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Abstract: Shear flows are ubiquitously present in space and astrophysical plasmas. This paper
highlights the central idea of the non-thermal acceleration of charged particles in shearing flows
and reviews some of the recent developments. Topics include the acceleration of charged particles
by microscopic instabilities in collisionless relativistic shear flows, Fermi-type particle acceleration
in macroscopic, gradual and non-gradual shear flows, as well as shear particle acceleration by
large-scale velocity turbulence. When put in the context of jetted astrophysical sources such as
Active Galactic Nuclei, the results illustrate a variety of means beyond conventional diffusive shock
acceleration by which power-law like particle distributions might be generated. This suggests that
relativistic shear flows can account for efficient in-situ acceleration of energetic electrons and be of
relevance for the production of extreme cosmic rays.

Keywords: shearing flows; relativistic outflows; AGN jets; particle transport; acceleration

1. Introduction

Shear flows are naturally expected in a variety of astrophysical environments. Prominent examples
include the rotating accretion flows around compact objects and the relativistic outflows (jets) in
gamma-ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. On conceptual grounds the jets in
AGN are expected to exhibit some internal velocity stratification from the very beginning, with a
black hole ergo-spheric driven, highly relativistic (electron-positron) flow surrounded by a slower
moving (electron-proton dominated) wind from the inner parts of the disk (e.g., see Refs. [2,3] for
recent overviews). In addition, as these jets continue to propagate, interactions with the ambient
medium are likely to excite instabilities and induce mass loading, resulting in a velocity-sheared
structure (cf. Ref. [4] for a recent review). Radio observations of parcec-scale AGN jets indeed
provide evidence for some shear layer morphology, such as a boundary layer with parallel magnetic
fields or a limb-brightened structure (e.g., [5–12]). In connection with this, various relativistic
hydrodynamic and magneto-hydrodynamic simulations of two-component (spine-sheath/layer) and
rotating AGN-type jets have been carried out to study their stability properties (e.g., [13–19]), indicating
for example that the presence of a sheath has a stabilising effect on the jet (e.g., [13–19]). All this
suggests that a transversal velocity stratification is a generic feature of AGN-type jets. Given the
challenges and complexity of observed emission properties, this has lead to a renewed interest in
multi-zone/spine-shear layer acceleration and emission models (e.g., [20–33]).

One particularly interesting example concerns the emission properties of large-scale AGN jets.
Spatially, the fast jets of powerful AGN are observed to extend over several hundreds of
kilo-parsec (kpc), with bright hot spots being formed and significant backflows induced when these
jets eventually terminate in the intergalactic medium. Though these jets are associated with large fluid
Reynolds numbers, they often appear laminar (see e.g., Ref. [34] for general orientation). The detection
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of extended (i.e., kpc-scale), non-thermal X-ray emission along several of them indicates that they
must contain highly energetic particles [35–37]. The favoured electron synchrotron explanation in
fact implies the presence of ultra-relativistic electrons with particle Lorentz factors up to γ ∼ 108

(e.g., [38]). Since the typical cooling length of these electrons is very short (�1 kpc), a distributed
or continuous (re-)acceleration mechanism is required to keep them energized throughout the jet.
Stochastic-shear particle acceleration in a stratified jet has been proposed as possible candidate for
this (e.g., [31]). It seems in principle conceivable that particle acceleration in transversal shear flows
could also facilitate the acceleration of cosmic rays (CRs) to extreme energies (e.g., [1,32,33,39]),
supporting the idea that large-scale AGN jets are potential ultra-high-energy (UHE)CR acceleration
sites (e.g., [40,41]). Since the backflow speeds in AGN can be substantial (e.g., [42–45]), this could
becomes particularly interesting for cosmic-ray particles that are able to sample the velocity contrast
between the main jet and its backflow [33].

The present paper focuses on the potential of fast shearing flows to facilitate efficient particle
acceleration. As shown below, the transport and acceleration of charged particles in shearing flows
can be described and explored on different scales, from the plasma skin depth (electron inertial-scale)
(e.g., [46,47]) (see Section 2) via the relativistic gyro-scale (e.g., [36,48,49]) (see Section 3) to large
turbulent length scales [50,51] (see Section 4). This paper aims at an accessible introduction to
them, reviewing some of the key findings along with some recent developments. A particular
attention is given to the second one in order to recapture early ideas and developments over
the years [1,28,31–33,36,39,48,49,52–61]. When viewed in context, this review shows that a variety
of processes beyond conventional diffusive shock acceleration could contribute to the efficient
energization of particles in jetted astrophysical sources.

2. Supra-Thermal Particle Acceleration in Microscopic Shear Flows

Within recent years, Particle-in-Cell (PIC) simulations have been used to explore the kinetic
physics of collisionless, un-magnetized, strong (on scales of the electron plasma skin depth) shear
flows for different plasma compositions (i.e., pure electron-proton, pure electron-positron and some
hybrid version) (e.g., [24,29,46,47,62–66]). In these simulations a variety of microscopic instabilities
near the shear surface are encountered that can generate microscopic turbulence (i.e., scatterings sites
for particle acceleration) as well as lead to the emergence of ordered steady (DC) electromagnetic fields
and the production of non-thermal particle distributions.

One well-studied case relates to the excitation of the kinetic (electron-scale) Kelvin-Helmholtz
instability (kKHI) in an un-magnetized electron-proton shear flow which has been explored by means
of theory and simulations (e.g., [46,62,64,67]). The theoretical analysis of the longitudinal kKHI
dispersion relation relies on the relativistic fluid formalism of un-magnetized plasmas (in the cold
plasma limit) coupled with Maxwell’s equations, i.e., in cgs units

∂ρ

∂t
+∇ ·~j = 0 , (1)

∂~p
∂t

+ (~v · ∇)~p = −e
(
~E +

~p
γmec

× ~B
)

, (2)

∇× ~E = −1
c

∂~B
∂t

, (3)

