
galaxies

Article

Instrumentation and Future Missions in the
Upcoming Era of X-ray Polarimetry

Sergio Fabiani ID

INAF-IAPS, via del Fosso del Cavaliere 100, 00133 Rome, Italy; sergio.fabiani@iaps.inaf.it;
Tel.: +39-06-4993-4450

Received: 31 January 2018; Accepted: 12 April 2018; Published: 11 May 2018
����������
�������

Abstract: The maturity of current detectors based on technologies that range from solid state to gases
renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to
improve the performance of polarimeters as well as to produce more detailed theoretical predictions.
We will introduce the basic concepts about measuring the polarization of photons, especially in
the X-rays, and we will review the current state of the art of polarimeters in a wide energy range
from soft to hard X-rays, from solar flares to distant astrophysical sources. We will introduce
relevant examples of polarimeters developed from the recent past up to the panorama of upcoming
space missions to show how the recent development of the technology is allowing reopening the
observational window of X-ray polarimetry.
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1. Introduction

X-ray polarimetry still remains nowadays a vastly unexplored field in astronomy, but the recent
development of new technologies will allow us in a near future to deeply observe many astrophysical
sources with measurements with high significance level. Despite imaging, spectroscopy and timing
being well-developed techniques also in X-ray astronomy, polarimetry remains an observational tool
that is less advanced with respect to the other wavelengths. However, many emission processes and
physical interactions involve the production of polarized photons also in the X-rays.

In this paper, the science goals of X-ray polarimetry are briefly introduced in Section 2. The basic
concepts of polarimetry at high energy and the typical relevant detector systematics are discussed in
Sections 3 and 4, respectively. In Section 5, the polarimetry techniques employed in X-ray astronomy are
discussed in detail as well as the related instrumentation and some relevant polarimetric missions that
have recently launched, are scheduled for launch or in assessment phase.

2. Science Goals of X-ray Polarimetry

Many physical processes are responsible for the polarization of X-rays; therefore, polarimetry is a
powerful tool to investigate the physics and the geometry of different families of astrophysical sources.
Polarimetry adds the degree and the angle of polarization to the space of observable parameters
allowing one to add information useful to remove degeneracies in source models and to distinguish
among different types of these.

The processes of particle acceleration are among the most relevant phenomena responsible for
the emission of polarized X-rays. The magnetic field plays a crucial role in the particle acceleration,
depending on its turbulence level and reconnection events. The knowledge of the magnetic field’s
geometry and strength is useful to place constraints on the parameters of the models of acceleration
mechanism. Synchrotron radiation [1] is the emission process fed by particle acceleration in
astrophysics sources like Pulsar Wind Nebulae (PWNe) that originate from the interaction of the
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pulsar magnetic field and the relativistic wind with the surrounding Supernova Remnant (SNR) [2,3].
They are efficient particle accelerators [4,5] and emit synchrotron radiation in the X-ray band. The Crab
Nebula is the only astronomical source with a high confidence level X-ray polarimetric measurement of
19.2± 1.0% [6]. Another class of particle accelerators are Young Supernova Remnants (SNRs) [7–9] in
which accelerated electrons radiate via synchrotron radiation along shock fronts, producing emitting
filaments. Particle acceleration is responsible also for feeding in the physics of jets (both in galactic
and extragalactic sources). Among Active Galactic Nuclei (AGN), blazars are powered by an efficient
accretion onto a supermassive Black Hole (BH) of highly energized and magnetized plasma [10].
The lower energy peak in their Spectral Energy Distribution (SED) is due to synchrotron radiation and
can reside in the X-ray, the optical or the IR energy bands. The physics of jets and their relationship
with the disc and the corona comprise a key topic for polarimetry when studying galactic sources like
micro-quasars [11,12]. Scenarios with Comptonization of thermal/quasi-thermal disc photons in a hot
electron-positron corona compete with synchrotron models of a relativistic jet.

The ejection of a highly-collimated high-speed jets of plasma should be the cause responsible for
the emission of Gamma Ray Bursts (GRB). The mechanisms of the production of the prompt
radiation, the energetics of explosions and the role of magnetic fields remain largely unknown.
Particle acceleration is also responsible for the emission of solar flares originating from magnetic
reconnection. Accelerated electrons emits via non-thermal bremsstrahlung [13] and their emission
can be highly polarized [14].

