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Abstract: After three years of polarimetric monitoring of blazars, the RoboPol project has uncovered
several key characteristics of polarimetric rotations in the optical for these most variable sources.
The most important of these is that polarization properties of the synchrotron emission in the optical
appear to be directly linked with gamma-ray activity. In this paper, we discuss the evidence for this
connection, as well as the broader features of polarimetric behavior in blazars that are key in making
progress with theoretical modeling of blazar emission.
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1. Introduction

The first measurements of optical polarization of quasars followed soon after the identification of
their optical counterparts. These measurements have revealed that many of these sources are linearly
polarized to some extent, and variable in both the degree of polarization and the electric vector position
angle (EVPA) [1]. Fifteen years later, optical polarization was measured for ∼60 compact extragalactic
sources, and the first statistical conclusions could be derived, together with some preliminary tests
of consistency with models [2]. It was found that, typically, the behavior of polarization degrees and
angles are erratic [3]. This can be explained by the presence of a persistent component and one or
multiple variable components [4–7]. In fact, such a model was first used for the interpretation of
irregular radio polarization behavior as early as 1967 [8]. However, it has been known since the end of
the 1970s that some sources exhibit long monotonic rotations of the EVPA in the radio band emission
during flares [9,10]. The first optical polarization rotation, simultaneous with a similar rotation in the
radio band, was reported by Kikuchi et al. (1988) [11]. During the first years of operation of the Fermi
γ-ray observatory, optical EVPA rotations have attracted a lot of interest, because it was noticed that
some of the strong γ-ray flares were accompanied by these events [12–14]. If EVPA rotations were
physically related to the high-energy activity, they could help localize and clarify the nature of the
latter one, which was actively discussed at that time.

Therefore, a number of optical polarization monitoring programs have since focused on
observations of blazars that are bright and active in γ-rays. Such major monitoring programs have been
carried out by the Boston University group [15], at St. Petersburg University [16], at the Hiroshima
University (Kanata program) [17], at the Steward Observatory [18], at the Calar Alto observatory [19],
and at the Tuorla observatory [20].

From a theoretical standpoint, a wide variety of mechanisms have been proposed to explain the
origin of EVPA rotations. They include the following scenarios:
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1. A two-component model, where changes in the polarization are due only to changes in the
relative flux of the two components [21].

2. Propagation of an emission component along the jet with a non-axisymmetric magnetic field [22].
3. Polarized synchrotron flares rotating in the accretion disc [23].
4. Motion of an emission component along a helical streamline in the helical magnetic field [12,14].
5. Jet bending [13].
6. Changes of polarization parameters and total flux due to the Doppler factor variability [24].
7. Random variation of the polarization vector in the emission produced by a turbulent zone [10,25,26].
8. Propagation of a relativistic shock in the jet that causes compression of the magnetic field and

alters its direction and the degree of ordering [27].
9. Precession of the jet [28].

10. Kink instability [29].
11. Magnetic reconnections [30].
12. Relativistic EVPA rotation in the observer frame combined with the conical jet geometry and

particle cooling [31].

Inspired by the perplexing and unclear nature of EVPA rotations, an intensive polarization
monitoring program, RoboPol, was designed and executed.

2. The RoboPol Program

In spite of the immense significance of EVPA rotations for an understanding of the magnetic
field structure in the jets and their importance for constraining theoretical models, only a handful of
these events were reported in the 25 years since their discovery. Additionally, most of these observing
programs were monitoring small numbers of the most violently variable blazars; these were biased
samples, and not appropriate for statistical studies. Therefore, such questions as “Do all blazars rotate
the EVPA? How often these rotations occur on average? Does this depend on the blazar class?” would
be impossible to address accurately using data of monitoring programs already existing at the time
when RoboPol was designed.

In order to overcome these shortcomings, an international collaboration between the University of
Crete and Foundation of Research and Technology Hellas (FORTH, Greece), the Max-Planck Institute
for Radioastronomy (Germany), the California Institute of Technology (USA), the Inter-University
Centre for Astronomy and Astrophysics (India), and the Nicolaus Copernicus University (Poland)
developed a new blazar monitoring program called RoboPol. This program specifically aimed
at maximizing the number of detected EVPA rotations and characterizing the optical polarization
behavior of blazars.