∇× ~B =
4π

c
~j +

1
c

∂~E
∂t

, (4)

where Equations (1)–(4) refer to the continuity equation and the conservation of momentum equation,
respectively, as well as Faraday’s and Ampere’s law. Here, ρ := e n with n the plasma number density,
and~j,~B,~E denote the current density, the electric field vector and the magnetic field vector, respectively.
~p = γme~v and ~v are the linear momentum and velocity of the flow, with γ = 1/(1− v2/c2)1/2 its
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Lorentz factor. The protons are considered to be free streaming in this approximation. In order to gain
insights into the system one can then specify a simple two-dimensional velocity shear profile,

~v = v0(x)~ey , (5)

characterizing a flow that propagates in the y-direction with a speed v0 that depends on the
x-coordinate, and prescribe a related (not necessarily constant) density profile n = n0(x). To study
the response of the system to perturbations, each of the quantities (n,~v,~E,~B,~j) are further written as
Q(x, y, t) = Q0(x) + P1(x, y, t) following the usual perturbation analysis (first-order approximation),
and these expressions then substituted in Equations (1)–(4). The resultant equations are then linearized
assuming that the perturbed quantities scale as

P1(x, y, t) = P1(x) ei(k y−ωt) , (6)

with k ≡ ky parallel to the flow direction. Assuming that external fields are absent (E0 = B0 = 0),
one can in this way derive a wave equation describing the linear eigenmodes of the system
(see [62,67]), e.g.,

∂

∂x

[
A

∂E1,y

∂x

]
+ B

∂E1,y

∂x
+ CE1,y = 0 (7)

for the perturbations ~E1 of the electric field, where A, B, C are functions depending on the wave
frequency ω, the wave number k, the flow velocity v0 and Lorentz factor γ0 = 1/(1− v2

0)
1/2 as well

as on the relativistic plasma frequency ωp(x) := ωpe(x)/γ1/2
0 , where ωpe denotes the usual electron

plasma frequency
ωpe(x) = [4πn0(x) e2/me]

1/2 . (8)

Solutions of Equation (7) for which ω becomes imaginary describe unstable modes that grow
with time, cf. Equation (6). Figure 1 provides exemplary solutions for the growth rate of the resultant
kinetic (electron-scale) Kelvin-Helmholtz instability in the case of a simple tangential shear flow profile
(i.e., ~v0(x) = v0~ey for x > 0, and ~v0(x) = −v0~ey for x < 0) with different density contrast.

The highest growth rate of ' 0.35 ωp+/γ0 is achieved for n+/n− = 1 at kmax ' 0.61 ωp+/(v0γ0).
Note that these modes are obtained in the cold plasma limit, i.e., when the effects of thermal motion
are negligible compared with v0. Comparing theory and simulation, PIC simulations provide general
confirmation to this picture, but at late time also reveal the formation of a sub-equipartition (εB/εp ∼
me/2mp), large-scale DC (k = 0) magnetic field component along the shear surface with transverse
width

√
γ0c/ωpe and strength exceeding the one at kmax by a factor of some few, that is not predicted

in linear fluid theory, see Figure 2. The growth of this DC field cannot be really captured in a fluid
description, but seems to be of intrinsically kinetic nature. It can be attributed to an effective current
density associated with electron transport (mixing) across the shear interface.

As the DC magnetic field grows, the Larmor radius of electrons crossing the shear decreases,
until they eventually become trapped, imposing an upper limit on the current. In the absence of a
large-scale magnetic field the inferred saturation level of the emergent DC electric and magnetic fields
are typically of the order [64]

EDC, BDC ∼
√

γ0mec ωpe/e (9)

and seemingly persistent beyond the electron time scale (up to 103/ωpe). On much longer time
scales (>103/ωpe), the emergent magnetic fields in two-dimensional PIC simulations start to affect
the protons more due to their larger gyro-radii, leading to charge separation and the formation of a
double-layered structure [47].
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Figure 1. Growth rate Im(ω) of unstable kinetic Kelvin-Helmholtz modes in an electron-proton plasma
following linear theory for a microscopic tangential shear flow with step-functional velocity jump
across the x = 0 plane, corresponding to two counter-propagating flows with speed v0 and different
densities n+ (for the flow in the upper region x > 0) and n− (for the flow in the lower region x < 0).
The curves shown are for a density contrast n+/n− = 1, 10, 100, respectively. The growth rates display
a cut-off at k ≤ 1 (in units of ωp+/[v0γ0], where ωp+ = [4πn+e2/γ0me]1/2), and take on a maximum
value somewhat below. The three curves qualitatively resemble each other, but with a growth rate
that is lowered for n+/n− > 1. Note, however, that the results of linear fluid theory do not predict a
growth of a DC (k = 0) mode as found in PIC simulations (see below). From Ref. [62].

Figure 2. Results of two-dimensional PIC simulations of counter-propagating flows of equal density
(n+ = n−) and with |v0| = 0.2 c, showing the emergence of a dominant DC (k1 = 0 ) magnetic field
component along the shear on top of the harmonic structure inferred from the linear fluid regime at
times ωpet = 35 (a1), 45 (b1) and 55 (c1). From Ref. [62].

The emergence of organized, self-generated electric and magnetic fields in the shear region could
in principle lead to efficient particle acceleration. Figure 3 (left) shows an exemplary outcome of a
two-dimensional PIC simulation of two counter-propagating flows in which electrons experience
acceleration in the self-generated electric fields along the shear. According to this simulation, electrons
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might be accelerated up to γ4
0 times their rest mass energy, possibly with some power-type behaviour

in between [62].

Figure 3. Left: Resultant electron energy distribution for a relativistic, cold electron-proton shear
flow with γ0 = 3 at time t = 103/ωpe. At low energies (1 < γe < 5) the distributions resembles a
thermal one, while in the intermediate range γe = 5− 25 it exhibits some smooth (power-law-type
∼ γ−5

e ) evolution. After some hardening, a tail is seen extending up to γe ∼ γ4
0 ' 80. From Ref. [62].

Right: Electron energy distribution in the case of a relativistic shear flow with γ0 = 5 at late times
t = 104/ωpe. The distribution peaks around γe ∼ 3000, but shows little evidence for a conventional
power-law behaviour. Both distributions refer to the center-of-momentum frame. From Ref. [65].