Another field of investigation for X-ray polarimetry is comprised of sources, the emission of which
originates in strong magnetic fields that channel matter accretion along field lines, creating aspherical
X-ray emission and scattering geometries. X-ray polarimetry is able to probe the origin and structure of
the emission from magnetized White Dwarfs (WD) [15,16] and Neutron Stars (NS) in binary systems.
In accreting X-ray pulsars, plasma coupling with a strong magnetic field (1012−13 G) is responsible for
the high polarization of X-rays. The emission from compact sources can be polarized due to the
different opacity of the plasma to the different states of the polarization [17–19]. Polarimetry in X-rays
is also a valuable tool to study vacuum polarization and birefringence through extreme magnetic
fields [20–22]. In accretion-powered millisecond pulsars (AMs) [23–25], the hard power-law component
in the energy spectra is likely due to Comptonization in a radiative shock surface of the thermal
emission from a hot spot on the neutron star surface. The scattered radiation should be linearly
polarized with the polarization degree and angle varying with the phase [26]. X-ray polarimetry offers
also the possibility to study rotation-powered pulsars [27], the X-ray emission of which is expected to
be highly polarized, as well as to study ultra-magnetized neutron stars, such as magnetars [28–30].

Scattering in aspherical geometries is responsible for polarizing radiation. This is the case of
accreting plasmas in disks, blobs and columns [17,31,32]. This process is responsible, for example for
the polarization of the emission in binary systems (XRBs) and AGNs [33]. Comptonization arises from
accretion-disk-fed binary sources in which disk photons are Compton scattered by a hot corona [34,35].
Polarimetry can put constraints on the corona and on the inclination angle of the disk [36]. Moreover,
also the fraction of the primary emission reflected by the accretion disk itself (Compton Reflection
component (CR)) is expected to be highly polarized depending mainly on the inclination angle of the
disk [37]. The innermost regions of radio-quiet AGN can be seen as scaled-up versions of galactic black
hole systems with the hard Comptonization component produced from the thermal UV/soft-X-ray
disk component. Moreover, in addition to the accretion disk, other reflecting regions are present,
such as the dusty torus. Reflection is also the process responsible for the emission from molecular
clouds as for example Sgr B2, which is probably reflecting the past emission from the central black
hole source of our galaxy [38–41], which should therefore have undergone a phase of strong activity
about three hundred years ago.

Different fields of fundamental physics can be investigated by means of X-ray polarimetry.
Light bending around BHs is a general relativity effect responsible for the rotation of the polarization
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vector, which is particularly relevant in strong fields [42–46]. Furthermore, new physics, such as
Quantum Gravity (QG) [47] and the search for axion-like particles [48] would be possible.

3. Polarimetry Basics

A polarimeter is a detector that analyses different angular directions and detects photons with
respect to these directions. The current technology available for X-ray polarimetry allows to deal with
the linear polarization only. If the radiation is not polarized every angular direction has the same
probability, thus the number of photons detected, as a function of the angular directions, is the same
and the detector response is flat (see left panel of Figure 1). If the radiation is polarized one angular
direction will be more probable and a cos2 modulation arises (see right panel of Figure 1). The cos2

modulation depends on the dipole interaction between the photon and the interacting electron of
an atom in the sensitive volume of the polarimeter. The modulation function can be defined as in
Equation (1), where A is the flat term and B is the modulated term:

N(φ) = AP + BP cos2(φ− φ0) (1)

Figure 1. On the left panel: General view of the response of a polarimeter. The detector response to
unpolarised radiation is flat since all the angular directions have the same probability. On the right
panel: The detector response to the polarized radiation is modulated since one angular direction is
more probable.

The modulated fraction of the detector response is given by the modulation factor µ that is defined
for 100% polarized radiation:

µ =
Nmax

100% − Nmin
100%

Nmax
100% + Nmin

100%
=

B100%

2A100% + B100%
(2)

where Nmax
100% and Nmin

100% are the maximum and minimum number of photons detected in the angular
bins of the modulation histogram for 100% polarized radiation. It is a normalization term needed to
derive the polarization degree P for radiation with an unknown polarization:

P =
1
µ

BP
2AP + BP

(3)

The performance of different polarimeters can be compared by means of the Minimum Detectable
Polarization (MDP), which is defined as the minimum polarization that can be detected at a confidence
level of 99% [49,50]:

MDP(99%) =
4.29
µR

√
R + B

T
(4)
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In this equation R is the rate of the source, B is the background and T is the observation time.
A signal, with a modulation corresponding to a polarization lower than the MDP, is compatible with a
statistical fluctuation and therefore, no positive detection of a polarization can be claimed.