2.1. Instrumentation

The key element of the the RoboPol program is a novel-design optical polarimeter that was
developed specifically for the project. This polarimeter has a fixed set of half wave plates and
Wollaston prisms (see Figure 1) that split each incident ray into four rays with the polarization plane
rotated by 45◦with respect to each other. Therefore, one can measure the Stokes parameters q = Q/I
and u = U/I of the linearly polarized light in one exposure. Given the large field of view (13′ × 13′),
the total flux density I can also be measured at the same time if a comparison star with a known
magnitude is present in the field. Since the polarimeter has no moving parts except the filter, it avoids
systematic uncertainties related to an imperfect alignment of rotating optical elements, and simplifies
the instrument calibration.

The polarimeter was hosted on a 1.3 m telescope at the Skinakas Observatory, which is a joint
facility of the FORTH and the University of Crete. It is located at an altitude of 1750 m in Crete
(35.2120◦N, 24.8982◦ E).



Galaxies 2019, 7, 46 3 of 14

HWP

0°

67.5°

0

WP
CCD

1

2

3

Figure 1. Schematic of the polarizing optics of RoboPol. The array of two half-wave plates (HWP) and
two Wollaston prisms (WP) is shown. The fast optical axes of the elements and the polarization planes
of the rays are shown with arrows. The HWP with the fast axis oriented at 67.5◦ rotates the polarization
plane by 2 · 67.5 = 135◦ (see, e.g., [32]).

The site offers seeing conditions which are among the best in Europe, comparable to several of
the largest facilities in the world (median seeing of 0.7 arcsec [33]). The Skinakas Observatory granted
the RoboPol collaboration four nights per week, on average, over the entire Skinakas observing season
(May to November each year), for three years (2013–2015).

In addition to the advanced instrument, we developed an automated telescope control system,
as well as a processing pipeline. The former one was able to point automatically and estimate the
brightness of targets using the pointing exposures. It could also estimate polarization parameters on
the fly, reaching a particular signal-to-noise ratio in EVPA if required.

A more detailed description of the polarimeter can be found in Ramaprakash et al. (2019) [34],
while the pipeline and the control system are presented in detail in King et al. (2014) [35].

2.2. Unbiased Observing Sample

Another unique feature of the program is the observing sample, constructed in a way which
allows for systematic statistical studies. We built the sample relying on unbiased and statistically
rigorous criteria. Firstly, we constructed a flux-limited sample of γ–loud blazars from the second
Fermi-LAT (2FGL) source catalog [36], selecting sources classified as BL Lac (bzb), FSRQ (bzq), or
an active galaxy of uncertain type (agu) that have the integrated photon flux F(100 MeV ≤ E ≤
100 GeV) ≥ 2× 10−8 ph cm−2 s−1. Then, we excluded sources with |b| ≤ 10◦ in order to avoid any
dependence of the sensitivity on the photon index and minimize polarization induced by the Galactic
dust. Finally, applying visibility constraints and introducing the optical magnitude cut R ≤ 17.5, we
obtained the unbiased γ–loud monitoring sample of 62 sources. The control sample of γ–quiet sources
was selected from Candidate Gamma-Ray Blazar Survey (CGRaBS) sources [37] that had not been
detected by Fermi at that time (not included in 2FGL). We introduced constraints on the 15 GHz mean
flux density ≥ 0.06 Jy and intrinsic modulation index as defined by Richards et al. [38] m ≥ 0.05. Then,
we applied similar visibility cuts and the R ≤ 17.5 condition as for the γ–loud sources. Finally, we
randomly selected 15 sources that passed all the cuts. Two out of 15 sources in our γ–quiet sample
appeared in the four-year Fermi-LAT (3FGL) catalog as γ-ray sources. Therefore, we added two more
blazars that satisfied the previous criteria, but were not reported as γ-ray–loud in either 2FGL or
3FGL. Additionally, to the unbiased samples of γ–loud and –quiet sources, we observed 24 additional
“high interest” sources, which were not taken into account in population studies where they could
bias results due to their activity being higher than average. More details on the sample selection are
discussed in Pavlidou et al. (2014) [39].
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3. Results

After running the program for three observing seasons, we identified 40 EVPA rotations in
24 individual blazars (see Section 4 for discussion on the EVPA rotation definition). As an example,
in Figure 2 we show one of the rotation events observed in the γ-ray–loud sample blazar J1751+0939.
We were able to study statistical properties of the detected events, their characteristics, and connection
to the high-energy flares in blazars. Here, we briefly discuss our major results related to the EVPA
rotations, as well as the behavior of polarization in blazars in general.
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Figure 2. An example of an EVPA rotation (marked by the red circles). Based on data from [40].

