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Abstract: There is an on-going need for accurate oscillator strengths to be used in astrophysical
applications, particularly in plasma diagnostics and in the modelling of stellar atmospheres and the
interstellar medium. There are several databases in regular use which contain some of the required
data, although often insufficiently complete, and sometimes not sufficiently accurate. In addition,
several atomic structure packages are available through the literature, or from their individual authors,
which would allow further calculations to be undertaken. Laboratory measurements provide an
important check on the accuracy of calculated data, and the combined efforts of theorists and
experimentalists have succeeded in providing data of an accuracy sufficient for some astrophysical
applications. However, the insufficiency or inadequacy of atomic data is a continuing problem.
We discuss in the context of appropriate examples some of the principal steps which researchers
have taken to calculate accurate oscillator strengths, including both ab initio results and also various
extrapolation processes which attempt to improve such results. We also present some examples of
the main causes of difficulty in such calculations, particularly for complex (many-electron) ions, and
indicate ways in which the difficulties might be overcome.

Keywords: E1 transitions; configuration interaction calculations; transition rates; remaining
challenges to accuracy

1. Introduction

For more than half a century, calculations of atomic oscillator strengths and transition rates have
been undertaken with a level of accuracy and a range of atomic systems studied that have increased
with increasing computer power. Should it not, by now, be a straightforward matter to calculate the
atomic data needed for any astrophysical application? Indeed, should there not be electronic banks of
data stored for most atomic systems, and of an adequate accuracy, which can be accessed easily by
astrophysical modellers?

Of course, some databanks do exist and are widely used. However, they are by no means complete,
and some of the data have been found not necessarily to be of sufficient accuracy. Additionally,
the improvement of computer power has happened alongside the improvement of resolution of
observational data, particularly from space-based observations. This has resulted in both increased
accuracy of observational data, and the observation of transitions which were previously too weak
to discern. However, even so, could not the additional data now required be calculated in a manner
which would be quite straightforward by today’s standards?

That opens the question of how accurate the atomic data needs to be, and how “straightforward” a
calculation would be needed to achieve results whose level of accuracy can be determined, or at least
estimated. The purpose of this paper is to explore these issues, to demonstrate something of the progress
which has been made and to draw attention to the difficulties which remain in undertaking such work.
We do not intend to be comprehensive, althrough an overview of the extensive sets of calculations
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which have been undertaken or of the achievements which have been reached. Instead, we use some
specific examples to illustrate how success has come about and to point to challenges which remain,
indeed which increase as the range and complexity of atomic systems needed to be studied grows. As a
background, a useful summary of the relationship between oscillator strengths, transition rates and a
number of other transition parameters was provided by Hilborn (1982) [1].

2. Methods

Various methods have been used to calculate wave functions for evaluating oscillator strengths,
ranging from very simple models (particularly in the early calculations) to sophisticated methods
which seek to capture most of the electron correlation and which can, in principle, be extended towards
exact wave functions, although in reality exactness cannot be achieved except for one-electron systems.
In this section, rather than discuss all the main methods of calculation, we focus on what type of
calculation would be needed to achieve oscillator strengths of a desired accuracy. We illustrate the key
features through a small number of examples.

2.1. The Inadequacy of Very Simple Calculations

For many-electron systems, one of the simplest and earliest approaches is the use of the
Hartree–Fock (HF) approximation for determining wave functions. These wave functions are
represented by a single-configuration approximation. For most calculations, two forms of the oscillator
strengths are determined—length ( fl) and velocity ( fv). These would be equal for exact wave functions,
but in most cases the two forms give differing results.

Table 1 shows those values for the 1s22s2 1S–1s22s2p 1Po transition in several members of the
Be-isoelectronic sequence. Even in this few-electron case, the length and velocity forms give values
differing by more than a factor of two. Burke et al. (1972) [2] showed that, when a small number of
correlation configurations was added to the HF configuration, while still retaining the 1s2 core in each
of them, much better agreement (within about 5%) for the two forms could be achieved, as well as
improved agreement between the calculated and experimental transition energies. The most significant
correlation configurations in achieving better agreement between length and velocity forms are 1s22p2

1S and 1s22p3d 1Po.

Table 1. Be sequence: Oscillator strengths of 2s2 1S–2s2p 1Po transition.

