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Abstract: This review aims at proposing to the field an overview of the Cusp-core problem, including
a discussion of its advocated solutions, assessing how each can satisfactorily provide a description of
central densities. Whether the Cusp-core problem reflects our insufficient grasp on the nature of dark
matter, of gravity, on the impact of baryonic interactions with dark matter at those scales, as included
in semi-analytical models or fully numerical codes, the solutions to it can point either to the need for
a paradigm change in cosmology, or to to our lack of success in ironing out the finer details of the
ΛCDM paradigm.

Keywords: cosmology; dark matter; cusp-core problem; ΛCDM model

1. Introduction

Notwithstanding the many successes of the concordance cosmology model, also
known as the ΛCDM model, fundamental issues remain open. Most of the cosmology
community considers the ΛCDM paradigm to accurately describe the Universe’s large
scale structure formation and evolution, its early state and the proportions of its content
in matter and energy [1–5]. This view has been reinforced with each new discovery,
such as the kinetic Sunyaev-Zel’Dovich (SZ) effect, the Cosmic Microwave Background
(CMB) B-mode polarisation [6], or its lensing [7,8]... Among its most famous resisting
issues, the questions of the nature, “fine tuning” and “cosmic coincidence” problems of the
cosmological constant Λ remain open [9,10].

The “cosmological constant fine tuning problem” emerges from the large discrepancy
between the observed value of Λ and the huge values predicted by quantum field theories
for the present quantum vacuum energy, the latter exceeding the former by more than
100 orders of magnitude [9–11]: the cosmological observation upper bounds are limited to
ρΛ ' 10−47 GeV4, while the naive theoretical expectations obtain ρΛ ' 1071 GeV4. This is
the most extreme fine tuning problem known to physics. As Λ is constant, the concordance
model also presents a strong fine tuning of the dark energy (DE) initial conditions. The
“cosmic coincidence problem” questions the relative coincidence of the orders of magnitude
at present of dark matter (DM) and DE energy densities [12].

Further issues of the ΛCDM paradigm revolve around observations of the CMB or
of smaller scales structures. Unexplained statistical anomalies in the CMB large-angle
fluctuations contradict the ΛCDM CMB multipoles statistical independence, which reflects
the assumption that the content of our Universe should realise a Gaussian and statistically
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isotropic random field. These anomalies comprise detection in the CMB of a power
hemispherical asymmetry [13–18], of a cold spot, marking an underdense region [19–21],
and of a quadrupole-octupole alignment [22–26]. Such anomalies could either mark new
physics, be caused by statistical effects [27], or reflect unknown systematics.

Furthermore, puzzling tensions have been found between the cosmological fluctu-
ations σ8 parameters measured by cluster number counts and weak lensing, compared
with the 2013 Planck results [28], as well as between the 2013 Planck H0 Hubble parameter,
compared with SNIa data. Those tensions have persisted between the Planck 2015 data
and the σ8 growth rate [29], as well as with the CFHTLenS weak lensing [30].

In addition to those CMB issues, the description of small scale structures in the
ΛCDM model also raise problems e.g., [31–36]. They count the “missing satellite prob-
lem” MSP [32,37], the “Too Big To Fail” problem TBTF [34,35], the angular momentum
catastrophe AMC [38,39], the satellites planes problem [40], and the baryonic Tully-Fisher
relation reproduction problem [41]. Among those small-scale problems, the so called
Cusp-core problem CC [31,42] retains a central role. The CC coins the gap between the flat
central slopes of density profiles in dwarf galaxies (i.e., dwarfs), Low Surface Brightness
(LSBs), and Irregulars galaxies on one hand, while they all are DM dominated, and on the
other hand, the cuspy central slopes of dissipationless N-body simulations density profile
predictions [43–45].

Besides the aforementioned issues, further problems of the ΛCDM paradigm [46–50]
are left out of this review, as we focus here on the CC problem. Note however that the
formation of cusps and issues of satellites in ΛCDM are tightly connected, as shown
through the mechanism in some unified models [51–53] that can turn cusps into cores as
well as alleviate the MSP, since the shape of the parent halo determines strongly its tidal
effect on satellites e.g., [54–56], with cored profiles even capable of stripping the satellite
out of existence [56].

We organise the discussion as follows: starting with a short exposition of the initial
discussions on the CC problem, Section 2 will summarise its issues, while early solutions
involving baryons, DM matter type changes or gravity modifications will be presented in
Section 3. A review of the baryonic solutions to SPH simulations collapse models through
gas heating feedback effects from dynamical friction of baryonic clumps will be discussed
in Section 4, including a discussion in Section 4.1, where the supernovae explosions [57]
solutions of core heating will be presented, a Section 4.2 that will discuss both baryonic
approaches and a unified baryonic solution [53] and a presentation of the resulting mass
dependent density profile in Section 4.3. Finally, Section 5 will review and discuss solutions
modifying the DM nature, before to conclude in Section 6.

2. Exposition of the Cusp/Core Problem

The CC problem emerged after Flores & Primack [42] and Moore [31] showed DDO
galaxies’ rotation curves could be better fitted with cored (or pseudo-)isothermal density
profiles, ruling out cuspy profiles. As dissipationless CDM model simulations persisted to
produce cuspy profiles (see Figure 1), this was coined as the CC problem.

Indeed, such cuspy DM profile was obtained in the dissipationless N-body simula-
tions of Navarro, Frenk, & White [43,58], yielding inner density ρ ∝ rα, for the power
index α = −1. Moreover, they found such profile (thus coined NFW profile) to emerge
universally, thus independently of cosmology and scale, from dissipationless simulations.
This universality was challenged by the obtaining of a steeper profile at α = −1.5 [59,60],
or even by studies observing dependence of the inner slope on the nature of the object
and/or on its mass [61–69]. Finally (see Figure 2), the so-called Einasto profile, yielding
a central flattening down to '−0.8 [70], tend to better fit more recent N-body dissipa-
tionless simulations [71]. Nevertheless, the CC problem persists, and has been strongly
debated for two decades, as even this smallest predicted inner slope from dissipationless N-
body simulations exceeds slopes outputted from SPH simulations [72,73], semi-analytical
models [74–80] or even observations [36,81–85].
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Figure 1. Illustration of the CC problem. The cuspy NFW profile is displayed on the left panel, with
the dotted vertical line representing the profile’s scale radius. The right panel exemplifies the cored
profile, with the dotted vertical line marking the profile’s core radius.

Historically, the first contradicting results originated from dwarf and LSB observation
in HI: their rotation curves (RCs) did not match the NFW halo [86–88]. Fueling the debate,
steep profiles could not be excluded for several objects studied by van den Bosch &
Swaters [89]. However evidence against steep profiles further mounted through Hα data,
in de Blok & Bosma [90], in the inner slopes α = −0.2± 0.2 measured by de Blok et al. [82],
and α = −0.22± 0.08 obtained by Spekkens et al. [91], although contradicted by RCs
agreeing with cusply profiles produced by Hayashi et al. [92]. Nevertheless, flat profiles
were usually in agreement with high resolution observations [93–97], etc.

Understanding of the construction of RCs was refined with their decomposition for
some spiral galaxies into their components in terms of stars, gas and DM, fitted with various
models in Gentile et al. [98–100]. The results favoured constant density core profiles over
cuspy models, in the same way as the THINGS (The HI Nearby Galaxy Survey) 7 dwarf
galaxies processed by Oh et al. [36]. Figure 3 compares the RCs of the latter, among others,
with those of NFW and pseudo-isothermal (ISO) profiles, clearly showing the ISO fits them
best. The LITTLE THINGS survey also produced similar results [101].