3.1. Polarization Properties of Different Types of Blazars

Using data obtained during the first month of RoboPol operation, we have found that the average
fractional polarizations of the γ–loud and γ–quiet samples are < p > = 6.4+0.9

−0.8× 10−2 and 3.2+2.0
−1.1× 10−2,

respectively. The hypothesis that the polarization fractions of blazars in these samples are drawn
from the same distribution is rejected at the 3σ level of significance [39]. Later, this result was
confirmed using averaged monitoring data for a larger sample of sources [41]. There, the difference
of average intrinsic polarization for the two groups was found to be even larger, 9.2± 0.8× 10−2

and 3.1 ± 0.8 × 10−2. A similar conclusion that γ-ray luminosity and optical polarization are correlated
was made, also based on Kanata monitoring data [42]. These results immediately suggest that the average
“polarizing efficiency” in jets of γ–loud and γ–quiet blazars is systematically different. This efficiency
depends on the ordering of the magnetic field in the jet and the electron energy distribution index.
However, the latter is a rather weak dependence, and cannot solely be responsible for the wide range of
optical polarization observed in blazars (see discussion in [42]).

As per Hovatta et al. [43], we tested whether the BL Lac objects that were detected with the
current-generation TeV instruments had different optical polarization characteristics compared to
similar sources that have not yet been detected. It was found that after correction for depolarization
produced by the host galaxies, TeV-detected and non-detected BL Lacs had the same mean fractional
polarization. The rate of EVPA variations is also statistically indistinguishable between the two
groups. This was considered as an indication that there are no intrinsic differences in the polarization
properties of the TeV-detected and non-detected high-energy BL Lac objects. Therefore, the magnetic
field ordering and the electrons distribution within their jets are not expected to differ systematically.

Besides the relation of optical polarization with γ-ray emission of blazars, it has also been found
that polarization parameters depend on the position of the synchrotron peak maximum. For instance,
low-synchrotron peaked (LSP, log(νp) < 14) sources have higher fractional polarization and a broader
range of values compared to intermediate- (ISP, 14 ≤ log(νp) ≤ 15) and high-synchrotron peaked
(HSP, 15 < log(νp)) sources [41]. The dependence of the maximum polarization on the synchrotron
peak position was also found in other monitoring programs [42,44]. Moreover, HSP sources tend to
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demonstrate significant peaks in EVPA distributions (i.e., a preferred direction of polarization plane),
while LSPs typically have uniform distributions of EVPA. Hints of this behavior were noted earlier,
but for very small samples of sources so that no statistically robust conclusion could be made [7].

Considering the aforementioned dependencies, Angelakis et al. [41] proposed a qualitative
model sketched in Figure 3. In this scenario, a mildly relativistic shock in the jet causes efficient
particle acceleration (e.g., due to diffusive shock acceleration or magnetic reconnection) in a small
volume directly downstream of the shock. Propagating further downstream, these accelerated particles
progressively lose their energy due to the emission of inverse Compton and synchrotron radiation.
Therefore, the emission at the synchrotron peak frequency or higher is produced by the most energetic
particles congregated in a small volume adjacent to the shock, where the magnetic field is compressed
and expected to be highly ordered. Lower-frequency synchrotron emission is received from a region
with greater volume downstream the jet. This region contains a larger range of magnetic field line
orientations. Additionally, the ordered component of the magnetic field can be less dominant in
this zone, when compared to the turbulent component. Thus, at the fixed frequency of the R-band,
we observe highly polarized emission near the synchrotron peak maximum and above in LSP sources,
and significantly less polarized emission at the low-energy side of the peak in HSP blazars (see Figure 3).
Itoh et al. [42] also explain the lower polarization of HSP sources by larger emitting volume and
superposition of multiple emitting regions with independent orientations of magnetic field lines.
However, their scenario includes a spine-sheath model, where the spine has a highly ordered magnetic
field and produces highly polarized and variable emission, while the sheath, in contrast, produces
steady and low-polarized light. Then, the systematic difference in the polarization of HSP and LSP
sources can be caused by the increasing jet volume fraction occupied by the spine. Potentially, an
observational test can discriminate between these two models. The first model predicts that most of
the sources must demonstrate decreasing fractional polarization from higher (Ultraviolet) to lower
frequencies (Near Infrared), while for the spine-sheath model, no systematic behavior is expected.