C III N IV O V

Single configuration [2]
fl 1.0746 0.8569 0.7055
fv 0.5627 0.3713 0.3039

∆E (a.u.) 0.4494 0.5607 0.6756

Valence Correlation [2]
fl 0.7930 0.6293 0.5250
fv 0.8047 0.5954 0.4922

∆E (a.u.) 0.4773 0.6055 0.7334

Valence + Core Correlation CIV3 [3–5]
fl 0.759 0.609 0.511
fv 0.757 0.610 0.510

∆E (a.u.) 0.5972 0.7253

Valence + Core Correlation MCHF [4]
fl 0.6085
fv 0.6086

∆E (a.u.) 0.5960

Valence + Core Correlation MCDF [6]
fl 0.757 0.610 0.508
fv 0.753 0.608 0.507

∆E (a.u.) 0.4681 0.5974 0.7264

Experiment [7] ∆E (a.u.) 0.4664 0.5955 0.7235

∆E are the transition energies, in LS coupling, with averaging over the fine structure levels for
experimental energies.
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We also display in Table 1 some later calculations of Fleming et al. [3–5]. They used the
Breit–Pauli versions of the the general configuration interaction code CIV3 [8] and the MCHF
(Multi-Configurational Hartree–Fock) code [9] and found that, with a larger number of correlation
configurations, and in both the valence and core shells, the length and velocity forms show excellent
agreement. Additionally, in an independent calculation using the alternative, MultiConfigurational
Dirac–Fock/Dirac–Hartree–Fock (MCDF/MCDHF) method, Ynnerman and Froese Fischer (1995) [6]
obtained very similar results to those of Fleming et al. [5]. Table 1 also shows that these larger
calculations have calculated energies in good agreement with experiment.

There are certain conclusions we can draw from this set of results. Firstly, in general, single
configurations do not give good agreement between length and velocity forms. Consequently, at least
one of them (usually both) must be incorrect. However, even though exact agreement between the
two forms is achieved in a local potential approximation, the common value is not necessarily correct.
It is sometimes possible to achieve good length and velocity agreement even in the HF approximation
(a non-local potential method), but again the common value can be incorrect. For example, Weiss
(1967, 1969) [10,11] found that for the transition 2s22p 2Po–2s2p2 2D in C II, the HF (length, velocity)
values were (0.263, 0.262) while the configuration interaction values were (0.121, 0.124): the closeness
of the length and velocity forms in the HF approximation gave no assurance of correctness. Secondly,
a sequence of calculations providing systematic improvement in the wave functions gives more
confidence in the sense of convergence of the results. Thirdly, comparison with other methods of
determining the oscillator strengths can lead to a greater consensus of what should be the correct results.

2.2. Towards More Accurate Wave Functions

The accuracy of oscillator strengths is largely dependent on the quality of the wave functions
used in their calculation. The HF method, being variational in character, ensures that in going beyond
that approximation, the energy corrections are of second order, but errors in the calculation of other
atomic properties are of first order. Hence, the HF calculations of oscillator strengths tend to be rather
inaccurate; more sophisticated wave functions are needed for more accurate oscillator strengths.

The method of configuration interaction (CI) provides a systematic means of improving on HF
results. In LSJ coupling, the wave functions take the form

Ψ(J) =
M

∑
i=1

ai Φi(LiSi J) (1)

where Φi are configuration state functions (CSFs). If we form the Hamiltonian matrix with typical
elements Hij = < Φi|H|Φj >, then the variationally optimal values of the CI mixing coefficients ai are
the components of the eigenvector of this matrix, corresponding to an eigenvalue Ei which represents
the energy of a state or level. We can then systematically increase the size M of the expansion,
and consider the convergence of energies and wave functions with respect to M. Of course, M should
be infinite, but that is not practicable, so the CI expansion, Equation (1), has to be truncated.