Other two-dimensional simulations find however, that at late time the electron distribution (at least
for higher γ0 ≥ 5) reveals a rather narrow peak around the decelerated proton kinetic energy, γemec2 ∼
(γ0 − 1)mpc2/2, with a relatively sharp cutoff and little evidence for some power-law extension [65].
It has been conjecture that in hybrid positron-electron-ion (instead of a pure electron-proton) plasmas
a power-law tail could develop due to the presence of non-linear electromagnetic waves facilitating
stochastic acceleration of electrons [47], though the slopes are expected to be sensitive to the
composition and the shear flow Lorentz factor γ0 [65]. As things are, the situation appears inconclusive
and the possible formation of a persistent, long-range power-law electron distribution in microscopic
shear flows still remains to be demonstrated.

While conceptually highly interesting, the generalisation of these simulation results to realistic
astrophysical sources is not yet straightforward. The outflows in AGN are likely to be magnetized from
the onset, affecting its plasma dynamics and instability conditions. It appears conceivable, for example,
that magnetic trapping of electrons could suppress the growth of a DC field along the shear. While
we also know from 3D PIC simulations of non-relativistic, magnetized plasmas that turbulence can
be generated at shear boundary layers (e.g., [68–70]), extension to the relativistic regime still remains
to be carried out. In addition, the simulation setups rely on the existence of an idealized (relativistic)
velocity jump (shear) on scales of the electron skin depth ls = c/ωpe. For large-scale AGN jets, for
example, one typically estimates ls <∼ 1011 cm, which would be minute compared to the jet width.
Increasing the shear gradient length in the noted PIC simulations, however, decreases the growth rate
of the kKHI instability (e.g., [62]), so that it appears uncertain to which extent the noted effects should
be expected. Nevertheless, the simulations mentioned above clearly demonstrate that given suitable
conditions microscopic instabilities in collisionless relativistic shear flows can efficiently generate
electron-scale electromagnetic turbulence, allowing for the dissipation of kinetic energy of the flow
and the production of supra-thermal particles.
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3. Fermi-Type Particle Acceleration in Macroscopic Shear Flows

In a seminal paper, E. Fermi [71] has proposed a mechanisms for the acceleration of energetic
charged particles in astrophysical plasma that has become a benchmark for acceleration theory.
Fermi-type particle acceleration essentially relies on repeated interactions with moving scattering
centers, and typically considers this process to be mediated by resonant wave-particle interactions
(where the particle mean free path λ is comparable to the wavelength of the electromagnetic turbulence).
In principle, the acceleration of energetic particles (of velocity v ' c) in macroscopic shear flows can be
understood as such a stochastic process in which particle energization occurs as a results of elastically
scattering off differently moving (magnetic) inhomogeneities [36,51]. In macroscopic shear particle
acceleration the scattering centers are taken to be frozen into a background flow whose velocity varies
with transversal coordinate. Their velocities are thus essentially characterized by the general bulk
flow profile. Depending on the characteristics of the velocity shear, a gradual (continuous) and a
non-gradual or discontinuous (λ > characteristic length scale of the velocity shear) case might be
distinguished, see Sections 3.1 and 3.2 below.

The basic concept might be understood with reference to the energy change in an elastic scattering
event (cf. [72]). Transforming into the scattering frame and again back to the laboratory frame, a simple
analysis shows this energy change to be given by

∆ε = ε2 − ε1 = 2γ2
u (ε1 u2/c2 − ~p1 · ~u) , (10)

where ~u is the characteristic scattering center speed (u its magnitude, γu the corresponding
Lorentz factor). ε1 and ~p1 are the initial particle energy and momentum, respectively. According to
Equation (10) an energetic particle (for which ε ' pc) will gain energy in a head-on (for which
~p1 · ~u < 1) collision, and lose energy in a following (for which ~p1 · ~u < 1) collision. If one averages
over an isotropic particle distribution, however, a net energy gain (i.e., stochastic acceleration) is
obtained due to the fact that the interaction probability for head-on collisions is higher than the one for
following collisions. This leads to a second order dependence on u/c, such that

〈∆ε〉
ε

∝
(u

c

)2
> 0 . (11)

3.1. Gradual Shear Flows

For a particle moving across a continuous non-relativistic shear flow, the flow velocity (and
hence the scattering center speed) changes by an amount given by the gradient in flow speed, ∇u,
multiplied by the particle free path, λ = c τ. Hence, in the context of Fermi-type acceleration,
gradual shear particle acceleration can be understood as a stochastic acceleration process, in which the
conventional scattering center speed is replaced by an effective velocity ū determined by the shear
flow profile [36] (cf. also Ref. [72] for a related review of gradual shear). In the case of a continuous
velocity shear ~u = uz(x)~ez, for example (cf. Figure 4), this effective velocity is approximately given by
ū = (∂uz/∂x) λ.

Accordingly, the fractional energy changes becomes (cf. Equation (11))

〈∆ε〉
ε

∝
(

ū
c

)2
∝
(

∂uz

∂x

)2
λ2. (12)

This suggests a scaling of the characteristic acceleration timescale

tacc =
ε

(dε/dt)
∼ ε

〈∆ε〉 · τ ∼
ε

〈∆ε〉 ·
λ

c
∝

1
λ

, (13)

which, in contrast to classical first and second-order Fermi acceleration, is inversely depending
on the particle mean free path [60]. The principal reason for this seemingly unusual behaviour
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is related to the fact that as a particle increases its energy (ε ' pc), and thereby its mean free path
(λ(p) ∝ pα, α > 0), a higher effective velocity ū is experienced. This scaling has interesting implications,
but also implies that for an efficient acceleration of electrons an injection of some pre-accelerated seed
particles, either from acceleration at shocks or via classical second-order Fermi processes is required [31].
Alternatively, reconnection or plasma turbulence might facilitate electron seed injection (e.g., [73–75]).
On the other hand, given their larger mean free paths, efficient shear acceleration of protons or ions is
typically much more easily achieved.

Figure 4. Schematic illustration of a simple two-dimensional velocity shear profile, in which a flow,
directed along the z-axis, is characterized by a velocity whose magnitude smoothly varies with the
x-coordinate. ∆x denotes the shear width.

