic-
ular, for N = (d/2), the Lovelock polynomial becomes a total derivative. This situation
can be compared to that of general relativity, which has dynamics in four dimensions, but
is devoid of dynamics in three and two dimensions.

As in the previous scenarios, in the context of general Lovelock gravity as well, the
first step in deriving the bound on the photon circular orbit corresponds to writing down
the temporal and the radial components of the gravitational field equations, which take the
following form [76]:

∑
m

α̂m
(1− e−λ)m−1

r2(m−1)

[
mrλ′e−λ + (d− 2m− 1)(1− e−λ)

]
= 8πr2ρ , (63)

∑
m

α̂m
(1− e−λ)m−1

r2(m−1)

[
mrν′e−λ − (d− 2m− 1)(1− e−λ)

]
= 8πr2 p . (64)

where α̂m ≡ (1/2){(d− 2)!/(d− 2m− 1)!}αm, with αm being the coupling constant ap-
pearing in the mth order Lovelock Lagrangian. Further note that the summation in the
above field equations must run from m = 1 to m = Nmax. Since e−λ vanishes on the event
horizon located at r = rH, both Equations (63) and (64) yield,

8πr2
H[ρ(rH) + p(rH)] = 0 , (65)
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which suggests that the pressure at the horizon must be negative, if the matter field
satisfies the weak energy condition, i.e., ρ > 0. Furthermore, we can determine an analytic
expression for ν′, starting from Equation (64). This, when used in association with the fact
that on the photon circular orbit, rν′ = 2, follows that,

2e−λ(rph) ∑
m

mα̂m
(1− e−λ(rph))m−1

r2(m−1)
ph

= 8πr2
ph p(rph) + ∑

m
α̂m(d− 2m− 1)

(1− e−λ(rph))m

r2(m−1)
ph

. (66)

This prompts one to define the following object,

Ngen(r) = 2e−λ ∑
m

mα̂m
(1− e−λ)m−1

r2(m−1)
− 8πr2 p−∑

m
α̂m(d− 2m− 1)

(1− e−λ)m

r2(m−1)
. (67)

As in the case of Einstein–Gauss–Bonnet gravity, and for general Lovelock theory as well,
it follows that Ngen(rph) = 0 and also Ngen(rH) < 0. Further in the asymptotic limit, if we
assume the solution to be asymptotically flat then, only the m = 1 term in the above series
will survive, as e−λ → 1 as r → ∞. Thus, even in this case Ngen(r → ∞) = 2.

To proceed further, we consider the conservation equation for the matter energy
momentum tensor, which in d spacetime dimensions has been presented in Equation (13).
As usual, this conservation equation can be rewritten using the expression for ν′ from
Equation (64), such that,

p′ =
eλ

2r
1{

∑m mα̂m
(1−e−λ)m−1

r2(m−1)

}[(ρ + p)Ngen + 2e−λ{−ρ + p + (d− 2)pT}∑
m

mα̂m
(1− e−λ)m−1

r2(m−1)

− 2dpe−λ ∑
m

mα̂m
(1− e−λ)m−1

r2(m−1)

]
. (68)

In this case, the rescaled radial pressure, defined as P(r) ≡ rd p(r), satisfies the following
first order differential equation,

P′ = rd p′ + drd−1 p

=
eλ

2
rd−1{

∑m mα̂m
(1−e−λ)m−1

r2(m−1)

}[(ρ + p)Ngen + 2e−λ{−ρ + p + (d− 2)pT}∑
m

mα̂m
(1− e−λ)m−1

r2(m−1)

]
. (69)

It is evident from the results, i.e., Ngen(rph) = 0 and Ngen(rH) < 0, that P′(r) is certainly
negative within the region bounded by the horizon and the photon circular orbit. Since,
p(rH) is negative, it further follows that p(rph) ≤ 0 as well. Thus, from the definition of
Ngen and the result that Ngen(rph) = 0, it follows that,

Nmax

∑
m=1

α̂m
(1− e−λ(rph))m−1

r2(m−1)
ph

[
2me−λ(rph) − (d− 2m− 1)(1− e−λ(rph))

]
≤ 0 . (70)

Here, the coupling constants α̂m’s are assumed to be positive. In addition, e−λ vanishes on
the horizon and reaches unity asymptotically, such that for any intermediate radius, e.g., at
r = rph, e−λ is positive and less than unity, such that (1− e−λ(rph)) > 0. Thus, the quantity
within bracket in Equation (70) will determine the fate of the above inequality. Note that, if
the above inequality holds for N = Nmax, i.e., if we impose the condition,