Such a process allows us to undertake extrapolation to improve the results. This can be done
in a number of ways. For example, HFR, the relativistic HF/CI method (Cowan 1981) [12] allows
for a scaling of Slater integrals (Cowan and Griffin 1976) [13], typically by multiplicative factors of
around 0.80–0.85, and this has proven very successful in achieving good agreement between calculated
and experimental energy differences. In our own work, we have often used a process which we
have termed “fine-tuning”. In this, small changes are made to the ab initio diagonal elements of
the Hamiltonian matrix in order to bring the calculated and experimental energy levels into good
agreement (Hibbert (1996) [14].
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2.3. Indicators of Accuracy

Any extension of the CI expansion will lead to a monotonic lowering of the calculated energy
eigenvalues. However, there is no such guaranteed monotonic lowering of the transition energy
(an energy difference) involved in an oscillator strength. Nor can a monotonic improvement in the
multipole integral be achieved. Hence, it is necessary to establish certain indicators for the accuracy of
oscillator strengths, to serve as useful guides to users of calculated oscillator strengths, and to offer a
means of estimating the level of accuracy of the final results. Such indicators have been discussed in
some detail by Hibbert (1996) [14], and include :

1. Calculated energy separations
2. Length/velocity comparison
3. Convergence of results
4. Extrapolation processes
5. Comparison with other work

Indicator 1 is clearly important in relation to transition energies, but it is also important for energy
separations between interacting states/levels if the CI mixing coefficients ai are to be determined
accurately. Indicator 2 relates to the two main forms of the oscillator strength calculation; exact wave
functions would achieve agreement between them, so that disagreement between them suggests
further improvements could be sought; however, agreement between them is no guarantee of accuracy,
as discussed in Section 2.1. Indicator 3 allows us to examine the changes in the oscillator strengths
as the CI expansions are extended, thereby setting up a sequence of results which can be used in an
extrapolation process, as discussed above, leading to Indicator 4. Indicator 5 is particularly important,
with the “other work” preferably including calculations using different methods, experimental
determinations and, if possible, oscillator strengths derived from astrophysical observations.

In Table 1, we demonstrate all but Indicator 4: no fine-tuning has been undertaken. As correlation
effects are systematically added, improvements in energy separations and the length/velocity
agreement occur, as required by Indicators 1–3, while through results obtained from an alternative
method, Indicator 5 provides some confidence in the accuracy of the results.

The transitions shown in Table 1 are between two isolated states (in the sense that they do
not interact significantly with other states). In Table 2, we present some transitions which require
us to consider states whose interaction is the prime cause of non-zero oscillator strengths. These
intercombination transitions are critically dependent on the accuracy of the mixing between the upper
2s2p3 5So

2 level and the 2s2p3 3Po
2 , 3Do

2 levels, as well as 2s22p3s 3Po
2 and 2s22p3d 3Po

2 ,Do
2 levels, all of

which allow a contribution to the dipole operator for transitions to the ground state levels.

Table 2. 2s22p2 3P1,2–2s2p3 5So
2 in N II [15].

A-Values—Transition Rates (s−1)
Method Orbitals 5S2–3P1

5S2–3P2 Ratio of A-Values Lifetime (in ms)

ab initio n ≤ 4 43.8 106.5 2.432 6.65
n ≤ 5 46.9 114.8 2.448 6.18
n ≤ 6 49.2 120.1 2.441 5.91

fine-tuned n ≤ 4 52.6 127.9 2.432 5.54
n ≤ 5 51.4 125.6 2.444 5.65
n ≤ 6 50.9 124.1 2.438 5.71

“Converged” 2.44 5.75

Experiment 2.24 ± 0.06 [16] 5.88 ± 0.03 [17]
2.45 ± 0.07 [18]



Galaxies 2018, 6, 77 5 of 12

Our calculations [15] were undertaken using the CIV3 code [8,19]. We found that the mixing
between the odd-parity levels changes as more CSFs are added to the wave functions. In Table 2,
the effects of a systematic improvement in the wave functions is displayed, starting with the inclusion
of possible CSFs with nl orbitals up to n = 4, and then with up to n = 5 and finally n = 6. We also
applied our fine-tuning process, principally to improve the mixing between the odd parity levels. It is
interesting to observe that while the increase in the number of CSFs uniformly increases the transition
rates, the fine-tuned transition rates reduce, and each set seems to be converging to a common value.
Not all comparisons between ab initio and “extrapolated” results lead to such a degree of convergence,
but our experience has found that the fine-tuning process does tend to over-estimate transition rates,
but that the fine-tuned results are much more stable to systematic increase in the CI expansions, and this
gives us increased confidence in the “fine-tuned” results. We also show in Table 2 our estimates of
the convergence of both sets of results. Comparison with experiment can be obtained by using the
transition rates to compute the theoretical lifetime of the upper level and also the ratio of the A-values
of the two transitions contributing to the lifetime. Table 2 shows that there is good agreement with
experiment for both parameters. Thus, Indicators 1 and 3–5 have been used to determine a level of
confidence in the calculated results. We were not able to use Indicator 2. Only the length form of the
transition rate is shown. Drake (1976) [20] showed that the normal dipole length operator is correct
to order α2, α being the fine-structure constant, whereas the corresponding velocity operator would
require additional relativistic corrections to achieve the same level of accuracy. Typically, these are not
included in Breit–Pauli calculations. Instead, the length/velocity agreement for allowed E1 transitions
is normally checked before the Breit–Pauli operators are added to the Hamiltonian.