Figure 3. Sketch of the shock-in-jet scenario proposed by Angelakis et al. [41].

3.2. Connection of EVPA Rotations and γ-Ray Flares

One of the main goals of the project was to verify the previously assumed connection of EVPA
rotations with strong γ-ray flares. We addressed this issue in [45] based on the first-season data
and in [46] using the entire set of 40 events detected during the three-year program. Our main test
included a direct estimation of the probability that all EVPA rotations occur at random times with
respect to γ-ray flares in the light curves of corresponding blazars.

For this purpose, we identified all flares in γ-ray light curves that occurred during intervals
covered by RoboPol. Then, we fitted these flares with an analytic function and derived their basic
parameters, such as the peak time, flux at the peak, rise, and decay times. After this, we found the time
lags between EVPA rotations and flares and constructed the cumulative distribution function (CDF) of
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their values (see Figure 4). Dropping random points at the γ-ray light curves, we ran a Monte-Carlo
simulation that simulated EVPA rotations distributed at random moments in time. Thus, we obtained
106 simulated CDFs (104 of them are shown in Figure 4), and found that only 70 were entirely located
closer to zero than the observed one. Therefore, we concluded that the probability of all time lags in
the sample being accidentally so close to zero, as observed, is ∼ 7× 10−5. This implies that at least
some of the time lags between EVPA rotations and γ-ray flare we observed are physically linked.

Figure 4. CDFs of the time lags τobs between the EVPA rotations and peak moments of the closest γ-ray
flares for the main sample rotators. The black line represents observed time lags, and the thin grey lines
represent 104 simulated values for the whole sample of rotations. Based on data from [46].

This interpretation received further support when we compared amplitudes and timescales
of EVPA rotations and γ-ray flares (see Figure 5). In spite of large uncertainties in determination
of the rotations amplitudes ∆θmax (because of the difficulty in identifying the onset and the end
of a particular event), it has been found that the peak luminosities of flares Lp closest to rotations
are anticorrelated with ∆θmax. Such a relation could be caused by a correlation of jet parameters
that influence luminosity, i.e., the Lorentz and Doppler factors and the jet viewing angle, with the
rotations amplitudes. The correlations between these parameters were indeed found to be significant
as well. Moreover, we demonstrated that the characteristic timescales of rotations and γ-ray flares
were marginally correlated [46]. Thus, one of the most significant outcomes of the RoboPol program is
that it has proven, for the first time in a statistically robust fashion, that at least some EVPA rotations
must be physically related to γ-ray flares.
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Figure 5. Left panel: γ-ray flare luminosity, Lp, vs. EVPA rotation amplitude, ∆θmax. Empty circles
correspond to blazars with uncertain z. Right panel: characteristic timescale of flares, Tf lare, vs.
duration of rotations, Trotation, in the observer frame Lines show linear fits to the data. Based on data
from [46].

3.3. Properties of EVPA Rotations

RoboPol provided enough data for a first attempt to characterize the statistical properties of EVPA
rotation events, as well as the behavior of the total flux and fractional polarization during these events.
We detected EVPA rotations with durations, ∆T from 19 to 518 days in the jet reference frame and
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amplitudes, ∆θ from 74◦ to 427◦ (see Figure 5). The histogram of rotation amplitudes was found to be
consistent with both normal and uniform distributions. However, it has an apparent peak near the
mean 186◦ value, which is consistent with “the magic number” of 180◦ appearing in several models
explaining these events. When EVPA rotations are approximated by straight lines, their rotation rates
∆θ/∆T in the jet reference frame span from 0.2◦/d to 16◦/d. They are strongly non-uniform and,
presumably, can be approximated by a power law distribution. This, however, could just be a natural
outcome of ∆θ and ∆T being uniformly distributed. The values of ∆θ and ∆T are not correlated.
We have presented statistical evidence that ∆θ and ∆T of the rotations are likely to be limited—that
is, arbitrary lasting and high amplitude events are not present in nature. The null hypotheses that
rotation amplitudes and durations can exceed 460◦ and 500 days are rejected at the significance level
of 0.01. These limits are presumably caused by restraints of the physical parameters presented in the
jets, such as topology of the magnetic field, emission region size, and finite bulk speed of the moving
emission features, or other characteristics related to the EVPA rotations.