2Nmaxe−λ(rph) − (d− 2Nmax − 1)(1− e−λ(rph)) ≤ 0 . (71)
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Then it follows that, for any N = (Nmax − n) < Nmax (with integer n), we have,

2Ne−λ(rph) − (d− 2N − 1)(1− e−λ(rph))

= 2(Nmax − n)e−λ(rph) − [d− 2(Nmax − n)− 1](1− e−λ(rph))

= 2Nmaxe−λ(rph) − (d− 2Nmax − 1)(1− e−λ(rph))− 2ne−λ(rph) − 2n(1− e−λ(rph))

= 2Nmaxe−λ(rph) − (d− 2Nmax − 1)(1− e−λ(rph))− 2n < 0 . (72)

Hence, if the maximum order of the Lovelock polynomial satisfies the inequality Equation (71),
it is guaranteed that Equation (70) will hold identically. Thus, we obtain the following
condition on the metric function e−λ on the photon sphere,

e−λ(rph) ≤ (d− 2Nmax − 1)
(d− 1)

; 1− e−λ(rph) ≥ 2Nmax

(d− 1)
. (73)

The next step involves writing down the metric coefficient e−λ in terms of the mass of the
black hole and matter outside the horizon. However, unlike the previous scenarios, in the
present context, the solution for e−λ can not be obtained from Equation (63) in a closed
form, rather it yields an algebraic equation satisfied by (1− e−λ), which reads,

∑
m

α̂mrd−2m−1(1− e−λ)m = 2m(r) ; m(r) ≡ MH + 4π
∫ r

rH

r′(d−2)ρ(r′)dr′ . (74)

This is the best one can do in the context of general Lovelock theories. To proceed further,
one needs to solve for e−λ(rph) from Equation (74) and substitute the same in Equation (73)
in order to obtain the bound on the radius of the photon circular orbit. Thus for general
Lovelock theories it is difficult to obtain a closed form expression for the bound on the
radius of the photon circular orbit. However, if Equation (74) can be solved in certain
special cases, e.g., in the case of Einstein–Gauss–Bonnet gravity, bound on the photon
circular orbit may be obtained.

7. Implications for Quasi-Normal Modes and Black Hole Shadow

So far, we have outlined the key steps in deriving a bound (not necessarily an upper
bound) on the radius of the photon sphere and have determined the same in general
relativity and beyond. In particular, we have shown that, in the context of braneworld
black holes, we have a lower bound on the photon circular orbit, rather than an upper
bound, as general relativity predicts. It is interesting to ask for possible implications of
these bounds for black hole quasi-normal modes and the black hole shadow, since both of
them are intimately connected with the location of the photon sphere.

First of all, in the eikonal approximation (i.e., in the large angular momentum limit),
the quasi-normal modes of a static and spherically symmetric spacetime are given by [47,77],

ωQNM = `Ωph − i
(

n +
1
2

)
|λph| ; Ωph =

√√√√ eν(rph)

r2
ph

, λph =

√√√√− r2
ph

2eν(rph)

(
d2

dr2∗

eν

r2

)
rph

, (75)

where Ωph is the angular velocity at the photon sphere located at r = rph and λph is the
Lyapunov exponent on the photon sphere, with r∗ being the tortoise coordinate. Further, `
is the angular momentum and n is the order of the quasi-normal modes. Since we have
derived bounds on the metric components and the location of the photon sphere, it follows
that a similar bound may appear on the quasi-normal mode frequencies as well. However,
λph depends on the derivatives of the metric coefficients and, hence, no such bound can be
derived for the same.
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It is also possible to provide a bound on the shadow radius arising out of the location
of the photon circular orbit for these static and spherically symmetric compact objects.
Due to spherical symmetry, it follows that the shadow will be circular, with the shadow
diameter being given by,

Dshadow =
2

Ωph
. (76)

Thus, we observe that the real part of the quasi-normal mode frequency is related to the
shadow radius under eikonal approximation, by a simple algebraic relation,

Dshadow
(
Re ωQNM

)
= 2` . (77)

This suggests that the larger the real part of the quasi-normal mode frequencies are,
the smaller the shadow radius is, and vice versa. It is intriguing that two apparently
disjoint physical characteristics associated with the compact objects, namely the quasi-
normal modes arising from the perturbation of the compact objects and the shadow radius,
associated with scattering cross-section of the compact object, are indeed related with one
another. This, in turn, suggests that possible bound on the angular velocity of a photon
on the photon circular orbit will translate to respective bounds for both the real part of
the quasi-normal modes as well as the shadow radius. It is worthwhile to mention that
these bounds on the real part of the quasi-normal mode frequencies and the shadow radius
requires both the weak energy condition, as well as the negative trace condition to be
identically satisfied. The bound on the photon circular orbit was derived using these
energy conditions in the first place.