3.1.1. A Microscopic Approach—Momentum Space Diffusion

As a stochastic process, gradual shear particle acceleration is accompanied not only by a
momentum change (energy gain), but also by momentum dispersion (broadening) term. This can
be shown in a microscopic picture by evaluating the average rate of momentum change and
dispersion, i.e., by calculating the respective Fokker-Planck coefficients. For simplicity, consider again
a non-relativistic shear flow with ~u = uz(x)~ez. While travelling for one scattering time τ across such a
flow, the momentum of a particle relative to it changes by ~p2 = ~p1 + m δ~u, where δ~u = (∂uz/∂x) δx~ez

and δx = vx τ, with vx the x-component of the particle velocity, and m the relativistic particle mass.
In general, the timescale for collisions (mean scattering time) is expected to be an increasing function
of momentum, i.e., τ ≡ τ(p) = τ0 pα. By expanding ∆p ≡ (p2 − p1) to second order in δu/c and
averaging over an isotropic particle distribution, the Fokker-Planck coefficients become [55,60]〈

∆p
∆t

〉
∝

< ∆p >

τ
∝ p

(
∂uz

∂x

)2
τ ,〈

(∆p)2

∆t

〉
∝

< (∆p)2 >

τ
∝ p2

(
∂uz

∂x

)2
τ . (14)

One can show that these coefficients are related by the equation〈
∆p
∆t

〉
=

1
2p2

∂

∂p

[
p2
〈
(∆p)2

∆t

〉]
=

Γ
p2

∂

∂p

(
p4τ
)

, (15)
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i.e., that they satisfy the principle of detailed balance (scattering being reversible). Here, the symbol Γ
on the right hand side of Equation (15) denotes the shear flow coefficient, which for the employed flow
profile is simply given by Γ = (1/15)(∂uz/∂x)2.

Under the condition of detailed balance, the associated Fokker-Planck equation is known to
reduce to a diffusion equation in momentum space. Hence in the absence of radiative losses and
escape, the momentum-space particle distribution f (p, t) experiencing gradual shear acceleration
obeys a simple Fokker-Planck type diffusion equation [55,60]

∂ f (p, t)
∂t

=
1
p2

∂

∂p

(
p2Dsh

∂ f
∂p

)
, (16)

where Dsh := Γp2τ denotes the momentum space (shear) diffusion coefficient. For the considered
application

Dsh = Γp2τ =
1
15

(
∂uz

∂x

)2
p2τ , (17)

with τ ≡ τ(p) = τ0 pα. Figure 5 shows an exemplary solution of Equation (16) for the case τ ∝ p [60].

Figure 5. Time-dependent solution f (p, t) of the Fokker-Planck diffusion equation for non-relativistic
gradual shear acceleration assuming an impulsive, mono-energetic injection with p0 at t0 = 0. A linear
momentum-dependence τ ∝ p (α = 1) has been used for the scattering time The distribution broadens
with time due to momentum dispersion. The (double logarithmic) inlet illustrates the formation of a
power law like distribution n(p) ∝ p2 f (p) ∝ p−2 above p0 for t′ ≥ 0.3. From Ref. [60].

At sufficiently large times, the particle distribution above injection approaches a power law shape

n(p) ∝ p2 f (p) ∝ p−(1+α) (18)

for α > 0, with power law index depending on the momentum scaling of the particle mean free path
(λ ' cτ ∝ pα) [48,53,60]. In particular, for a gyro-dependence, α = 1, one has n(p) ∝ p−2, which is
comparable to the index for first-order Fermi acceleration at non-relativistic (high Mach number)
shocks. The quasi steady-state (time-integrated) particle distribution f (p) for continuous injection
then becomes constant below p0, and takes on the noted power-law shape f (p) ∝ p−(3+α) above it.

3.1.2. Propagation and Acceleration in Non-Relativistic Shear Flows

In order to take spatial transport into account, a suitable particle transport equation has to
be derived. For general shear flows this requires an extension of the original Parker transport
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equation [76], describing the propagation and acceleration of energetic particles scattered by turbulent
inhomogeneities embedded in a background plasma. In the limit of non-relativistic flow speeds
this has been done by Earl, Jokipii & Morfill [49], starting from the non-relativistic Boltzmann
equation for the phase-space distribution f (~x,~p, t) and assuming a simple BKG-type collision term,
(∂ f /∂t)s = ( f − 〈 f 〉)/τ. The approach utilises a mixed system of phase-space coordinates such that
quantities which are operated upon the scattering operator, i.e., the momentum, are evaluated in the
co-moving flow frame (allowing for a convenient treatment of the scattering physics), while time
and space coordinates are still measured in the laboratory frame. Given non-relativistic flow speeds,
the particle momentum components are then related by a Galilean transformation pi = p′i + m ui,
where ui denotes the background flow speed and p′i the co-moving particle momentum. The analysis
subsequently only requires that scattering is strong enough to guarantee the diffusion approximation,
i.e., to ensure that departures of the particle distribution from isotropy are small, hence that the particle
distribution function is well approximated by f = f0 + f1, with < f1 >= 0 and f1 � f0. The full
non-relativistic particle transport equation for f0(~x, p′, t) eventually takes the form [49]

∂ f0

∂t
+ ui

∂ f0

∂xi
− p′

3
∂ui
∂xi

∂ f0

∂p′
− ∂

∂xi

(
κ

∂ f0

∂xi

)
+

2 τ p′

3
Ai

∂2 f0

∂xi∂p′

+
1

3 p′2
∂ (τ p′3)

∂p′
Ai

∂ f0

∂xi
− Γ

p′2
∂

∂p′

(
τ p′4

∂ f0

∂p′

)
+

p′

3
∂(τAi)

∂xi

∂ f0

∂p′
= 0 , (19)

(i = 1, 2, 3). Here, κ denotes the isotropic spatial diffusion coefficient, κ(p) = τ(p)v2/3 ' τ(p)c2/3,
Ai is the total acceleration vector

Ai :=
Dui
Dt

=
∂ui
∂t

+ ul
∂ui
∂xl

, (20)

and Γ is the viscous shear flow coefficient given by

Γ =
1
30

(
∂ui
∂xk

+
∂uk
∂xi

)2
− 2

45
∂ui
∂xi

∂uk
∂xk

. (21)

The second, third and fourth term in Equation (19) describe the well-known effects of convection,
adiabatic energy change and spatial diffusion [76], while the terms involving Ai describe the effects
of inertial drifts (cf. also [77,78] for incorporation of a mean magnetic field). The additional term
involving Γ characterizes energy changes due to flow shear and divergence.