We have demonstrated that most of the rotations are accompanied by a decrease in the fractional
polarization. At the same time, its modulation indices, on average, remain constant. Moreover, we have
found a marginal (2.7σ significance level) anticorrelation of the depolarization factor—that is, average
polarization during rotation normalized by its value in a non-rotating state, with the rotation rate in
the jet reference frame. This dependence, if confirmed with a larger sample of events, could place
significant constraints on models explaining EVPA rotations. Finally, it has been demonstrated that
during most of the EVPA rotations, there is no clear systematic increase in the total flux density. These
and other properties have been reported in [40,45–47].

3.4. Rotations in Different Types of Blazars

Thanks to the unbiased nature of the RoboPol monitoring sample, we were able to investigate
the occurrence of EVPA rotations in blazars of different classes [47]. We started by demonstrating
that the polarization plane rotations frequency (at least for events with rates < 20◦/d) is not the
same for different sources. For instance, the null hypothesis that EVPA rotations occur equally
frequently in all sources was found to be very unlikely (p = 10−7). At the same time, this difference
in the EVPA rotations occurrence could not be clearly related to the γ–quiet – γ–loud dichotomy
of blazars. We could not reject the null hypothesis that the γ–quiet sample blazars show rotations
with the same frequency as sources in the γ–loud sample. Therefore, according to our data, it is not
impossible that the frequency of EVPA rotations is the same for the blazars in the main and the control
samples. Nevertheless, we found that the frequency of rotations very significantly varies, even between
sources of the main γ–loud sample itself. For example, the upper limit on the average frequency of
rotation in the γ–loud sample sources, where we detected zero rotations, is more than two orders of
magnitude smaller than frequency of rotations in three sources which exhibited four rotations during
the three years of monitoring. Furthermore, we verified that no external reason can entirely explain
the distinction in rotation frequencies. A difference in accuracy of EVPA measurements that is caused
by various fractional polarization levels cannot be solely responsible for this effect. Similarly, we
have shown that there is no significant distinction in the time-delay factors δ/(1 + z) between the
samples with detected rotations and without. Therefore, we concluded that there exists a sub-class of
objects that exhibit EVPA rotations significantly more frequently than others. This difference is not
simply related to whether or not a blazar is detected by Fermi-LAT. It also cannot be explained by the
non-uniformity of observations or by observational biases due to differences in the average fractional
polarization [47].

We also looked for other intrinsic reasons that may cause the difference in rotation rates.
We compared numbers of EVPA rotations and numbers of sources where these events occurred
(rotators) for the three classes of blazars: low-synchrotron peaked (LSP: log(νp) < 14), intermediate-
(ISP: 14 ≤ log(νp) < 15), and high-synchrotron peaked (HSP: 15 ≤ log(νp)). It was found that rotations
tend to occur in sources with a lower synchrotron peak (see Figure 6). For instance, the probability
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that sources with rotations were randomly drawn from the parent sample is 1.4% if both γ–quiet and
γ–loud samples are considered as the parent sample. In the case when we consider only the γ–loud
sample, this probability is reduced to 0.5%. This tendency of EVPA rotations occurring in LSP blazars
is in agreement with findings of Hovatta et al. [48], who has shown that LSP blazars are more variable
than HSP in the total optical flux density (Stokes parameter I). Their work explains this finding with a
scenario similar to the one sketched in Figure 3 and discussed before—that is, the LSP sources are
observed near and above the electron energy peak, which causes stronger variations of the emission
compared to HSP sources, where the lower energy electrons cool down slowly and produce mild
variability. This scenario is expected to work for the polarized flux and EVPA variability as discussed
in Section 3.1.
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Figure 6. Occurrence of rotations and rotators (sources exhibiting rotations) among blazars of different
synchrotron peak position class. Numbers correspond to the number of blazars (the number of events
in the case of rotations) in each class. Based on data from [47].

We can briefly summarize the major results of the RoboPol project as follows: only about a quarter
of blazars (∼28% of sources in both γ–loud and γ–quiet samples) exhibit EVPA rotations with rates
<20◦/d in the optical band. The average frequency of appearance of these events is 1/232 d−1 (in the
observer frame). The remaining part of sources ∼72% did not show any rotations registered in our
data. Even if they do produce EVPA rotations, this should happen with average frequency less than
∼1/3230 d−1 in that sample.