However, as the previous results emanate mainly from low brightness objects such
as dwarfs or LSBs, while large galaxies or high-surface brightness objects inner structure
determination is more complex, general statements on inner density profiles of all galaxies,
in particular on their cored or cuspy nature, are far from settled. Indeed, while the
high-surface brightness galaxies studied by [102] present cored centres, their analysis by
e.g., [68,78,103–105] disagree. Other surveys contain a mix of cored and cuspy objects. In
particular, in the THING sample, galaxies with low luminosity, MB > −19, tend to follow
a cored ISO profile, while luminous galaxies, MB < −19, are equally well fitted by cored
or cuspy profiles.

Such confused picture is reinforced by the lack of systematically flat slopes in dwarf
galaxies: in Simon et al. [103], a large scatter in the inner slopes of the low mass spirals
NGC2976, NGC4605, NGC5949, NGC5963 and NGC6689, was obtained, with a cored
profile α ' −0.01 for NGC2976, a cuspy slope α ' −1.28 for NGC5963, while α ' −0.88
for NGC4605, α ' −0.88 for NGC5949 and α ' −0.80 for NGC6689. We illustrate this in
Figure 4: its top left panel confronts NGC5963’s DM halo RC (black dots with error-bars) to
RCs computed from (a) the [74] model that accounts for baryonic physics (yellow dashed
line), (b) a fitted NFW profile (cyan line), (c) a fitted pseudo-isothermal profile (ISO, short-
dashed magenta line), while its top right panel confronts the same kinds of fits to the RC
from NGC5949, and the bottom panel only displays NGC2976’s RC with a flat power law
(black line) and model (a) (dashed line). The NGC5963 RC is well fitted by the cuspy NFW
profile’s. The NGC5949 RC is equally well approximated by RCs from a cuspy NFW or
ISO cored profiles. Finally, the NGC2976 RC reflects a very flat inner profile (α ' 0.01). The
three RCs displayed in Figure 4 all agree with the [76] model.
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Figure 2. Comparison of density profiles with simulations. The NFW profile (solid lines) is compared
in the top left panel with simulations from Ref. [106]. Note that the Einasto profile fits also well those
simulations [44]. The same comparison for the Moore profile is displayed in the top right panel,
and each panel represents simulations of dwarfs galaxies (red line), medium size galaxies (green
line), and galaxy clusters (blue line). The bottom left and right panels focus on the residuals between
the corresponding theoretical profiles and the compared simulations this figure is reproduced from
Figure 1 in [106] .

It appears then that if a cored profile agrees with RCs of many dwarfs, some remain
clearly cuspy.

In addition, opposite conclusions on the core/cusp question have been drawn from the
same objects with similar techniques by different studies: Ref. [107] analysed NGC2976’s
DM inner profile to lie within −0.17 < α < −0.01, when the same object yielded some-
times incompatible profiles in [108], traced either by gas, α = −0.30 ± 0.18, or stars,
α = −0.53± 0.14.

In agreement with the preceding considerations, galaxies’ observed RCs were recog-
nised by [109] to exhibit much more diversity than what simulations produced.

The conclusion this brings emphasizes the difficulty of galaxies’ inner slope assess-
ment, including for dwarfs. This moreover calls for a redefinition of the CC problem
in terms of inner mass, rather than inner slope of galaxies density or RCs. Indeed, as
shown by several studies, including those mentioned here, and despite kinematic maps
recent improvements, there exists no agreement on DM slope distributions correlated with
morphologies [36,103,108], but rather a range of profiles.

This lack of agreement appears even more obvious for the extreme ends of the mass
spectrum of galaxies: for larger masses, dominated by stars, as in spiral galaxies, and for
lighter galaxies, such as dwarf spheroidals (dSphs), which models require the account of
biases, that result in opposite consequences.

Figure 3. Confrontations between RCs (left panel) or density profiles (right panel) from the pseudo-isothermal (ISO, red
dashed line) and the NFW (solid lines) profiles, to thoses from (a) the [72] simulated galaxies marked DG1 and DG2, and
(b) 7 dwarf galaxies selected from THINGS. The small red dots emphasize the NFW RCs for V200 ∈ [10-90] km/s. RCs are
normalised to the rotation velocity V at the distance where d log V

d log R = 0.3, noted R0.3 this figure is reproduced from Figure 6
in [36].
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To interpret and assess these results on dSphs, a range of approaches have been
tried. As stellar orbit anisotropy and mass are degenerate in the spherical Jeans equa-
tion [110], its results highly vary with assumptions. Similar degeneracies also hinder the
approach applying parameter space maximum likelihood to Jeans modelling [111–113].
With Schwarzschild modelling, cored profiles are found [114–117], for, e.g., Sculptor or
Fornax dSphs. More recently a study by [118] has found that the majority of dSPhs favor
cuspy profiles. Multiple stellar populations methods also obtained cored profile [119–122]
for Fornax (measuring its slope at ' 1 kpc) and Sculptor (for its slope at ' 500 pc). Nev-
ertheless, the lack of agreement on a single inner distribution for dSphs still remains,
with contradictory results such as the cusp obtained from Schwarzschild modelling for
Draco [117].

Such scatter preventing a unified understanding occurs as well for galaxy clusters
scales. In clusters MACS1206, MS2137-23, RXJ1133, A383, A1201, A963 and RXJ1133,
studies with a combination of BCG’s (Brightest Central Galaxy) stars velocity dispersion,
weak and strong lensing, Sand et al. [123] found cores, and only the RXJ1133 profile could be
compatible with the NFW model. Such flatter profiles were also obtained, in similar studies
(see also [124]), for A611 by Newman et al. [125], 2009, for A383 by Newman et al. [126],
2011 and for MS2137, A963, A383, A611, A2537, A2667, A2390 by Newman et al. [127],
2013. This contradicts other studies such as the cuspy profile in the strong lensing and
X-ray observations of A611, among seven cuspy or flat profiles of relaxed massive clusters
with average slope α = 0.50± 0.1, by Donnaruma et al. [128].

More generally, conflicting estimates with simulations are common with gravita-
tional lensing [128–130], although much shallower slopes (−0.5) can also result from that
technique [123,125–127,131–133]. A similar wide slopes spanning can stem from X-ray
analyses, ranging from cores at−0.6 [134], to NFW-like−1.2 [135], up to very cuspy profiles
−1.9 [136]. However, NFW also agrees with some X-ray profiles [137].
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Figure 4. Presentation of the DM halo RCs (error-barred, black dots) for the galaxies NGC5963, NGC5949 and NGC2976,
provided in Ref. [103]. In the two top panels showing resp. NGC5963, on top left, and NGC5949, on top right, are represented
NFW profile fitted RCs (dotted cyan lines), pseudo-isothermal profile fitted RCs (ISO, short-dashed magenta lines) and the
RCs from Ref. [76]’s model (yellow dashed lines). The bottom panel, displaying NGC2976, compares its observations with a
density power-law fit model (slope ' 0.01, solid line) and with Ref. [76]’s model (dashed line; this figure is adapted from
Figures 4 and 5 in Ref. [76]).

Although the situation improved with more recent, higher resolution, observations,
as they agree on flatter-than-NFW profiles on average, compared with the early data’s
conflicting density profiles inner structures, such high resolution pictures still display
galaxy to galaxy inner structure diversity, reflected in [109] simulations.

Despite the agreement of the IC2574 galaxy’s RC with the simulations from Ref. [109]
(presented in Figure 5, shaded green band) for radii > 6 kpc, the galaxy’s inner region
behaviour differs completely from their simulations. Such divergence emphasizes that
correct RC slope predictions for some inner regime doesn’t entail that the successful
simulation remains accurate in all regimes of the RC. As the main characteristic of the
CC problem resides in the inner galaxy’s mass deficit [109], the focus should lie in the
DM excess in the central distribution produced by CDM rather than on the density profile
shape. The observation vs prediction discrepancy already appears where the asymptotic
value of the circular velocity is reached [138].