When a steady (non-relativistic) shear flow of the form ~u = uz(x)~ez is considered, the adiabatic
and inertial terms vanish (∂ui/∂xi = 0 and Ai = 0), while Γ becomes Γ = (1/15)(∂uz/∂x)2.
The space-independent part of Equation (19) then reduces to

∂ f0

∂t
=

Γ
p′2

∂

∂p′

(
τ p′4

∂ f0

∂p′

)
, (22)

which coincides with Equation (16). For completeness, let us mention, that a significant velocity
shear could also occur during magnetic reconnection, suggesting that shear acceleration in outflowing
regions can contribute to particle energization if the particle distribution is sufficiently anisotropic
(e.g., [79–81]).

3.1.3. Generalization of the Particle Transport to Relativistic Shear Flows

In order to compete with the diffusive escape of particles, efficient shear particle acceleration
generally requires relativistic flow speeds (see also below). This then demands a suitable extension of
the particle transport equation to the relativistic regime as has been obtained by Webb et al. [54,57],
utilising as before a mixed-frame approach (with the momentum being evaluated in the co-moving flow
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frame). Assuming isotropic diffusion with κ and denoting the (covariant) metric tensor by gαβ, the zero
component of the (comoving) particle momentum four vector by p′0 = E′/c, the fluid four velocity by
uα and the fluid four acceleration by u̇α := uβ∇βuα, where ∇βuα denotes covariant derivation, the full
particle transport equation for the isotopic distribution function f0(xα, p′) with xα = (ct, x, y, z, ) takes
the form [54]

∇α

[
cuα f0 − κ

(
gαβ + uαuβ

)( ∂ f0

∂xβ
− u̇β

(p′0)2

p′
∂ f0

∂p′

)]
+

1
p′2

∂

∂p′

[
− p′3

3
c∇βuβ f0 + p′3

(
p′0

p′

)2

κ u̇β

(
∂ f0

∂xβ
− u̇β

(p′0)2

p′
∂ f0

∂p′

)
− Γτp′4

∂ f0

∂p′

]
= Q , (23)

where Q denotes the source term and Greek indices (α, β) run from 0 to 3. Γ denotes the (generalized)
relativistic shear coefficient, which in the strong scattering limit is given by

Γ =
c2

30
σαβσαβ , (24)

where σαβ is the (covariant) fluid shear tensor given by

σα β = ∇αuβ +∇βuα + u̇αuβ + u̇βuα −
2
3
(

g α β + uα uβ

)
∇δuδ . (25)

In the case of a cylindrical jet with a steady (relativistic) shear flow profile ~u = u(r)~ez, the fluid
four acceleration (u̇α = 0) and divergence (∇βuβ = 0) vanish, retaining only the shear term with

Γ = (γ4
u/15) (du/dr)2 (26)

with γu(r) = 1/(1− [u(r)/c]2)1/2, in the second line of Equation (23). The characteristic co-moving
acceleration timescale then becomes [1,33]

t′acc =
15

(4 + α) γ4
u (du/dr)2 τ′

, (27)

where τ′ ∝ p′α is the mean scattering time.
Full z-independent, steady-state solutions of Equation (23) for such a flow profile and specific

forms of the radial dependence of κ(r, p) have been recently presented by Webb et al. [33,82] and
discussed in connection with extragalactic radio jets. In principle, Equation (23) also allows to treat
particle acceleration in relativistic outflows where intrinsic jet rotation introduce a velocity shear.
In such a case a complex interplay between shear and centrifugal effects can occur [58,61]. This could
be of particular relevance in the context of AGN-type jets where some internal jet rotation is expected
(e.g., [14,15,19]).

Note that when the generalized relativistic transport Equation (23) is reduced to its non-relativistic
limit, also an additional term quadratic in the acceleration vector u̇iu̇i ∝ (Ai)

2 is recovered, which as
such does not appear in the previous version of the non-relativistic transport Equation (19) [49,54,78].
This is due to the fact that in the derivation of Equation (19), focusing on cosmic-ray transport, the
relevant terms have been neglected as they are typically of order (u/c)2 smaller than the viscous term.

3.1.4. Recent Applications of Gradual Shear Acceleration

A variety of topics and applications have been discussed in the context of gradual shear
acceleration (e.g., [21,22,31,33,36]). In the following three recent results are briefly mentioned:

• (i) Shear Particle Acceleration in Expanding Relativistic Outflows:
The jetted outflows from AGN and GRBs can exhibit highly relativistic speeds, regions of
(quasi-conical) expansion and flow Lorentz factors varying with polar angle (e.g., [83–86]).
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This makes them possible sites where gradual shear particle acceleration could occur [28,59].
An application to AGN-type outflows has been presented recently, considering the case of a radial
velocity shear profile uα = γb (θ)(1, vr(θ)/c, 0, 0), where θ denotes the polar angle, r the radial
coordinate, and γb(θ) the bulk flow Lorentz factor [28]. When the impact of different functional
dependencies for γv(θ) such as a power-law-, Gaussian- or Fermi-Dirac-type profile is explored
(see Figure 6), the characteristic (co-moving) acceleration timescale is found to be a strong function
of θ. This could facilitate the generation of some prominent, non-axis (e.g., ’ridge line’) emission
features in AGN jets [28].
In order to overcome adiabatic losses (∝ γbvr/r) and allow for efficient acceleration, relativistic
outflow speeds and sufficient energetic seed particles (λ′/r > 10−3 for the example shown in
Figure 6) would be needed. When put in GRB context, particle acceleration in expanding shear
flows might result in a weak and long-duration leptonic emission component in GRBs, as well as
be conducive to UHE cosmic-ray production [59].