3.5. EVPA Rotations as Random Walks

The EVPA behaviour in blazars most of the time is consistent with random walk variability [3]. This
leads to the natural suspicion that long periods of monotonic change of the EVPA in one direction is
nothing but a rare accidental outcome of the same random walk process. We tested the hypothesis
that all EVPA rotations detected during the first observing season of RoboPol could be explained by
stochastic variability of EVPA and found it to be unlikely [45]. In Kiehlmann et al. [49] a similarly
simple random walk model was tested against EVPA variability in the three years of monitoring data.
They found that the model is able to reproduce many parameters including durations, amplitudes
and rates of EVPA rotations. However, it failed in simulating realistic distributions of the mean and
standard deviation of the fractional polarization. This potentially could be corrected by more realistic
models, such as by introduction of several populations of sources with different intrinsic variability
properties. More comprehensive models that take into consideration both turbulent and ordered
magnetic components as well as realistic electron energy and density distributions are successful
in reproducing the evolution of polarization parameters and spectral energy distribution in high
detail [25]. RoboPol data do not reject the hypothesis that individual EVPA rotations could be produced
by a random walk of the polarization vector. Nevertheless, the correlations between parameters of
EVPA rotations and γ-ray flares parameters described in Section 3.2 would be totally smeared out if all
rotations were produced by random walks. Therefore, we deduced that at least some rotations are
influenced by deterministic processes that define their properties.
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It is not impossible that both types (deterministic and stochastic) of EVPA rotation events coexist.
Moreover, they may be present in the emission of a single blazar [26]. It could be that deterministic
ones are produced during periods of high activity in the total flux and high polarization state. While
random walks are more likely to detect during low polarization states, because the uncertainty of
EVPA measurements is larger at these periods [50]. This would explain why, on average, we do not see
an increase of optical total flux during rotations and observe depolarization during most of the events.

3.6. Possible EVPA Rotations in NLSy1 Galaxies

Radio loud narrow line Seyfert 1 galaxies are an enigmatic type of AGN that host relativistic jets
and have been detected in γ-rays [51]. They, presumably, represent the low luminosity and the low
black hole mass tail of the flat spectrum radio-quasars population [52]. Therefore, it is expected that
their polarization properties may be similar to properties of LSP blazars, and they may exhibit high
polarization variability together with EVPA rotations. Indeed, despite a lack of optical polarization
measurements, at least some of NLSy1 have demonstrated high fractional polarization variability
down to minute scales [53–55].

Angelakis et al. [56] searched for optical polarization plane rotations in emission of 10 radio–loud
NLSy1 galaxies using a combined monitoring data set obtained by RoboPol and other monitoring
programs. They concluded that all sources with multiple measurements show significant variability,
both in EVPA and fractional polarization. However, due to either sparse sampling of EVPA curves
or high level of noise, they could not confidently report the detection of a long (>90◦) continuous
EVPA rotation in NLSy1, despite having several candidates for such events. Long-term monitoring
campaigns with more accurate observations are needed to provide clear evidence of similarity of this
type of AGN to blazars in their optical polarization variability.

4. Caveats with EVPA Ambiguity, Rotation Definition, and Hidden Rotations

The EVPA defines orientation of the preferred polarization plane with respect to the celestial
meridian. For this reason, the EVPA value is a factor of 180◦ ambiguous, i.e., values EVPA ±n× 180◦

are mathematically equivalent. This means that every measurement of EVPA is, in fact, an infinite
countable set of values separated by 180◦, as is the difference between two measurements (see the left
panel of Figure 7). The most natural way to solve this 180◦ ambiguity is to assume that the variability
time scale is much longer than the interval between measurements (see discussion in Section 3.3 of [45])
and minimize the difference of EVPA between each of the two consecutive measurements. Nevertheless,
even the procedure of this minimization can be performed in several different ways. For instance,
many authors minimize the following value ∆θn = |θn − θn−1| − SL

√
σ(θn)2 + σ(θn−1)2, where θn

and σ(θn) are n-th EVPA measurement and its uncertainty, SL is the significance level typically set to
unity. If ∆θn > 90◦, the angle θn is shifted by ±n× 180◦, where the integer ±n is chosen in such a way
that it minimizes ∆θn. If ∆θn ≤ 90◦, then θn is left unchanged.