It is therefore unfortunate that practically no observational papers in the field depart
from the inner slope estimation method using α. A notable exception can be found in the
inner slope estimation via the integrated indicator Γ ≡ ∆ log M/∆ log r < 3− α performed
by [120] in the cases of the Fornax and Sculptor galaxy clusters. As Γ is integrated, contrary
to the local α, its evaluation is easier, but provides a lesser constraint on the inner slopes.
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Finally, an alternate probe of the DM inner profile flattening to rotation curves consists
in the dynamical friction timing (DFT) technique, that is assessing the time an object like a
globular clusters (GC) requires to move inside the distribution of mass. It clearly represents
an indirect method to obtain the DM inner slope, however it presents the advantage of
directly probing the density, rather that the integrated mass furnished by rotation curves.
Thanks to the presence of GCs in dwarf galaxies, like Sagittarius or Fornax, Ref. [86] was
able to show analytically that the inner density profile must be cored. This behaviour
focused on GCs was confirmed by several simulations [139–142]. The key interests of the
DFT technique are twofold: (1) it concentrates on smallest scale galactic systems like dwarf
galaxies, on which the proposed solutions to the CC problem show their main drawbacks,
and (2) its method is independent from that of rotation curves, giving information on the
structure of the mass distribution in the studied systems. Recently, DFT studies have shifted
their focus from GCs to DF on stars. Using analytical approaches, as in Hernandez [143],
or numerical techniques, in Inoue [144], on ultra-faint satellite galaxies of our galaxy, was
shown that DM fractions imply DFT for the stars themselves and are incompatible with
cusped dark matter haloes, at these tiny scales, out of reach of SNF models, and even
maybe of DFBC solutions.

Since smaller mass objects are more likely to harbour inner profiles in agreement with
predictions of dissipationless, N-body, codes (cuspy), a definite verdict on the nature of the
inner slope, cored or cuspy, of the smaller end of the mass spectrum, i.e., dSphs, is critical.
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Figure 5. Observed RC from galaxy IC2574 (filled blue circles with error bars) compared with the
DG1 (open red circles) and DG2 (open red triangles) simulated galaxies from [72]. The green shaded
region and line, as well as the black line, respectively stands for the scatter of one and both median
RCs for simulated galaxies from which this figure, Figure 1 is extracted from Ref. [109].

3. Initially Proposed CC Problem Solutions

In the wealth of propositions to solve the CC problem, the initial attempts were
determined by the limited state of knowledge and observations. Systematic effect and poor
resolution were first invoked as the origin for the CC inconsistencies e.g., [89,145]: they
blamed beam smearing, slit-misplacement, non-circular motions or beam off-centering, as
they are sources of systematically lowering slopes.

For instance, finite HI emission beam size tends to smear the HI observations, inducing
a larger measured disk, depending on the HI distribution, beam size, intrinsic velocity
gradients and galaxy inclination angle. With modern high spatial resolution (<1 kpc, see
below), the smear can be resolved.

The slit misplacement for an Hα emitting galaxy can entail missing the galaxy’s
dynamic centre, inducing a flatter measured profile. One of the solutions to avoid this slope
underestimate have used 3d spectroscopy [94,102]. As Hα observations assume circular
motions for the gas, any non-circular orbits underestimate the slope. Some have found [97]
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that those departures from circular velocity remain within the order of a few km/s. Current
high resolution rotation curve data are able to discriminate cuspy from cored haloes with
asymptotic inner slopes [84].

Projection effects were put forward by several papers [92,106,146] to explain the
discrepancy of their simulations with observations, despite their claims of good agreement
of their profiles, becoming shallower in the range the virial radius towards the centre.
Their argument lies on the practice of representing the 3D DM haloes motion with a
spherically averaged circular velocity, traced by the gas disk rotation speeds. Their claim is
to blame the disagreement with data on the correspondence fitting formulae rather than
their simulations [92]. Current DM-only high resolution simulations clearly reject this
explanation, as their inner profiles cannot reach shallower slope than'−0.8 [70], compared
with high resolution galaxy observations revealing much smaller values.

More generally, simulations limitations, such as over-merging or lack of relaxation or
resolution, have been blamed to source the CDM model’s failure [82,147,148]. This was al-
ready questioned then by Ref. [149]’s convergence tests proving the dissipationless N-body
simulations of the time were adequate to properly obtain the CDM density profiles, despite
their neglecting the galaxies inner kpc regions effects of baryons. Such effects were shown
to dominate the DM generated profiles in clusters’ central 10 kpc regions [123,125–127].
Modern simulations no longer suffer from the blamed limitations and hydrodynamic
cosmological high resolution models now account for baryons, as will be discussed in the
next section on baryonic resolutions of the CC Problem.

Questioning of the very paradigm of CDM opened the door to speculations on the
nature of DM, such as warm WDM [150], fluid [151], repulsive [152], fuzzy [153], decay-
ing [154], self-annihilating [155], or self-interacting [156] DM. More fundamental question-
ing led to altered small scale DM power spectrum e.g., [157] or modifications of gravity
itself, such as the so-called f (R) [158,159] or f (T) [160–163] theories, or the so-called Mod-
ified Newton Dynamics MOND, [164,165]1. Such paradigmatic modifications, whether
touching DM nature, initial conditions or the nature of gravity, will hereafter be denoted,
in their impact the CC problem, as "cosmological solutions", and developed in Section 5.

4. Baryonic Resolutions of the CC Problem

Before resorting to the above mentioned “cosmological solutions” to deal with the CC
problem, a thorough check, whether neglected or poorly understood local physics could
explain it, would be wise. Indeed, discarding the concordance, i.e., ΛCDM, model would
risk to significantly alter the otherwise very successful predictions ΛCDM provided, thus
loosing the explanations for many observations of our Universe. This is the aim of the
current section.

Keeping the framework of the ΛCDM model, “astrophysical solutions” alter the
results of pure CDM structure formation with some “heating” mechanism applied to inner
DM distribution, originated in the effects of baryons. The inner density profile gets then
flatter than for pure CDM evolution. Such “heating” mechanism could be provided by

1. accounting for the action, in structure formation, of angular momentum;
2. the induced dynamics from a central black hole, claimed to shallow the DM

cusp [170–172];
3. the modification of equilibrium from the presence of a rotating bar;
4. the mechanism of dynamical friction that induces baryons-DM transfer of angular

momentum [74,173,174];
5. the supernova (SN) explosions-generated bulk motions in gas, dubbed AGN feed-

back [54,55,72].

Larger angular momentum acquired by a proto-structure has been correlated to flatter
inner density profile by many contributors within the framework of spherical [175–186],
or even elliptic [187], infall models.2 Such models were able to produce RCs agreeing
with those of dwarf galaxies [179], which profile builds flatter than giant galaxies’ because
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structure’s density peak height3 anticorrelate with the angular momentum they get during
their formation.

Dynamical friction was shown to flatten, and even erase, the DM formed cusps in both
galaxy clusters and dwarfs by transferring energy from baryon clumps to DM [173,174].
Conversely, DM adiabatic contraction (AC) in haloes steepens their density profiles [193,194].4

The above effects see also [196] were all combined in the model from Del Popolo [74],
including:

- tidal torques caused ordered angular momentum acquired during the structure formation;
- its obtained random angular momentum;
- its dynamical friction induced baryons-DM energy and angular momentum exchanges;
- and the effects of its DM adiabatic contraction (hereafter, AC).

In addition to inducing flatter density profiles in the center of galaxies and clusters,
dynamical friction and angular momentum also tend to modify their overall internal struc-
ture [197–200]. The simple confrontation of real structures, including baryons, with the
outputs of dissipationless simulations is demonstrably incorrect [74]: the non-negligible
action of baryons in the inner regions of structures explains the failures of N-body simula-
tions to reproduce observed density profiles. This is illustrated in Figure 6, showing halo
evolution for two masses, 109 and 1014M�, modeled using the “Dynamical Friction from
Baryonic Clumps” scenario (hereafter DFBC scenario) from Ref. [74] and discussed below.