• (ii) Multi-Component Particle Distributions and Extended Emission:
Since tacc ∝ 1/λ (Equation (13)), gradual shear particle acceleration will begin to dominate over
conventional first- and second-order Fermi acceleration (tacc ∝ λ) above a certain energy threshold.
This could naturally result in the formation of multi-component particle distributions. A basic
example assuming radiative-loss-limited acceleration in a cylindrical, mildly relativistic shearing
flow is shown in Figure 7 [31]. The figure is based on a time-dependent solution of the
Fokker-Planck equation for f (p, t), or equivalently f (γ, t), including the effects of classical
second-order Fermi and gradual shear particle acceleration as well as synchrotron losses.
Employing a Kolmogorov-type (q = 5/3) scaling for the particle mean free path, λ(p) ∝ p2−q,
and using parameters applicable to mildly relativistic large-scale jets in AGN, electron acceleration
up to Lorentz factors of γ ∼ 109 seems feasible (cf. Figure 7 (left)). In the example given, stochastic
second-order Fermi acceleration dominates particle energization up to γ ∼ 104, while above this
threshold shear acceleration becomes operative leading to a somewhat flatter spectral slope (with
a change by 2/3 in the example shown). Synchrotron radiation eventually introduces a spectral
cut-off at high energies.
As shearing conditions are likely to prevail along astrophysical jets, stochastic-shear particle
acceleration is expected to be of relevance for understanding the extended X-ray emission in the
large-scale jets of AGN (cf. Section 1) [31]. In reality, the anticipated change in spectral slope will
also depend on the spatial transport and escape properties (see below). As a consequence, higher
speeds would be needed to achieve comparable, moderate breaks. When put in UHE cosmic-ray
context, gradual shear acceleration of protons up to ∼ 1019 eV seems feasible in the large-scale
jets of AGN [31,33,82], cf. also Figure 7 (right). Higher energies might be achieved for faster flows
and for heavier particles.

• (iii) Incorporating Spatial Transport and Diffusive Escape:
In the previous Fokker-Planck approach details of the spatial transport, and possible modifications
introduced by the diffusive escape of particles from the system, have not been incorporated.
Implications of the spatial transport could in principle be studied by using the full relativistic
particle transport Equation (23). Analytical examples in this regard have been recently presented
by Webb et al. [33,82]. Focusing on steady-state solutions f0(r, p′) for a cylindrical jet with
longitudinal shear uz(r) and allowing for a specific radial dependence g(r) of the scattering time,
τ(r, p) = τ0 g(r) (p/p0)

α, they showed that diffusive escape can counter-act efficient acceleration.
In particular, while the local particle distribution still follows a power law f (p′) ∝ p′−µ,
its momentum index µ becomes dependent on the maximum flow speed β0 on the jet axis,
and significantly steepens with decreasing β0 (approaching µ→ ∞ for β0 → 0) [33,82]. Though
possible limitations due to the chosen τ-dependence may deserve some further studies, these
results imply that efficient gradual shear particle acceleration requires relativistic flow speeds.
The analytical solutions [33] can be used to explore the full radial evolution of the particle
transport. Figure 8 represents an example for a hyperbolic, relativistic shear flow profile
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βz(r) = β0[1− tanh(r)2] with a maximum Lorentz factor γb = 20 on the jet axis [72].
As can be seen, away from injection at r1 the known power-law momentum dependence,
Equation (18), is approximately recovered at high flow speeds (β0 → 1). Clearly, advancing
our understanding of the (radial) diffusion properties in astrophysical jets will be important to
further improve our understanding of the particle acceleration in gradual shear flows.

 1

 10

 100

 1000

 10000

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

ra
tio

Angular dependence  e/ec

Power-law model (b=1.8)
Gaussian model (ec =0.03)

Fermi-Dirac model (`c=4)

Figure 6. Left: Illustration of a simple conical flow whose radial outflow speeds varies with polar
angle θ. Right: Ratio of viscous shear gain versus adiabatic losses multiplied by (r/λ′), illustrated
assuming a core angle θc = 0.03 rad and an on-axis flow Lorentz factor γb = 30. A non-axis preference
becomes particularly evident for a Gaussian or Fermi-Dirac shaped flow profile. From Ref. [28].

Figure 7. Left: Time-evolution of the electron spectrum, γ2 n(γ), in the presence of stochastic-shear
particle acceleration, where n(γ) ∝ γ2 f (γ) represents a solution of the corresponding Fokker-Planck
equation for a linearly decreasing (trans-relativistic) velocity shear of width ∆l ∼ rj/10, and an Alfven
speed βA ∼ 0.007. Above particle Lorentz factors of a few times 104 the spectrum is shaped by shear
acceleration, with a high-energy spectral cut-off around γ ∼ 109 being introduced by synchrotron losses.
The successive operation of different acceleration processes here naturally results in a broken-power
law distribution. Right: Required (blue-hatched) range of parameters (magnetic field strength B,
shear layer width ∆l) to allow shear acceleration of protons to ∼ 1018 eV given confinement and loss
constraints for the noted conditions. The required conditions might be met in large-scale AGN jets.
From Ref. [31].
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Figure 8. Normalized steady-state particle distribution function f (r, p′) in the presence of a gradual,
hyperbolic relativistic shear flow as a function of momentum (p′/p′0), shown for three different
spatial locations, r = 0.06 (blue), r = 0.50 (orange), r = 1.20 (green). Mono-energetic particle
injection with p′0 at r1 = 0.02 and an outer (escape) boundary at r2 = 2 have been assumed. A linear
momentum-dependence α = 1 has been used for the scattering time. The red curve (top) shows the
expected power-law dependence f (p′) ∝ p′−4 above p′0, as inferred from the Fokker-Planck approach
in Equation (18).

3.2. Non-Gradual Shear Flows

Once the particle mean free path becomes larger than the characteristic scale (∆r) of the shear
transition layer, acceleration essentially becomes non-gradual. A particle may then be viewed as
passing almost unaffected through the layer and experiencing a strong, quasi-discontinuous jump
in velocity. Such a situation could arise, for example, at the interface between the ambient medium and
the interior of powerful (FR II-type) large-scale AGN jets [1,39,56,87]. If a particle is able to repeatedly
cross the transition layer, efficient particle acceleration to high energy may occur. This may allow to
boost pre-accelerated cosmic rays further to ultra-high energies (UHECR) (e.g., [39]), or to enhance the
electron synchrotron emission of large-scale AGN jets (e.g., [88]). In case of ultra-relativistic jet flow
velocities (Γj � 1) a “one-shot boost” by ∼ Γ2

j � 1 might occur (crossing and re-crossing the layer),
cf. Equation (10). It has been argued that this could be sufficient to boost seed galactic cosmic rays of
energy <∼ 1017 eV in blazar-type AGN to ultra-high energies > 1018 e [89,90].