However, Kiehlmann et al. [26] assert that this method itself may lead to inconsistent results, since
it depends on the choice of the initial interval. They suggest to exclude the term with uncertainties
and use ∆θn = |θn − θn−1| for minimization. Although, in general, these arguments are correct, we
caution that this method of the 180◦ ambiguity solution can lead to spurious ∼180◦ jumps in the EVPA
curve caused by measurements with high uncertainties. An example of such a case is shown in the
right panel of Figure 7, where the black and blue EVPA curves are constructed with and without EVPA
uncertainties taken into account.
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Figure 7. Left panel: an example of a family of EVPA curves demonstrating the 180◦ ambiguity.
All paths connecting consecutive points in the graph are mathematically equivalent. Only the three
most probable escapes for each step are shown. Right panel: an example of a spurious jump in the
EVPA curve introduced by the 180◦ ambiguity solution method.

Besides the high sensitivity of EVPA curves to the particular procedure of the 180◦ ambiguity
solution and sampling, there is ambiguity in the EVPA rotation definition. Potentially, any significant
change of EVPA between two measurements can be considered as an EVPA rotation. Usually,
long amplitude, and smooth and monotonic changes of EVPA are of interest, and corresponding
requirements are introduced into the definition of an EVPA rotation. For instance, our definition of
an EVPA rotation stated that it must be comprised of at least four measurements and have a total
amplitude >90◦, while the start and end points of a rotation event are defined by a change of the EVPA
curve slope by a factor of ≥5 or a change of its sign. In the cases with large gaps ∆t > 30 d between
consecutive measurements, we considered rotations being terminated at these gaps. A particular
choice of the definition may affect parameters of derived EVPA rotations. A different approach for
the identification of EVPA rotations was proposed by Larionov et al. [50], who suggest using the
Discrete Correlation Function (DCF) between the Q and U Stokes parameters. This method, however,
requires very well-sampled light curves that may be unavailable for monitoring programs with large
samples and single observing facilities. For instance, the EVPA rotations detected by RoboPol are
traced by 4 to 22 measurements, while the DCF method requires an order of magnitude with more
dense sampling.

Studies of Angelakis et al. [41] and Hovatta et al. [43] demonstrate that HSP and ISP sources tend
to have preferred directions of EVPA, which is presumably caused by an emission of a steady polarized
source superimposed on the erratic component [6,7,57]. This component leads to an apparent shift
of the measurements distribution centroid Qc,Uc from the origin of coordinates on the Q-U Stokes
parameters plane. In such cases, rotations of the polarization plane may manifest themselves on the
Q-U plane as consecutive loops around (Qc,Uc) instead of (0, 0). These events show a low-amplitude
variability in EVPA curves and may be missed, since many studies identify rotations directly in
the EVPA curves. Therefore, a significant fraction of EVPA rotations can be “hidden” and require
analysis of the variability in the Q-U plane [58,59]. A handy tool for such analysis was proposed
by Uemura et al. [60], who also demonstrated its efficiency using a combined set of Kanata and
RoboPol observations [61].

5. Future Prospects

Despite the recent progress and advances provided by optical polarimetry monitoring programs,
there are a number of questions related to polarization of blazars that remain unclear. We still do not
know what process or processes produce polarization plane rotations in blazar emission and how they
are related to γ-ray flares. The short-term polarization variability of AGN remains mostly unexplored.
It is known that both fractional polarization and EVPA can significantly vary on the minutes–hours
time scale [50,53,62], but the origin of this variability is obscure. The solution of these and other
problems requires continuation of systematic optical polarimetric monitoring programs accompanied
by a multiwavelength total-flux follow-up. Moreover, the necessity of such programs is boosted in the
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context of future X-ray polarimetry missions [63,64]. The near-future X-ray polarimeters will require
rather long integration times. Therefore, ongoing continuous monitoring of optical polarization in
blazars will be extremely useful for picking highly polarized and active targets for observations in the
X-rays. RoboPol results (see Section 3.4), as well as theoretical studies [65] suggest that at least HBL
sources are expected to be highly polarized and variable in the X-rays band. Therefore, we expect a
bright future for polarimetry of AGN in the optical in synergy with the X-rays [31].
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