3. Resolution of Differences between Sets of Data

In the previous section, we discuss the processes and characteristics needed to achieve a good
level of accuracy, at least when only a few levels were involved in the calculation. Below, we consider
the more complicated situation when many, often strongly interacting, levels need to be studied
simultaneously. However, first, we show how systematic calculations can help resolve differences
between conflicting sets of data, whether theoretical or experimental.

As an example, we consider the 3p44p–3p44d transitions in Ar II. The NIST tabulations [7]
quote transition rates (A-values) from two experimental sources, both from around 50 years
ago—Bennett et al. [21], and Rudko and Tang [22]. The problem is that the A-values given by these two
experiments differ considerably. The data from Bennett et al. [21] are quoted in the NIST tabulations,
where possible, but for other transitions, only the data of Rudko and Tang [22] is available.

Recently, new experiments have been undertaken by Belmonte et al. (2014) [23], building on the
earlier work of Aparicio et al. [24]. These new results compare well with Bennett et al. [21], but differ
considerably from Rudko and Tang [22]. Until recently, there were no theoretical results with which
to compare. These were provided by Hibbert (2017) [25], using the CI method together with the
fine-tuning process to improve the accuracy of the oscillator strength calculations. Some comparisons
between calculation and experiment are shown in Table 3, for a representative sample of the transitions.
Our work [25], while not being completely definitive in that length and velocity values differed
typically by up to 10–15%, confirmed the results of Belmonte et al. 2014) [23] and provided an
independent verification of the 10–15% level of accuracy claimed by their most recent experiments [23].
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Table 3. A-values (108 s−1) for 4p–4d transitions in Ar II.

Transition Hibbert [25]

4p 4d Al Av
Reference [23] Reference [21] Reference [22]

4Po
5/2

4F3/2 0.074 0.066 0.086 0.236

4Po
1/2

4F3/2 0.105 0.094 0.13 0.155 0.348

4Po
5/2

4F7/2 0.0031 0.0026 0.002

4Po
5/2

4P5/2 0.625 0.551 0.49 0.52 1.00

4Po
3/2

4P5/2 0.524 0.455 0.43 0.49 0.817

4Po
5/2

4P3/2 0.469 0.421 0.36 0.37 0.627

4Po
3/2

4P1/2 1.18 1.05 1.07 1.1 1.99

4Po
1/2

4P3/2 0.763 0.678 0.60 0.63 1.00

4Po
1/2

4P1/2 0.459 0.405 0.41 0.42 0.733

4Do
3/2

4D1/2 0.258 0.235 0.19 0.269 0.267

4Do
5/2

4D7/2 0.051 0.046 0.049 0.048 0.047

4. Remaining Challenges in the Calculation of Oscillator Strengths

In the earlier sections, we have provided a few examples in which, by systematic inclusion of CSFs,
sometimes in conjunction with the fine-tuning process, it has been possible to reach levels of accuracy
in the calculated oscillator strengths which are sufficient for the needs of those who use this data in
their modelling of, for example, stellar atmospheres or the determination of elemental abundances in
stars or the interstellar medium. However, these examples required just a small number of levels to be
calculated simultaneously, even though in some cases they interact strongly. While it is true that the Ar
II work did require a larger number of levels to be considered, many of them were spectroscopically
fairly pure: they did not exhibit strong interactions. However, difficulties arise when a much larger
number of strongly interacting levels have to be included in the same calculation, either because they
do interact strongly, or because they are quite high-lying in energy and all levels with lower energy
also need to be included in the calculation. Ions with open d-shells are particularly challenging, and we
consider now some calculations which have proven and continue to prove difficult for theorists in
their attempts to provide oscillator strengths of sufficient accuracy, and with an accuracy which can
be substantiated.