If the particle distribution would remain nearly isotropic near the shear discontinuity, the mean
energy for a single crossing is approximately given by 〈∆E/E〉 ' (Γj − 1) (e.g., [1]). This would
suggest that the increase in particle energy could be substantial provided the velocity shear is
sufficiently relativistic. For non-relativistic velocities (Γj ∼ 1), on the other hand, only the usual
energy gain of second order in ∆u is obtained. To properly treat relativistic flow speeds (∆u/c ' 1) the
non-negligible anisotropy of the particle distribution needs to be taken into account. The principal
effects of this is a reduction in efficiency. Accordingly, the mean energy gain may be expressed as〈

∆E
E

〉
= ηe (Γj − 1) , (28)

where ηe < 1. Monte Carlo particle simulations within the strong scattering limit (i.e., assuming
∆B/B ∼ 1) suggest that ηe may still be a substantial fraction of unity [56]. One can then define an
acceleration timescale tacc = τ/ 〈∆E/E〉, where τ is the mean time for boundary crossing and τ = λ/c,
with λ ∼ rg the particle mean free path (rg the gyro-radius) cf. [1]. In the laboratory (ambient medium)
rest frame one thus obtains [39,87]

tacc = α
λ

c
>∼ (1− 10)

rg

c
provided rg > ∆r . (29)
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Simulations suggest that for suitable choices (high ∆u, small rmax) α might be as small as ∼(1−10)
assuming that particles are allowed to escape once they have crossed a boundary at some lateral
distance rmax. In general, however, α is a sensitive function of rmax, increasing quasi-linearly with
increasing rmax [56]. Nevertheless, provided particles with λ ∼ rg > ∆r and rg < rj (rj denoting the jet
radius) are present, acceleration may proceed fairly quickly.

Observations of pc-scale AGN jets with evidence for a shear layer morphology (e.g., a boundary
layer with parallel magnetic fields or limb-brightened structure (e.g., [5–9])) suggest that ∆r < 0.5 rj.
Taking ∆r ∼ 0.1 rj ∼ 0.1 pc and B ∼ 0.01 G for a semi-quantitative estimate, the condition rg > ∆r
would require very energetic seed electrons of Lorentz factor γe ∼ 1012(∆r/0.1 pc) and protons of
Lorentz factors γp ∼ 5 · 108(∆r/0.1 pc), respectively. The associated acceleration timescale would
be of the order of tacc

>∼ ∆r/c ∼ 0.3 (∆r/0.1 pc) yrs. Hence, unless the transition layer would be
much narrower, the considered mechanism may not work efficiently for electrons given their rapid
synchrotron losses. The mechanism is, however, much more favourable for protons (or cosmic rays).
Given suitable seed injection (e.g., by gradual shear) cosmic rays may be further accelerated until their
gyro-radius rg becomes larger than the width of the jet rj. Note that for non-gradual shear one has
tacc ∝ λ, while for gradual shear tacc ∝ 1/λ (Equation (13)).

An application of mildly relativistic (Γj ' 1.4), non-gradual shear acceleration to the possible
energization of UHE cosmic rays in the kiloparsec-scale jets of FR I type objects has been recently
presented by Kimura et al. [32]. In the considered setup (Figure 9) galactic cosmic rays are swept
up by the jet and reaccelerated to UHE energies. Monte Carlo simulations suggests that cosmic rays
escaping through the cocoon exhibit a very hard, power-law like spectrum dN/dE ∝ E−1 − E0 and
a cut-off around the maximum energy that is much slower than exponential [32]. The results are
somewhat sensitive to the turbulence description in the cocoon (e.g., coherence scale, cocoon size) and
the assumed thickness ∆r of the transition layer (defining the injection energy threshold of galactic
cosmic rays).

Figure 9. Left: Cartoon of the considered scenario assuming a recycling of galactic cosmic rays by
non-gradual shear acceleration in a jet - (turbulent) cocoon system. Some fraction of galactic cosmic rays
are considered to be swept up by the kiloparsec-scale jet and reaccelerated to high energies. The return
probability of a particle here is dominated by the scattering (turbulence) properties (i.e., particle mean
free path) in the cocoon and not in the jet. Right: Reconstruction of the observed UHECR spectrum
assuming mildly relativistic (Γj ' 1.4), non-gradual shear acceleration in an extragalactic jet-cocoon
system with a thin transition layer ∆r = 5 pc (Bj = 0.3mG, rj = 0.5 kpc). The composition at the
highest end is dominated by intermediate and heavy nuclei. From Ref. [32].

Enlarging ∆r and considering a strongly turbulent layer (see above), for example, is likely
to affect the results. Nevertheless, these simulations show that non-gradual shear acceleration in
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large-scale AGN jets (not necessarily of the FR II type) could in principle play an important role in the
(re)acceleration of UHE cosmic rays.

4. Particle Acceleration by Large-Scale Velocity Turbulence

If the turbulence scale of the flow is much larger than the particle mean free path, i.e., λturb =

2π/k � rg, stochastic (non-resonant) particle acceleration could in principle occur due to random
compression and rarefaction/decompression of the medium, or due to incompressible large-scale
motions. Particle acceleration by large-scale (long-wavelength) compressible velocity turbulence has
been studied some time ago (e.g., [91–93]), and more recently discussed with respect to the production
of supra-thermal ions in the solar wind [94,95]. Interestingly however, particle acceleration may also
occur in incompressible (divergence-free, ∇ · δ~u = 0) velocity turbulence, i.e., by scattering centers
(small-scale inhomogeneities) carried by a plasma flow with large-scale velocity fluctuations [92],
resulting in what has been referred to as “turbulent shear acceleration” (TSA) [50]. The total energy
change for an ensemble of particles will obviously be sensitive to the presumed turbulent velocity field,
with different descriptions yielding different efficiencies.