The impact of baryons content, environment and formation history on dwarf galaxies
density profiles was demonstrated with the Del Popolo DFBC model [76].

The “heating” mechanism 5 was first put forward by Navarro et al. [201], flattening
the inner profile from the feedback of SN explosion into the medium, as discussed below.

In the present state of the field, the discussion on astrophysical solutions to the CC
problem have narrowed down to the following mechanisms

1. the cusp reduction through “supernovae feedback flattening” (SNFF) [54,55,72,73,201–
203], and

2. the cusp flattening via the “Dynamical Friction from Baryonic Clumps” (DFBC)
[74,173,174,204–210].

They will be discussed in more details in Sections 4.1 and 4.2, and are put in context below.
In general, baryons and DM usually “interact” in smooth distributions via AC, that

can be counterbalanced by transferring energy back from baryons to DM. AC leads DM to
collapse towards the centre of the halo, steepens its profile and increase its central density.
The counteracting transfer has the opposite effect. It can occur via

1. Dynamical friction transfer of incoming clumps orbital energy to DM.
This leads DM particles to drift towards the halo edges and thus to flatten the DM
density profile [74,173,174,204–210], see also the review of [211]

2. DM particles “heating” from galactic internal energy sources [211].
Such source expelling from, or relocating baryons in, the halo (for instance, bulk
motions induced from SN explosions, [54,55]) can temporarily flatten the gravitational
potential, shift DM particles outwards, and flatten the cusp.

We will now discuss the two favoured “heating” mechanisms in the CC problem
solution, and how those solutions are synthesised into the proposal of a mass dependent
density profile for DM haloes with baryons.
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halo yields profiles at z = 10, 3, 2, 1, and 0, characterised resp. by the solid, long-dashed, short-dashed, dot-dashed and
dotted lines, and presented in the left panel. The profile evolution, ending at z = 0 with the total (DM+Baryons) mass
density profile of a 1014 M� halo and marked by the dot-dashed line, is reproduced in the right panel. That DM profile is
characterised at z = 3, 1.5, 1 and 0 resp. by the solid, dotted, short-dashed, and long-dashed lines this figure is extracted
from Figures 3 and 5 in [74].

4.1. Discussion on Supernovae Feedback Flattening

Historically, the first solution proposed to the CC problem while accounting for
the effects of baryons, as initially suggested in Ref. [42] and confirmed by many efforts,
employed SNF [54,55,72,73,201–203,212,213].

Profile flattening by a single sudden baryons expulsion into the halo was first shown by
Ref. [201], and found to be most effective in dwarfs and other shallow potential structures.
However, energy from a single explosion was shown [214] to remain insufficient to drive
the profile to a core, while repeated moderately violent explosive events would be required
see [215] for a different point of view.

A more detailed study of the [201] approach, focused on evolving from NFW profiles
to DDO154’s RC via a gas outflow event modeled from an abrupt change in the disk
potential, by Gelato and Sommer-Larsen [202], established that at least 75% of the disk
mass should be expelled that way to generate this RC.

In the case of larger galaxies and deeper potential structures, a core was shown by
Read and Gilmore [203] to result from repeated and alternate outflows and re-accretions
of gas.

In primordial galaxies, a core was determined to follow from SN-explosions-driven
gas random bulk motions [54,55], as confirmed in [72] simulations. The average slope of
the latter simulations were compared with observations of THINGS dwarfs in Refs. [36,85].
Producing simulations for larger galaxies than [72], and comparing them with observa-
tions [73], correlation between the stellar mass M∗ and the inner slope were obtained
for M∗ > 107M� galaxies were obtained. These results were obtained from simulated
galaxies thanks to the N-Body+SPH code GASOLINE [216]. With an 86 kpc softening,
gas particles and DM particles resolution were reduced to Mp,gas = 3 × 103M� and
Mp,DM = 1.6× 104M�, reps., thanks to the “zoom” technique of Ref. [217]. Two realisa-
tions were produced, distinguished by their star formation thresholds: a High Threshold
run (HT), with star forming hydrogen cloud densities >100/cm3, and a Low Threshold run
(LT), with hydrogen densities >0.1/cm3. Both SNF blast wave mechanism [218] and/or
early stellar feedback [219] were implemented in those simulations, as later by [69] in
the same way. The Governato simulations resulting energy feedback to the interstellar
medium (ISM) amounted to 1051 ergs from >8M� stars, while the ISM gas ejecting energy



Galaxies 2021, 9, 123 11 of 33

was coupled to the SN expelled energy via the coefficient εesf. The fiducial εesf = 0.1 was
selected for the MaGICC simulations [219].

Comparably, a combination of bursty star formation and SNF, inducing inner (1 kpc)
halo potential fast oscillations and expanding gas bubbles when the central cold gas density
reaches >100/cm3 and stars start to form5, was shown to flatten the cusp [221]. However
in this model, no noticeable modifications of the DM inner density profiles are induced for
smaller densities (e.g., 0.1/cm3). The case of larger mass galaxies was treated by Governato
et al. [73] with the same method (also see Figure 7 top panels). Agreement with the results
of [221] (Figure 7 bottom left panel) was obtained from introducing a new SNF scheme in
the RAMSES adaptive mesh refinement code by Teyssier et al. [212], showing flat galaxies
inner profile for M∗ > 107M�. Similar outcomes with a lower threshold at M∗ > 106M�
were produced by Onorbe et al. [222] (Figure 7 bottom right panel)6.

z =  0.000

Collision-less

Dwarf_early

Dwarf_m iddle

Dwarf_late

Figure 7. Density profiles including baryonic effect. The Figure 1 in Ref. [73]’s hydrodynamic
simulations present density profile evolution (top left panel) reflected on their inner logarithmic
slopes (at 0.5 kpc). The Ref. [73]’s results (red crosses) are compared, in the top right panel, for
different stellar mass galaxies, with THINGS galaxies’ results (open squares), and with DM-only N-
body simulation reproduced from Figure 3 in [73], shown as a solid line. Results from hydrodynamic
simulations are presented in the bottom panels: density profile evolution from Figure 5 in Ref. [212]
are shown on the bottom left panel, while the bottom right presents hydrodynamic evolution for
three different types of dwarfs, where stars all form either in early times, in medium or in late times
in Figure 6 of [222].

Since their simulations found little effect of baryons on rotation curves of galaxies
with Vmax < 60 km/s, even in their inner regions, this perspective was denounced by [109].
They argued that the cores obtained by [221], since no evidence of core formation was
detected in their [109] work, were inherently reflecting an ad hoc choice of parameters.
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Such understanding agrees with the findings of Ref. [223], which 7 high-resolution
dwarfs simulations, included in halos with 1-2 ×1010M� and following different assembly
history, could not reveal any inner core flattening. A very extended assembly history
dwarf, thus also having an extended star formation rate (SFR) history, exhibits their lowest
detected inner slope: they measured it to reach, at 0.01–0.02 Rvir, up to−0.8. It also remains
consistent with the core-less simulated realistic galaxies of Ref. [224].