4.1. The 2507.552, 2509.097 Å Lines in Fe II

These two lines are prominent in the spectrum of η Carinae (Verner et al. 2002) [26]. Notionally,
they correspond to the transitions [7]

λ Transition

2507.552Å c 4F7/2–x 6Fo
9/2

2509.097Å c 4F7/2–w 4Go
9/2

.

One would expect the former, being an intercombination line, to have a small oscillator strength,
while the latter, being an allowed line, would be expected to have a comparatively large oscillator
strength. On this assumption, Verner et al. (2002) [26] found they could not properly model this part
of the spectrum, but could do so if the oscillator strengths were chosen to be equal.

The oscillator strengths of the two transitions have been calculated by a number of researchers,
as shown in Table 4.
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Table 4. Oscillator strengths of the 2507, 2509 Å lines in Fe II.

Source 2507.552 2509.097 Sum

Kurucz [27] 0.001 0.297 0.298
Raassen and Uylings [28] 0.233 0.045 0.278
Corrégé and Hibbert [29] 0.138 0.136 0.274

The results of Kurucz (2010) [27] fit the expected pattern of allowed and intercombination lines.
Those of Raassen and Uylings (1998) [28] do not; indeed, their values reverse the expected size order.
Our own calculations (Corrégé and Hibbert) (2005) [29] were completed, though not published, before
we became aware of the proposal of Verner et al. [26] to abandon the data already published at that
time and adopt equal oscillator strengths for the two transitions in their modelling. We sought to
understand how it was that our calculated oscillator strengths were indeed of comparable size, contrary
to expectations but in accord with the needs of Verner et al. [26]. We notice that the total oscillator
strength from these two transitions is quite similar in all three sets of results. This suggests that we are
seeing a different distribution of the total oscillator strength in each of the three calculations. We found
that the A-values were entirely dependent on the proportion of 4G symmetry in the upper states.
The two transitions have a common lower level, so that the upper level of 2507Å is 90,067.4 cm−1,
while the upper level of 2509Å is 90,042.8 cm−1.

In Table 5, we show the main percentage compositions given by Corrégé and Hibbert (2005) [29]
and those of Raassen and Uylings [28]. During our studies of these transitions, it became apparent that
while the upper levels did exhibit strong configuration mixing, a third main component, corresponding
to the 3d65p 4Fo configuration, also interacted strongly. It also became apparent that it was the size of
the component of 4p 4Go in the wave function of each of the three levels that determined the size of the
oscillator strengths of the transitions. It can be seen in Table 5 that our fine-tuning process, following
on from an already extensive ab initio calculation, resulted in the two upper levels of these lines having
almost equal components of the 4Go configuration, resulting in our two calculated oscillator strengths
being almost equal.

Table 5. Comparison of mixings in J = 9/2 level in Fe II.

Level (cm−1)
Percentages

4p 4Go 5p 6Fo 5p 4Fo

Corrégé and Hibbert [29]
90,042.8 43 29 13
90,067.4 41 27 16
90,386.5 25 65

Raassen and Uylings [28]
90,040.5 13 36 41
90,072.7 76 9 8
90,407.2 48 47

Corrégé and Hibbert [29], fine-tuned to Raassen & Uylings [28]
90,040.5 15 18 63
90,072.7 78 4 11
90,407.2 74 21

Our fine-tuning process allowed us also to fine-tune to the energy levels given by Raassen and
Uylings. In doing so, we found fairly good quantitative agreement with the percentage compositions
which Raassen and Uylings obtained, as displayed in Table 5.

On reflection, we were perhaps rather fortunate in arriving at results which, unbeknown to us at
the time, fitted the requirements of Verner et al. [26]. We would wish to highlight that, for most of
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the transitions which both Kurucz and Raassen and Uylings studied, their results are of good quality
and can be used with confidence. In this instance though, the upper levels were so close in energy
that small modifications to the fine-tuning corrections led to very different mixings and therefore
oscillator strengths. In all three sets of results, a large-scale calculation had been undertaken, with the
wave functions of many levels having to be determined simultaneously. That always leaves open the
possibility that for a small proportion of the wave functions, when CI mixing is particularly strong,
the mixing coefficients can be wrong. Oscillator strengths determined using heavily mixed wave
functions need to be treated with caution. In particular, extrapolation such as our fine-tuning process,
needs to be undertaken very carefully, moving from the ab initio calculation in small steps.