7.1. Bound for Pure Lovelock Theories

For generality, we will derive the respective bound for pure Lovelock theories, since
one can apply the results to any order of the Lovelock Lagrangian and in any number of
spacetime dimensions. We know from Equation (75) that,

Ωph =

√√√√ eν(rph)

r2
ph

=

√√√√ eν(rph)+λ(rph)

r2
ph

e−λ(rph)/2

<

√√√√ eν(rph)+λ(rph)

r2
ph

√
d− 2N − 1

d− 1
<

1
rH

√
d− 2N − 1

d− 1
, (78)

where, in the last line, we used the result, rph > rH and the fact that eν(rph)+λ(rph) ≤ 1. Thus,
for general relativity, in four spacetime dimensions, we obtain, ΩphrH < (1/

√
3). Similarly,

for Nth order pure Lovelock gravity in d = 3N + 1 dimensions, we obtain the bound on
Ωph to be identical to the one for four dimensional general relativity. Thus, the bound on
Ωph can be translated to a corresponding bound for Re ωQNM, which reads,

Re ωQNM = `Ωph <
`

rH

√
d− 2N − 1

d− 1
. (79)

On the other hand, the corresponding bound on the angular diameter of the shadow takes
the following form,

θshadow =
Dshadow

Dobs
=

2`
Dobs

1
Re ωQNM

>
2rH

Dobs

√
d− 1

d− 2N − 1
. (80)

where Dobs gives the distance between the shadow and the observer. For four dimen-
sional general relativity, the above bounds translate into Re ωQNM < (`/

√
3rH) and
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θshadow > (2
√

3rH/Dobs). For the Nth order Lovelock polynomial in d = 3N + 1 dimen-
sions, we obtain the bounds on the real part of the quasi-normal mode frequency and
shadow radius to be identical to that of four-dimensional general relativity, illustrating the
indistinguishability of these scenarios through physical characteristics of compact objects.
Thus, for any accreting matter source satisfying a weak energy condition, the angular
diameter of the shadow will be larger than that predicted by general relativity.

7.2. Bound in the Braneworld Scenario

In the braneworld scenario, on the other hand, the bound on the photon circular orbit
is the other way around, i.e., we have rph > 3MH. In this case, the angular velocity on the
photon circular orbit becomes bounded from below, such that, Ωphrph > (1/

√
3). Hence,

the corresponding bound on the real part of the quasi-normal mode frequency and the
angular diameter of the shadow becomes,

Re ωQNM >
`√

3rph
; θshadow <

2
√

3rph

Dobs
. (81)

Thus, the bounds on the real part of the quasi-normal modes and the angular diameter of
the shadow are opposite to those of pure Lovelock theories. In particular, the presence of
accreting matter demands larger quasi-normal mode frequencies and a smaller shadow
radius.

7.3. Bound in Lovelock Theories of Gravity

Finally, for general lovelock theories of gravity, even though a bound on the radius of
the photon circular orbit cannot be derived, it is possible to arrive at a bound on the real
part of the quasi-normal mode frequencies and the shadow radius, thanks to the bound on
e−λ(rph), presented in Equation (73). Thus, the bounds becomes,

Re ωQNM <
`

rH

√
d− 2Nmax − 1

d− 1
; θshadow >

2rH

Dobs

√
d− 1

d− 2Nmax − 1
. (82)

Here, Nmax corresponds to the maximum non-trivial order of the Lovelock polynomial
allowed in a gravitational theory, living in d spacetime dimensions. For the Einstein–Gauss–
Bonnet theory, one may improve these bounds quite a bit by using the bound on e−λ(rph),
presented in Equation (61). Thus, in this case, with accreting matter, the quasi-normal
mode frequencies decrease, while the shadow radius increases.