In addition to those contradictions in core formation between various high resolution
hydrodynamical simulations, several criticisms have arisen on the methods and assump-
tions used in simulation models of the types of [72,225], as they obtain faulty

1. core formation energetics: the number of stars, obtained in their M∗ < 107M�
galaxies, generates an insufficient energy to flatten the galaxies cusp [226]. Moreover,
their required core-forming baryonic mass marginally exceeds the dSphs observed
baryon content [215]. That problem in Penarrubia [226] is illustrated in Figure 8’s
left panel. However, the right panel displays the opposite results from Maxwell’s
study. In addition, the SNFF solution they propose for the CC problem, requiring
the formation of numerous SNs, entails a star formation efficiency (SFE) constraint
towards larger values, opposite to the SFE constraint induced by the complementary
solution to the Too-Big-To-Fail (TBTF) problem [34,35]7

Figure 8. Minimal SN energy/mass output, ∆E, needed to convert a DM cusp into a core as a function
of halo mass, Mh, measured at virial mass, Mvir, in the left panel. The constraints on the minimal
amount of energy as a function of mass can also be expressed in terms of stellar mass, standing for
luminosity, shown in the right axes of each panel. Conversion from stellar mass proceeds, in the
left panel, from a luminous MW satellites constrained star formation efficiency F∗ = F∗(Mvir), the
resulting luminosities converting into SNeII energy output via Ref. [226]’s Equation (6) with strong
energy coupling εDM = 0.4, while it assumes, in the right panel, 100% efficiency (εDM = 1). The
left panel, reproduced from Figure 2 in [226], presents: (a) the range of minimum SN explosions
energy required to obtain a core of size rc given within 0.1 < rc/rs < c, with c and rs, respectively
being the concentration parameter and the scale radius of the NFW profile at given virial mass Mvir,
as the red shaded area; (b) for a fixed core size rc = 1 kpc, the dotted black line is obtained; (c) the
SN explosion energy outputs, indicated from two different studies [227,228] as dot-dashed green
and dashed blue lines, denote those compatible with the “missing satellite” [32,37] problem and
reveal, for haloes with Mvir < 10M�, the tension with the “core/cusp” problem. The right panel,
extracted from Figure 3 in [229], shows: (a) the left panel red shaded area of Penarrubia et al. [226]’s
energy estimates, as shaded grey area; (b) solid lines with symbols for the conversion energy of
cuspy to pseudo-isothermal density profiles at fixed core sizes, indicated in the legend by the symbol
types; (c) the solid black line for the ∆E scaling with halo mass Mh, while the ratio of the cusp
mass redistribution limit radius, rm, over the halo radius, rh, is fixed; (d) the dotted, dashed, and
dot-dashed lines, respectively, for the Behroozi et al. [230], Kravtsov [228], and Moster et al. [231]
M? −Mh relations.
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2. energy coupling: their εSN ' 0.4 exceeds the 0.05 coupling that studies such as [232]
deduced;

3. star formation threshold: the [72] results have been found in [109,233] to require a
very high star formation threshold;

4. tensions with TBTF solution: those models simply encounter adverse con-
ditions [215,234,235] when trying to solve the TBTF problem;

5. feedback resolution: accurately describing the cusp transformation into a core via
their feedback processes would require better resolution than they present [236–239].

Despite the SNF limitations,8for M∗ > 106M�, correlations between M∗ and galaxies
inner slope have been found, comparing THINGS dwarves average slopes with [72]’s
simulations in Refs. [36,85], and similarly in [73] for larger objects.

Inversely, hydrodynamic simulations for M∗ < 106M� produce cuspy profiles, in
contradiction with the Fornax and Sculptor cored inner structure found by Ref. [120] thanks
to their more reliable DM haloes’ slopes from mass profiles Γ ≡ d log M

d log r < 3− α. Only with
50% more SN energy injections could Ref. [240] claim agreement with [120]’s cores.

Assuming SN feedback and other specific assumptions, a Semi-Analytic model from
Gnedin and Zhao [214] claimed impossibility to obtain cores. As, among details of stellar
feedback, the core formation impact of baryonic clumps, such as in Ref. [74], is ignored,
such objection is weakened.

However, there exists one core-forming SNF dwarf galaxies simulation for masses
< 106M�: with the P-SPH mode in the GIZMO code, Ref. [222] obtained cores in a much
less natural way than in the DFBC scenario, discussed in the next section.

4.2. Discussion of Gas Clumps Dynamical Friction

As discussed in the introduction of the present Section 4, Refs. [173,174] proposed
an alternate path from SNF for the turning of cusps into cores: baryon clumps with mass
ratios to the system above '0.01% can transfer, through dynamical friction (DF), clumps
orbital energy to DM. Such heating induces similar effects to SNF without the need to wait
for a full massive stellar cycle, moving to outer orbits the central DM particles and thus
flattening the inner DM density profile. It is more efficient on earliest, smallest haloes of
the hierarchical structure formation.

DFBC was first shown to function in galaxies [173], then in clusters [174]. Cluster
C0337-2522 evolution with such model [205] showed the BCG generation precedes DFBC
inner slope formation, resulting in flatter than NFW inner profiles with 0.49 < α < 0.90.

Implemented in a hybrid N-body/SPH simulation, DFBC galaxy evolution showed
heated up cusps by baryons subhalos into a core of '1 kpc, and was compared with
DM-only systems and mixed DM/baryons systems [206].

Refs. [208–210]’s simulations confirmed such outcomes.
The main steps of the DFBC can be outlined in the following:

• the linear phase develops from initial DM and diffuse gas proto-structures.
• DM gravitational collapse first form non-linear potential wells, attracting then the

baryons.
• Unstable accreting gas then fragment into clumpy structures e.g., [241–249], leading

to highly gas-rich discs.
• Further instability in the rotating discs, triggered by their surface density, Σ, exceeding

a threshold at Q ' σΩ/(πGΣ) < 1 [250], with σ, the disc’s 1-D vertical velocity
dispersion and Ω, its angular velocity, while Q is related with the instability of the
vertical kinetic to gravitational balance to the excess of centrifugal angular velocity,
fragment it into clumps, which largest can reach mass ratios with the disc of a few
percent and 1 kpc radii e.g., [251]. Typical clumps, in galaxies with baryon mass 1010-
1011M�, range within ' 108-109M� see [246,248,249], are rotationally supported, in
Jeans equilibrium [248] and stable for long periods (' 2× 108 Myr).
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• As in local star-generating systems and following the Kennicutt-Schmidt law, a few
percents of those clumps’ gas converts to stars [251], while DF migrates them to the
DM halo (galactic) center.

• The first collapse phase’s AC compressed baryons [193,194] and e.g., 109M� galaxy
at z ' 5 in our Figure 6, reenforcing the DM cusp.

• The previous effect is countered by DF-induced migration of clumps to galaxy center,
as DF transfers energy and angular momentum from baryons to DM, heating up the
cusp into a core.

• SNF only intervenes later (e.g., around z = 2), when SN explosions expel gas,
decreasing surrounding stellar density. Moreover, such feedback destroys the smallest
gas clumps as soon as a small fraction of their mass turns to stars.9

Although sharing some common features (e.g., clumps to DM energy transfer via
gravitational interaction), leading some to consider SNFF and DFBC as the same idea
implemented differently, they fundamentally differ on two crucial points:

1. their respective profile flattening epochs differ markedly: while pure SNFF DM
profile does not depart noticeably from NFW at z ' 3 [222,225,252], DFBC flattening
initiate at higher redshifts (z < 5, see Figure 6);

2. their clumps moving energy sources diverge in nature: in Refs. [54,55]’s definition,
while clumps motion is driven, in the SNFF model, by SN explosions energy, the
DFBC views them to just “passively” infall to the halo centre.

The two competing scenarios predictions for the central density slope vs. stellar
mass and vs. circular velocity relationships were confronted in Refs. [253,254] with a
series of high resolution data predictions from the Milky Way, Sculptor, Fornax, LITTLE
THINGS [101], THINGS dwarfs [36,85] and Refs. [103,108]. Such confrontation showed
slightly better performance from the DFBC model compared with the SNFF scenario, as
the former predicts core emergence at smaller stellar masses than 106M�, limiting the
latter. Although very small dwarfs (M∗ ≤ 104M�) cannot produce cores in DFBC, this
nevertheless agrees with results from Ref. [255].