4.2. Correlation in Open 3d Subshells

The capture of the effect of electron correlation in wave functions is generally a slowly-converging
process. This is particularly true in the case of open 3d subshells, as found in iron group elements,
and therefore of considerable importance when the wave functions are used in the calculation of
oscillator strengths of transitions of astrophysical importance. The key configurations are of the form
3dnml, 3dn+1, 3dn−1mlkl′. Challenges in calculations arise because both the radial dependence of the
3d orbitals and also the level of correlation in the 3d subshell are state-dependent.

The state-dependency of electron correlation implies that even for a large-scale calculation, there is
some level of inaccuracy in the calculated energy levels, and therefore in the determination of oscillator
strengths in an ab initio calculation. The scale of such calculations is so extensive that undertaking
a systematic enlargement of the CI expansions becomes a prohibitive exercise, and so alternative
extrapolation procedures, such as fine-tuning or the scaling of Slater integrals [12], is then a better
approach, even though (as we have seen) much care has to be exercised in using these extrapolation
processes, as they can lead to erroneous results.

Difficulties are also encountered by the state-dependence of the radial functions. For example,
in their studies of E1 Fe II transitions, Corrégé and Hibbert (2005) [29], as well as Deb and Hibbert
(2014) [30] found it better to choose a 3d function optimised on the energy of the ground 3d64s 6D
state, whereas Deb and Hibbert (2010a,b,2011) [31–33], in studying forbidden transitions involving
3d7 levels, found that much better results could be obtained by optimising the 3d function on the
3d7 4F state. This is possible when a calculation is limited to certain types of transition, or even to
a very small number of transitions. On the other hand, if a comprehensive study of both allowed
and forbidden transitions is to be undertaken, the use of orthogonal orbitals (and therefore a single
choice of 3d function for all transitions) requires the introduction of many CSFs to compensate for the
non-optimal choice of radial functions for some of the levels. Ideally, non-orthogonal orbitals would
allow different 3d functions to be used for different occupancies of the 3d subshell arising within the
same calculation, and this could profitably be pursued to reduce the overall number of CSFs required.

4.3. Open d-Subshells with Differing Seniority

Open 3d-subshells with between three and seven electrons can have more than one level with
the same LSJ combination, but differing by their seniority. For example, for the 4F3.5 levels in Fe II,
3d64s have two distinct levels, which are usually written either as [7] 3d6(3F1)4s and 3d6(3F2)4s, or as
3d6(3

2F)4s and 3d6(3
4F)4s, respectively. In the latter notation, the subscripts denote the seniority of the

3d-subshell. Even in a large-scale calculation, it is difficult to achieve a calculated energy difference
between these two 4F3.5 levels which agrees with experiment.

If we include just these two configurations, the Hamiltonian matrix is of the form

H =

(
a c
c b

)
(2)
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The eigenvalues and eigenvectors depend solely on the magnitudes of |a− b| and c. We find
that for these 4F3.5 levels in Fe II, in atomic units, |a− b| = 0.0915, c = 0.0643, so that the eigenvectors
are respectively (

0.8887
0.4585

)
and

(
−0.4585

0.8878

)
with the eigenvalue difference 0.1579, compared with the experimental value of 0.1248.
With fine-tuning, the smallest eigenvalue difference achievable is 2|c| = 0.1286, so that this simple
model cannot achieve agreement with experiment.

However, when we use the radial functions listed by Deb and Hibbert (2014) [30] in a large-scale CI
calculation, and then apply our fine-tuning process, we can at least obtain agreement with experiment.
Specifically, we find that the eigenvector corresponding to the lower of the two eigenvalues and
dominated by these CSFs in an ab initio calculation has the following components for the two
principal configurations (

−0.4789
0.8446

)
with the two eigenvalues differing by 0.1335. The fine-tuning process results in the lower eigenvalue
having mixing coefficients with (

−0.5303
0.7998

)
for the two principal CSFs, and the two eigenvalues then differ by 0.1248, in agreement with experiment.
Fine-tuning results in similar agreement with experiment for some other mixings between levels
differing only in the seniority of the 3d subshell.