For non-relativistic turbulence (cf. also Ref. [51] for a discussion of relativistic turbulence), one can
draw on Equation (19) to describe the ensemble-averaged particle transport. Its space-independent part,
or respectively the equation for the spatially and ensemble averaged distribution function f ,
then reduces to a diffusion equation in momentum space (cf. also Equation (16))

∂ f (p, t)
∂t

=
1
p2

∂

∂p

(
p2DTSA

∂ f
∂p

)
, (30)

where DTSA(p) is the momentum space (TSA) diffusion coefficient. Using Equation (21) and assuming
a pure static, homogeneous and isotropic, incompressible velocity turbulence, ui(t,~x) = δui(~x),
〈δui〉 = 0, this coefficient can be written as [50]

DTSA(p) =
2
15

p2τ
∫ d3k

(2π)3 S(k) k2 . (31)

Here, τ ≡ τ(p) = τ0 pα again denotes the mean scattering time, and k and S(k) are the
wavenumber and spectrum of the incompressible velocity turbulence. Equation (31) implies that
DTSA is dominated by small-scale (large k) turbulence whenever k5S(k) is an increasing function of k.
Hence for a (3D) Kolmogorov-type spectrum [50], S(k)k2 ∝ k−5/3, i.e.,

S(k) ∝ k−11/3 (32)

in the range k0 ≤ k ≤ kmax, turbulent shear acceleration would become relevant towards the
smaller scales. The upper limit of the k-integration in Equation (31) should not exceed kres and
hence approximately be given by min{kmax, kres}, where kmax is the maximum wave number of
the turbulence, kres ∼ 1/(τ v) ∝ p−α and k0 = 2π/L0 (L0 being the turbulence injection scale).
For kres < kmax the diffusion coefficient for the noted spectrum thus scales as

DTSA(p) ∝ p2+α (kres)
4/3 ∝ p2−α/3 , (33)

while for kres > kmax, or for a mono-chromatic spectrum S(k) ∝ δ(k − k0), one instead obtains
DTSA(p) ∝ p2+α. Analytical solutions of Equation (30) for general momentum indices of DTSA
can be found in, e.g., Ref. [60]. Monte Carlo simulations of the acceleration of particles in static,
homogeneous and isotropic incompressible turbulence have been presented by Ohira [50], confirming
the general picture. Figure 10 provides an illustration for turbulent shear particle acceleration in
mono-chromatic turbulence.
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The simulation results are in good agreement with analytical expectations up to p/p0 > 102,
where in the chosen setup the particle mean free path starts to exceed the turbulence scale (λres(p) > L0)
and approximations for the analytical treatment no longer apply.

The characteristic acceleration timescale for non-relativistic turbulent shear for the case of kres <

kmax (Equation (33)) is of the order of (cf. [50])

tacc '
p2

DTSA
' 10

(
L0

τ(p)c

)2/3 ( 〈δu2〉
c2

)−1

τ(p) ∝ pα/3 . (34)

Comparing shear particle acceleration in (purely) turbulent flows to the one in non-relativistic
laminar flows, i.e., Dsh (Equation (17)) and DTSA (Equation (33)), roughly yields DTSA

Dsh
'

30 〈∂u2〉
(∆u)2

(
∆r
L0

)2 ( L0
λres

)4/3
and suggests that for non-relativistic (!) flow velocities, shear acceleration in

large-scale turbulent flows (assumed to be Kolmogorov-type) could be more effective than in laminar
shear flows if the relevant shear transition region (∆r) is not sufficiently narrow. Note, however, that in
reality the situation is more complex as many astrophysical flows exhibit some directionality (i.e.,
are composed of an underlying bulk velocity plus some turbulent fluctuations), so that an interplay
between both effects may occur. An extension to relativistic turbulence still remains to be explored.

Figure 10. Particle distribution function for turbulent shear acceleration at two different times assuming
static incompressible velocity turbulence with mean amplitude 〈δu2〉 = (0.05c)2. Red histograms
show results of Monte Carlo simulations for a mono-chromatic wave spectrum S(k) ∝ δ(k− k0) with
τ0ck0 = 0.01, where τ(p) = τ0 (p/p0) (i.e., α = 1) has been employed. Thin and thick lines show
analytical solutions at times t/τ0 = 5× 106 and 107, respectively. The formation of a power-law tail
f (p) ∝ p−4 above injection p0 and below p/p0 ∼ 102 becomes apparent with time. Deviations with
regard to the analytical solutions are seen towards higher momenta (p/p0 > 102) where the particle
mean free path λres starts exceeding the turbulence scale L0 = 2π/k0. From Ref. [50].

5. Concluding Remarks

As described in this review, a variety of (not mutually exclusive) processes may be operative in
astrophysical shear flows and facilitate particle transport and energization. Key results include the
self-consistent generation of electromagnetic micro-turbulence and supra-thermal particle distributions
as well as efficient Fermi-type particle acceleration in relativistic shearing flows. In particular,
given sufficient turbulence, the latter processes can lead to a continued acceleration of charged
particles, capable of producing power-law particle momentum distributions as long as the velocity
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shear persists. This offers an interesting explanation for the extended high-energy emission observed
in large-scale AGN jets. Similar processes can contribute to the energization of extreme cosmic rays.
In general, injection of energetic seed particles (in particular with respect to electrons) and relativistic
flow speeds are required for these processes to operate efficiently. In the case of AGN and GRBs the
former condition can be met by first-order shock and/or classical second-order Fermi processes. For
non-relativistic speeds, on the other hand, turbulent shear acceleration can be more efficient than shear
acceleration in quasi laminar flows.

Open issues concerning our understanding of shear particle acceleration include extensions of PIC
simulations to 3D and magnetized shear flows, a detailed characterization of the diffusive transport in
fast shearing flows along with the reaction effects of accelerated particles, as well as a generalization
of turbulent shear to relativistic velocity turbulences. It is hard to see, however, how velocity shear
could not play a role in the energization of charged particles. High-resolution studies of astrophysical
jets can offer complementary information concerning their internal structure and provide relevant
constraints for more detailed applications.
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