Both competing model face the same caveats in their resolution of the CC problem:
galaxies containing a bulge have been demonstrably able to reconstitute their cusp [79].
This effect can even been found in dwarf galaxies [237].

4.3. Mass Dependent DM Density Profiles

Assuming that baryons are indeed responsible for some cored DM haloes, while
allowing some others to be cuspy, and using the results of SPH simulations, the SNFF
or DFBC models, some authors synthesised the diversity of DM density profiles and
generalized the usual density profiles, giving the mass dependent empirical law that would
solve the CC problem. For example, Ref. [256] generalized the Einasto profile into a mass
dependent parameterised profile, encompassing both cuspy and cored cases, while [257]
obtained such mass dependent profile by modifying the Zhao [258] profile. In the following
we will give the details concerning the works of [257,259].

In previous discussions, we saw that the DM density profile is well approximated
by the NFW law, and even better fitted by the Einasto profile. Those two profiles are
obtained by DM-only simulations. There, the hydrodynamical processes, fundamental
in the determination of the structure of the density profile, are neglected. For example
AC [193,194] produced by gas cooling, which strengthens cusps, is not taken into account
by N-body, DM-only simulations. At the same time, the presence of baryons can expand
haloes. As discussed in Sections 4.1 and 4.2, stellar feedback and DFBC can produce a
halo expansion and a flattening of the inner density profile. As discussed there, Ref. [69]
showed how the inner slope is modified by SNF. The results of this paper were used to
obtain a DM halo whose slope depends from the ratio between stellar and DM masses,

M∗
Mhalo

.
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The generalised NFW profile (gNFW) is a specific form of a law depending on three
parameters (α, β, γ):

ρ(r) =
ρs(

r
rs

)γ[
1 +

(
r
rs

)α](β−γ)/α
(1)

being rs the scale radius and ρs the scale density. −γ and −β, are the logarithmic slopes of
the inner and outer regions respectively, while the sharpness of the transition from inner
to outer region is specified by α. The peculiar case (α, β, γ) = (1, 3, 1) corresponds to the
NFW profile. The goal of [259] was that of making the profile given in Equation (1) mass
dependent, in the sense that its three parameters would depend on the ratio M∗

Mhalo
, using

haloes obtained, in [69] from SPH simulations. The density profile of the haloes were fitted,
using Equation (1). The behavior of the three parameters was captured using fitting laws
as a function of M∗

Mhalo
. The outer slope β was modeled with a parabola. In the cases of the

inner slope, γ, and of the transition parameter, α, double power law model were used.
The best fits for these parameters to the values for SPH galaxies are shown as dotted

lines in Figure 9. The functional forms of the fits are:

α = 2.94− log10[(10X+2.33)−1.08 + (10X+2.33)2.29]

β = 4.23 + 1.34X + 0.26X2

γ = −0.06 + log10[(10X+2.56)−0.68 + (10X+2.56)]

(2)

where X = log10(
M∗

Mhalo
).

Figure 9. Best fits to the generalised NFW parameters γ (green), β (red), and α (black) plotted in
terms of M∗

Mhalo
. The symbols mark various SPH simulated galaxies Figure reproduced from Figure 1

in [259].

Given the stellar-to-halo mass ratio of a galaxy, by means of Equations (1) and (2), it is
possible to compute the entire DM profiles.

Ref. [259] also showed that the concentration parameter is dependent on M∗
Mhalo

. The

dependence of the concentration parameter on M∗
Mhalo

is shown in Figure 10. Each simulation
is represented by its symbol and size as described in Table 1 of [259]. The dependence
of the ratio between concentration parameters obtained from SPH and pure DM N-body
simulations, CSPH/CDM, on M∗

Mhalo
is nearly exponential. Its best fit is:

CSPH
CDM

= 1.0 + 0.00003e3.4X+ (3)
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where X+ = log10(
M∗

Mhalo
) + 4.5.

Figure 10. Ratio, for a given halo, between concentration parameters of its models, in the SPH
simulation and in the DM-only simulation, as a function of M∗

Mhalo
. The best fit to CSPH/CDM is

represented by the dashed red line Figure reproduced from Figure 4 in [259].

CDM has been derived fitting a NFW profile to the DM-only version of each galaxy,
while CSPH has been obtained from hydrodynamical runs where their galaxies DM halo
model profile had their scale radius correspondence converted between rs into r−2.

A comparison of the model with simulated data of the density profiles, and rotation
velocities gives a good agreement.

The mass dependent density profile idea from Ref. [259] was applied by several other
authors. As mentioned above, it was applied by Lazar et al. [256] to the Einasto profile
and by Freundlich et al. [257] to the so-called Dekel-Zhao density profile, a peculiar case
of Equation (1). We now focus on another popular profile, similar in performance to the
Einasto profile, the modified NFW model, adopted by Freundlich et al. [257] in the form
from Zhao [258]

ρ(r) =
ρc

xa(1 + x1/b)b(g−a)
(4)

where the radial dependence is encoded in x = r/rc, with respect to the characteristic
radius rc, and the density scale is set by the typical density ρc. It is equivalent to the
generalised NFW profile, noting the parameters α = 1/b, β = g and γ = a. Note that, for
any natural numbers n and k, setting g = 3 + k/n and b = n, it is possible to integrate
the mass and obtain the corresponding equilibrium velocity dispersion and gravitational
potential analytically. Some choices of integers actually yield very good DM simulations
fits, and are even able to accommodate baryons’ presence, as well as cusps or core.

The profile referred to as the Dekel-Zhao (DZ) profile, found for k = 1 and n = 2,
which corresponds in Equation (4) to b = 2 and g = 3.5, and leaves two free param-
eters, a and a concentration parameter c, have been found, using the NIHAO suite of
simulations [260], particularly efficient at representing cored profiles [261], but also cuspy
profiles.

Following Equation (4), it takes the form

ρ(r) =
ρc

xa(1 + x1/2)2(3.5−a)
(5)

using x = r/rc and defining the concentration c = Rvir/rc from the virial equilibirum
radius of the spherical mass distribution Rvir, where the average density at that radius
computes as ρvir = 3Mvir/4πR3

vir, while the shape factor µ = ca−3(1 + c1/2)2(3−a) is
involved in the profile mass integration, yielding the average critical density ρc = c3µρvir,
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and thus relating the density scale to the shape parameters, c and the central slope a, as
ρc = (1− a/3)ρc.

As measurements are made at fixed given resolution, the central slope is actually an
integrated slope with respect to the actual profile. Freundlich et al. [257] explicits, for a
fixed resolution r1, an inner logarithmic slope

s1 =
a + 3.5c1/2(r1/Rvir)

1/2

1 + c1/2(r1/Rvir)1/2 , (6)

and the corresponding averaged concentration parameter

c2 = c
(

1.5
2− a

)2
. (7)

The physically motivated restrictions to positive density and inner slope result in
the conditions a ≤ 3 and a + 3.5c1/2(r1/Rvir)

1/2 ≥ 0, respectively. One can reobtain the
intrinsic parameters (a, c), employed in analytic expressions, from the observed (s1, c2),
usually bestowed to numerical tests, by inverting Equations (6) and (7), as

a =
1.5s1 − 2(3.5− s1)(r1/Rvir)

1/2c1/2
2

1.5− (3.5− s1)(r1/Rvir)
1/2c1/2

2

(8)

and

c =

(
s1 − 2

(3.5− s1)(r1/Rvir)
1/2 − 1.5c−1/2

2

)2

. (9)

Equations (18) and (21) and Section 2.3 in Freundlich et al. [257] respectively provided
analytic expressions for the DZ profile’s gravitational potential, velocity dispersion and
lensing properties, as well as, using some NiHAO SPH simulations suite’s profiles (see
their Figure 3), compared the DZ, gNFW and Einasto profiles through fits, assuming
their parameters free, and finally finding the DZ profile performs significantly better than
Einasto’s and marginally better than the gNFW on NiHAO.