However, it is not so in every case. Another situation where there is strong mixing between levels
differing only in the seniority of the 3d subshell occurs in the case of 3d6(3P1)4s 4P1.5 and 3d6(3P2)4s
4P1.5 of Fe II. In the terminology used above, we found that, in atomic units, |a − b| = 0.0037 and
c = 0.0785, so that in an ab initio calculation with just these two CSFs, the eigenvectors are(

0.7852
0.6192

)
and

(
−0.6192

0.7852

)

with the eigenvalue difference 0.1616, compared with the experimental value of 0.1262.
With fine-tuning, the smallest eigenvalue difference achievable is 2|c| = 0.1570. The large-scale CI
calculation, using the same orbitals as previously, gives the eigenvector components of these two CSFs
for the lower of the two eigenvalues as (

−0.6218
0.7128

)

with the two lowest eigenvalues differing by 0.1393. Fine-tuning did not really help, since, even with
equal components of the two principal configurations, we found an eigenvalue difference of 0.1332.

Thus, even though the same orbitals and CSFs were able to provide results in good agreement
with experiment for some transitions [29], it would seem that, as yet, insufficient electron correlation
has been captured in these calculations to give us confidence in the results. We have considered the
inclusion of another range of orbitals for each of l = 0,1,2,3, but this would lead to a large number
of additional CSFs. Instead, we noticed the absence of a 5g orbital: a 3d→5g substitution could be a
significant correlation effect, though normally small for many wave functions. Accordingly, we added



Galaxies 2018, 6, 77 10 of 12

CSFs of the form 3d54s5g and 3d44s5g2 to our earlier calculations. This resulted in the components of
the lower eigenvalue changing to (

−0.6014
0.7535

)
with the two lowest eigenvalues differing by 0.1329. This ab initio energy difference is then marginally
better than the best possible fine-tuned difference without the 5g orbital. However, the introduction of
5g does not entirely solve the difficulty, because we find that the smallest fine-tuned energy difference
is 0.1297 a.u., still higher than the experimental value of 0.1262. Clearly, further correlation CSFs would
need to be introduced to bring these closer together.

There are of course other methods of extrapolating ab initio results. One such method is
customarily employed when using the Cowan code [12]. Specifically, several radial integrals may be
scaled by appropriate factors, notably the two-electron Slater integrals which are scaled customarily
by factors of 0.80 to 0.85. However, both a− b and c involve only the Slater integrals F2(3d,3d) and
F4(3d,3d). If a common scaling parameter is used, the mixing coefficients are unchanged by this scaling.
This process could indeed result in agreement with energy separations between levels differing only in
the seniority of the 3d subshell, which our fine-tuning could not completely achieve. However, we saw
above that, when additional correlation CSFs are used instead, the mixing coefficients do change.
Hence, although the energy separations are in agreement with experiment, the mixing coefficients may
still contain inaccuracies.

5. Concluding Remarks

What are we to make of this? We, along with quite a number of other researchers, have been very
successful in obtaining accurate oscillator strengths of many transitions of astrophysical significance.
Where possible—that is, where the calculations do not become prohibitively large—systematic ab
initio calculations are the most reliable, and accuracy which is sufficient for astrophysical modelling
has been achieved in a large number of cases. However, for a number of reasons, this is not always
possible. One reason is the size of the calculation, although this becomes more possible as computer
power increases. Another, more significant, reason is the absence of some experimental energy levels
in the literature, The spectrum of Fe II is a case in point. The work of Nave and Johansson [34]
made great strides in extending the number of known levels, compared with previous listings.
However, many gaps remain. Even some of the levels of 3d64s or of levels arising from other low-lying
configurations are missing. Certainly, fine-tuning is an important though not exact tool in improving
the accuracy of ab initio calculations. However, without experimental energy levels, it cannot be
undertaken reliably (although one can make intelligent guesses as to the size of the corrections needed).

There is also a temptation for theorists to undertake large-scale calculations of many transitions
simultaneously, for that is the need of users. However, it must be stressed that, while it may be possible
to provide some sort of overall assessment of the level of accuracy of the results, the same degree
of accuracy cannot be guaranteed for every transition in the ensuing (usually large) set of oscillator
strengths, even if it might be valid for many of them.

The best way for making progress is for providers (both theorists and experimentalists) and users
of atomic data to work together, so that, if users find published results which appear not to fit, in their
analysis of observational data, with the use of other atomic data, then this can be drawn to the attention
of the providers of data, who can then try to focus on the offending transitions and try to improve the
accuracy of their data.
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