8. Concluding Remarks

Photon sphere plays a central role in the determination of both the quasi-normal mode
and the angular diameter of the shadow of compact objects. Additionally, irrespective
of the nature of the central compact object, i.e., whether it is a black hole or an ECO, the
photon sphere always exists and, hence, is a universal property of any ultra-compact objects
in general relativity and beyond. Following which, we have studied the bound on the
location of the photon circular orbit in higher-dimensional general relativity, braneworld
gravity, and in pure and general Lovelock theories, with accreting matter satisfying certain
energy conditions. Except for the case of braneworld gravity, where the presence of higher
dimensions induces a certain energy momentum tensor on the brane violating the energy
conditions, we obtain certain upper bound on the location of the photon circular orbit,
depending on the spacetime dimensions and the order of the Lovelock polynomial. For
the braneworld gravity, on the other hand, in the absence of external matter fields, one
arrives at a lower bound on the location of the photon circular orbit. Thus, there is a crucial
distinction between the higher dimensional general relativity and Lovelock theories with
the braneworld models, as far as the location of the photon circular orbit is concerned. The
braneworld model predicts a larger value of the radius of the photon sphere compared to
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the other scenarios. It should also be noted that the scalar–tensor theories of gravity are
already included in this analysis, since it can be modelled as Einstein gravity with a matter
field having energy momentum tensor Tµ

ν = diag.(−ρ, p, pT, pT, · · · ). This scenario yields
an upper bound on the location of the photon circular orbit, such that in four-dimensions
rph ≤ 3M, whereM is the ADM mass of the spacetime, which involves contribution from
the energy density of the scalar field as well.

These results have consequences in two of the most important observables—(a) the
real part of the quasi-normal mode frequencies; and (b) the angular diameter of the shadow.
From our analysis, it follows that, except for the braneworld scenario, the real part of the
quasi-normal mode frequencies are bounded from above, while the angular diameter of
the shadow are bounded from below. Thus, in the presence of accreting any additional
matter field, the shadow diameter will increase and the real part of the quasi-normal
mode frequency will decrease, which is an observable effect. On the other hand, for the
braneworld scenario, the presence of accreting matter or any other matter field in the
spacetime will decrease the angular diameter of the photon sphere and will increase the
real part of the quasi-normal mode frequencies. This is expected since the violation of the
energy conditions by the extra-dimensional contribution is tamed by additional matter
fields respecting energy conditions.

The results presented here also open up several future directions, which need to
be explored. First of all, the bounds on the photon circular orbits derived here are for
static and spherically symmetric spacetimes. It would be interesting to ask for possible
generalizations to rotating spacetimes as well. The procedure, as outlined here, can first
be applied to slowly rotating spacetime, using the Hartle–Thorne approximation, before
generalizing to arbitrarily rotating spacetime. Secondly, the above derivation of the bound
on the location of the photon circular orbit parallels very much the derivation of the
Buchdahl limit. It would be interesting to derive a possible connection between the two.
Additionally, if these bounds can be realized and possibly verified using astrophysical
observations, one can comment on the nature of the matter distribution falling within the
black hole. Similarly, the analysis presented here is based on spherical topology for the
transverse sector and, thus, it would be interesting to ask what happens to the bound
on the photon circular orbit if the topology of the transverse sector is different. It would
also be important to ask whether the bound derived in this work can be coupled with the
Penrose’s inequality in order to arrive at certain bounds for the size of the black hole as
well. This was attempted within the purview of general relativity in [70,78] (also see [79])
and, hence, it would be interesting to find out possible generalization to alternative theories
of gravity in the spirit of the present work. Furthermore, in [70], the energy conditions
necessary to derive this bound on the photon circular orbit was relaxed. Instead of both
the weak energy condition and the negative trace condition, only the null energy condition
was found sufficient to derive the bound on the photon circular orbit in general relativity.
Following which, possible relaxation of the energy conditions for alternative theories of
gravity must also be seek for. Finally, the presence of negative pressure at the horizon
can also be generalized to the cosmological horizon, which may describe the origin of the
late-time cosmic acceleration. We leave these issues for the future.
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Notes
1 There will be some additional terms∼O(`2), where ` is related to the size of the extra dimension. Since the extra dimension must

be compact, it follows that (`/rph)� 1 and hence effect of these terms can be ignored.
2 Note that the mass appearing in the spacetime metric is always scaled by the gravitational constant, thus m → Gm, when the

gravitational constant is restored. However, often in the literature the mass is also scaled by the inverse of the factor (d− 2)Sd−2,
with one caveat. In the Schwarzschild limit one obtains the gravitational potential to be, (2GM/2S2)r−1 = (GM/4πr). Due to this
unusual scaling of the mass we have avoided this factor in the present analysis. Thus to match with the literature, all the masses
may be scaled by (G/(d− 2)Sd−2). In five dimensions, this scaling becomes (G/6π2), as S3 = 2π2.
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