In this context, the mass dependent, DZ-based profile from Freundlich et al. [257], was
constructed, as in Di Cintio et al. [259], from the NIHAO simulations suite [260], to set the
DZ parameters functional forms. SPH simulations were fitted by Di Cintio et al. [69] with a
similar profile to Equation (4), to set the free parameters forms as a function of Mstar/Mvir,
as did Lazar et al. [256] with the Einasto profile and Freundlich et al. [257] with the DZ
profile. However, the mass dependence introduced, similarly to Equations (2) by Di Cintio
et al. [259], to improve galaxies and clusters density profiles fits, such as in the modified
Einasto profile from Lazar et al. [256] or in the modified NFW from [262], does not allow to
keep any analytic form for the mass, as detected through lensing, velocity dispersion or
gravitational potential. On the contrary, the DZ profile keeps that possibility intact.

This is the advantage of the DZ profile fit by Freundlich et al. [257], applied to simu-
lated NIHAO haloes’ density profile logarithms, optimising the parameters, spacing the
N ' 100 grid profile radii r in the range 0.01 Rvir-Rvir, through a least-square minimization.
Setting the virial mass Mvir, the profile can set the scale by extracting the corresponding
Rvir, leaving the remaining free parameters a and c. The star distribution can be samely fit-
ted to get the star mass at virial radius Mstar and obtain the corresponding Mstar/Mvir. The
theoretical slope and concentration are related to the integrated (observed) ones through
Equations (6)–(9), respectively, as shown in Figure 11.
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Figure 11. Ratios, for integrated slopes and concentrations s1 (lower panel) and c2 (upper panel),
between the DZ model parameters and their DM-only NFW profiles counterparts, as a function of
mass ratios Mstar/Mvir. The NFW integrated parameters, sDMO and cDMO, were obtained from the
Dutton and Macciò [263] relation Equations (47) and (48) of [257] and their best fits, Equations (45)
and (49) on their Figure 9, here marked as plain black lines. The best fit residual rms σ is shown
in gray. The dashed black line in the c2/cDMO panel represents the best-fit function from Di Cintio
et al. [259]. Color coding, indicated on the right side in each panel, for each halo compounds the
information of the other panel.

This fitting procedure allowed to obtain, for each NIHAO haloes, their s1 and c2 as a
function of Mstar/Mvir, as seen Figure 8, black dots in Freundlich et al. [257].

The obtained s1 and c2 behaviour were synthesised in two parameterised functions of
x = M∗

Mhalo
, where x0, s′, s′′, and ν are ajustable and which used values were given in Table 1

of Freundlich et al. [257]

s1(x) =
s′

1 +
(

x
x0

)ν + s′′ log
(

1 +
(

x
x0

)ν)
, (10)
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while the parameter c′ is introduced for

c2(x) = c′
(

1 +
(

x
x0

)ν)
. (11)

The resulting mass-dependent profile presents the advantages, over the Di Cintio et al. [259]
approach, to require less free parameters as well as to allow integration into analytic ex-
pressions for lensing properties, dispersion velocity and gravitational potential.

5. Cosmological Solutions to the CC Problem

The CC problem, together with the other small scale problems encountered by the
ΛCDM model, open the question of a more general failure of the CDM’s paradigm. This
justifies models in which the nature of DM or gravity itself are modified. Such models
encountered various degrees of success in their already widely checked instances. We will
here focus on alternate models of DM. Several approaches have been used and we will
detail the two main avenues, before discussing other possibilities.

5.1. Warm DM

Warm DM (WDM) presents the simplest departure from CDM, endowing DM with a
small velocity dispersion (σ ' 100 m/s nowadays), also linked, for thermally produced
DM, to a small DM relic mass [150,264]. Since velocity dispersion is expected to decrease
with time, it should be more important in the past and thus smear small scale structure
formation. Such smear induces similar DM “heating” as the baryonic solutions of Section 4:
in this case the WDM particles higher velocity than for CDM smears the haloes to flatter
profiles as well as produce fewer low mass haloes. These effects of WDM on structure
formation have been copiously simulated e.g., [252,265–267].

Despite solving the CC problem for haloes with their corresponding scales on a case
by case basis by tuning its particle mass, WDM does not manage to solve it with one mass
for all galaxies, nor in the entire CC problem mass range [268]. As shown in Ref. [269],
neither WDM or pure collisionless CDM models can match observed disk galaxies rotation
curves, while they can agree with hydrodynamical simulations including baryons (see
Section 2’s discussion).

In addition, Ref. [265], for a m = 2 keV thermal relic, and several other authors
e.g., [270–272], shown that, for instance, the strong-lensing subhalo fraction is too high
compared with WDM produced subhaloes. Furthermore, WDM thermal mass displays
tensions between expected core size (1 kpc core corresponding to 0.1 keV) and large scale
structure m ' 1–2 keV leads to 10-20 pc cores, see Figure 12 and Ref. [273]. In conclusion,
because its power spectrum falls off too sharply, WDM does not improve on CDM [274].
Finally, since WDM structure formation is also shown to modify the Lyman-α forest [275],
the situation is even worse, as WDM solution to the CC problem in our vicinity cannot, at
the same time, be consistent with observed high redshift Lyman-α forest.
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Figure 12. WDM effect on the CC problem, reproduced from Figures 2 and 8 in [273]. The WDM core
formation is illustrated against the CDM density profile (solid black line) by showing profiles from a
range of five WDM particle masses, from m = 2 keV (WDM1, as per the legend) to 0.05 keV (WDM5),
in the left panel. The right panel synthesises the WDM core radius obtained for its given particle
mass with other constraints: while the solid black line marks the core size dependence at fixed halo
mass, the shaded area limits the plane to the cosmological constraints for 0.15 < Ωm < 0.6 and the
vertical dashed line sets the upper limit from large scale observations.

5.2. Self-Interacting DM

The second simplest variation away from CDM, coined Self-interacting DM hereafter
SIDM [156], consists in granting to DM a self-interaction cross-section, within the same
magnitude of nucleon-nucleon interactions ('(m/g)−1cm2).10 The resulting elastic scatter-
ing in regions of highest density (inner galactic regions) redistributes energy and angular
momentum so that tri-axiality is reduces and a Burkert profile core forms [276].

The CC problem has been claimed to be solved in dwarfs, MW-sized galaxies, and
galaxy clusters by SIDM from some cosmological simulations [127,277–279] consistent with
merging galaxy clusters observations [280–282], 0.1–0.5 cm2/g cross sections. Figure 13
presents simulations of haloes from galaxies to clusters masses, with σ/m set within two
values, in the case of Ref. [278]. Although SIDM appears to solve the CC problem, since its
cored subhaloes are more sensitive to disruption and tidal stripping than CDM’s, and to
improve on WDM [278,279], as enough subhaloes survive, a different point of view still
remains [268].

The SIDM’s attraction does not entirely resides in its structure formation effects. As
“hidden sector” particle models naturally produce them e.g., [156,283,284], it also retains
appeal from the particle theory point of view.
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Figure 13. SIDM simulations compared with CDM, indicated by black dots, in density profiles,
reproducing a figure from Figure 4 in Ref. [278]. Two SIDM models, designated in the legend as
SIDM1 and SIDM0.1, are shown, using DM particle masses σ/m = 1, marked with blue stars, and
0.1, characterised with green triangles, respectively. They are ovelayed with the NFW, plotted as a
black line, and the Burkert, traced in blue, density profiles. The core radii of Burkert’s profiles are
located with arrows.

5.3. Other DM Models

Other proposals to change from the CDM model are more or less loose declinations
altering around the SIDM concept. Here is a list of the main variations:

RDM switching interaction to negative scattering results in repulsive DM RDM, Ref. [152].

The next two variations from SIDM are very commonly related to indirect DM detec-
tion:

SADM if self-interaction produces a DM particles annihilation, the result is coined Self-
Annihilating DM SADM, Ref. [155] proposing cross section-velocity σv ' 10−29

(m/GeV) cm2. Such annihilation decreases the dense regions’ particle numbers, in
particular in the halo’s centre, reducing central gravity, therefore allowing to expand
central particles’ orbits and thus to flatten the central profile. At the same time,
annihilation results in radiation emissions that are possibly detectable.

DDM Alternately, self-interaction can result in DM decay into relativistic particles, desig-
nated as Decaying DM DDM, Ref. [154]. Their gravitational effect on structures is
similar to SADM, as they equally deplete galaxies’ central density, since the relativis-
tic particles escape away, while larger scales structures behaviour remain similar to
CDM. Similarly, the relativistic decay products produce radiations that can also be
detected.

The last main variations are more loosely related to SIDM:

BCDM Superfluid behaviour of non-relativistic, massive boson condensates in haloes
centre can also result in smoothing down their profiles from cusp to cored [285].
Recent structure formation simulations [286] demonstrated that the Bose condensate
DM (BCDM) small scale gravity vs. uncertainty principle opposition reduced sub-
structures and flattened the density profile at those scales, while producing larger
scale structures indistinguishable from CDM outputs.

SFDM As scalar field condensation also forms a Bose condensate, similar flat galaxies
inner profiles were obtained from such implementation of the BCDM [287], that was
called Scalar Field Dark Matter (SFDM)
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FDM Further implementation of the gravity vs. uncertainty principle exploited the wave-
particle duality to obtain Fuzzy DM FDM, Ref. [153], using galactic core sized
Compton wavelength, ultra-light (m ' 10−22 eV) scalar particles. As they cannot be
“squeezed” below their Compton wavelength, they also develop flatter profiles and
form less substructures.

6. Conclusions

Since the first assessment by Öpik of the amount of matter surrounding our solar
system through vertical star motion with respect to the plane of the ecliptic more than a
century ago [288], current data indicates a dominant amount of matter should be in the
form of DM. However, such dynamics and geometric data has still not been confirmed, to
date, by direct or indirect DM particles detection [4,5].

Grasping the essence of DM from a gravitational point of view should privilege the
study of galaxy satellites, dwarf galaxies and other small scale structures, dominated by
DM, all the more as they present significant departures from the ΛCDM model predictions.
In this review, we focused on the departure constituted by the CC problem, formulated
more than twenty years ago. Although we now have some competing explanations, there
is no concensus on the CC problem’s cause.

In this review, we have discussed the focus on baryonic effects on small scale structures.
We recalled that the DFBC model can explain cores in M > 105M� dwarfs from baryon
clumps interactions with DM, while cusps form in MW-type galaxies [253]. Although the
SNFF model gets similar results, its prediction cover structures in a more restricted range
M∗ > 106M� [73]. Note that both models, by depleting the DM density in central halo re-
gions, also explain other small scale problems such as the TBTF or the subhaloes abundance
problems. However, baryonic solutions to the CC and other small scale problems are still
debated, as some issues remain, such as with the SNFF in classical MW dwarfs [215,226], or
the possible future discovery of M∗ < 106M� dwarfs with flat inner profiles which would
drive the SNFF model to conclude that DM is actually not cold11, or even that no baryonic
physics solutions clearly appear for the TBTF problem in isolated galaxies. Escaping this
debate would entail understanding how the SIDM model or one its variants, as we have
discussed, could solve the CC problem. Future surveys, including measurements of star
velocities, would anyhow be required to further our understanding of the CC problem and
other small scale issues.

From an observational point of view, as discriminating cores from cusps in dSphs re-
mains delicate, the discussion on their structure persists see the introduction and, e.g., [289].
Although the Subaru Hyper-Supreme-Camera [290] and GAIA [291] were foreseen as
providing possible resolution for the question, their abilities would not exceed larger dwarf
galaxies, of the size of Sagittarius [292]. Based on Jeans equations, their determination
of density profile using stars line of sight velocity and 2D projection radius are plagued
with degeneracy with the anisotropy parameter. Notwithstanding the challenges GAIA
faces from it [292], improvements to measure dwarfs’s stars proper motions of the [293],
that yield density slope at half-light radius, were recommended, that focused on only one
component out of the three velocities and on just two components out of three positions
see [294]. However successful these efforts may be, understanding dwarfs inner structure
will be crucial. In contrast, the difficulties of the SNFF tensions do not appear fundamental:
baryons, through the more efficient DFBC model, can still turn cusps into cores sooner
than gas turns into stars. Consequently, should cored dwarfs with M∗ < 106M� be dis-
covered, despite their inconsistency with the SNFF, provided M∗ > 105M�, the ΛCDM
model correct with baryonic effects of the DFBC model would remain consistent with
observations.

Beyond the CC problem and the other documented issues in small scales of the ΛCDM
model, further testing could involve

• checking the predicted large subhaloes number within galaxies’ virial radius, barely
agreeing with anomalies in the gravitational lensing fluxes [295];
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• measuring subhaloes perturbations of the MW’s cold tidal streams see [296].

Finally, the nature and existence of DM would find a definitive solution in detection of
DM particles, whether in colliders, direct or indirect means. Despite the hopes raised by a di-
photon excess decay at 750 GeV at 3.9 σ significance in the LHC, as it was later ruled out as
a statistical fluctuation, no evidence of super-symmetry (SUSY), that would allow WIMPS
particles DM, have so far emerged and collider detection of DM is yet elusive. Although
controversial, the annual modulation claimed in DAMA/LIBRA/CoGeNT remains the
only possible direct DM particle detection. To date, no incontrovertible direct, indirect or
collider evidence for the nature or existence of DM has been announced.
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Notes
1 Generalisations of Einstein’s General Relativity, f (R), and f (T) theories modify gravity in distinct ways. Replacing, in their

Lagrangian, the Ricci scalar by a function f (R), the first type dates from the Buchdahl [158] introduction in 1970 but picked
up interest with Starobinsky [159] a decade later. Developed from the Teleparallel Equivalent of GR, f (T) theories also modify
their Lagrangian from the torsion scalar to a function. On one hand, both types were introduced to absorb the origin of cosmic
acceleration into gravity and dispense from the need for DE [160]. On the other hand, MOND, introduced to fit galaxies rotation
curves by Milgrom in 1983 [164,165], purports to replace DM. The DM effects of the MOND Newtonian modification also lead to
other GR generalisations with the same aim [166–169]

2 A General Relativistic version of secondary infall models is at the root of works by a group including Mimoso and Le Del-
liou [188–191].

3 A proto-structure’s peak height measures the ratio of its central peak overdensity δ(0) to its mass variance σ see [192], as
ν = δ(0)/σ. More massive objects are characterised by larger ν.

4 As computed with iterative methods e.g., [195].
5 This process agrees with the assumptions from Ref. [72]; the bulk gas flows start beyond >10/cm3 [220].
6 Essentially, M∗ < 106 M� galaxies are not able to turn cusps into cores under the SNF mechanism.
7 “Too Big to Fail” is used in the context of Milky Way (MW) satellite simulations producing bigger objects than observed MW

satellites without any mechanism explaining why such object would fail to be detected.
8 Recall footnote 11.
9 Star formation is not an efficient process.

10 Note that 1 cm2/g ' 1 barn/GeV, so multiplying by the DM particle mass yields the cross-section.
11 Note that such conclusion is not true for the DFBC model.
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