With some trigonometry it is possible to find a more convenient formula to fit the modulation
curve on the histogram of the angular directions with respect to Equation (1). It is given by [51]:

N(φ) = N0 · (1 + a cos(2(φ− φ0))) (5)

where the modulation factor is directly derived. As in Equation (3) the polarization degree is given by:

P =
a
µ

(6)

The quality factor Q is a parameter useful to compare the sensitivity of different polarimeters.
It is derived from the MDP (see Equation (4)) by assuming a source dominated observation (B ' 0):

MDP(99%) ∝
1

µ
√

ε

1√
F
=

1
Q

1√
F

(7)

where ε is the detector quantum efficiency and F is the source flux. The quality factor is:

Q = µ
√

ε (8)

Obviously, the formalism introduced so far is compatible with Stokes parameters, which are
typically used for those wavelengths for which the intensity of the radiation is used instead of single
photon counting. A comprehensive treatment of the relation between the typical high energy formalism
and the Stokes parameters is given in [50,51].

4. Polarimeters and Systematics

The detector geometry is crucial for polarimetry, more than for other observational techniques.
A not well conceived geometry can originate large systematics, that need to be controlled. For example,
a hexagonal geometry of the sensitive elements (pixels or scintillating bars) is preferable with respect to
a squared geometry, due to the π/2 spurious modulation introduced. The rotation of the polarimeter,
with respect to the line of sight, may be used to control this effect. However, to rotate the detector is not
always possible in the mission design. The scattering and photoelectric polarimeters, the signals of
which depend on the azimuthal response, show a spurious modulation if the incoming beam of
radiation is inclined with respect to the detector axis (the azimuthal symmetry is broken). This effect is
more relevant for larger inclinations and it is not negligible for an inclination of some degrees. Typically,
a correction is applied by comparing the off-axis modulation curve with the on-axis one [52]. However,
a theoretical treatment of this effect, with the correction to apply, is described in [53].

5. Polarimeter Techniques and Instrumentation

In the X-rays it is possible to identify three different energy bands in which different physical
processes can be exploited to perform polarimetry (see Table 1). The diffraction on crystals, especially
in the past, and currently on multilayer mirrors, are used below 1 keV. At higher energies, up to some
tens of keV, the photoelectric effect is exploited nowadays, while Thomson scattering was previously
used. The Compton scattering instead is exploited in the 100 keV energy range.
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Table 1. Polarimetry techniques and scientific goals for different energy bands.

<1 keV 1–10 keV >10 keV

Polarimetry techniques •Diffraction •Photoelectric effect,
•Thomson scattering
(from few keV)

•Photoelectric effect
(up to tens of keV),
•Thomson scattering
(up to tens of keV),
•Compton scattering
(from few tens of keV)

Scientific goal Sources

Acceleration
phenomena

PWN yes
(but absorption) yes yes

SNR no yes yes

Jet (microquasars) yes
(but absorption) yes yes

Jet (blazars) yes yes yes

Solar flares difficult
(but thermal & lines)

difficult
(but thermal & lines) yes

Emission in strong
magnetic field

WD yes
(but absorption) yes difficult

AMs no yes yes

X-ray pulsator difficult yes
(no cyclotron?) yes

Magnetar yes
(better) yes no

Scattering in
aspherical geometries

Corona in XRB
and AGN difficult yes yes

(difficult)

X-ray reflection
nebulae no yes

(long exposure) yes

Fundamental physics

QED (magnetar) yes
(better) yes no

GR (BH) no yes no

QG (blazars) difficult yes yes

Axions
(blazars, clusters) yes? yes difficult

5.1. Bragg Diffraction Polarimeters

In a crystal, with lattice spacing d, diffraction occurs for an energy E at an angle θ, if the following
equation is verified:

E =
nhc

2d sin(θ)
(9)

where n is the diffraction order, h is the Planck constant and c is the speed of light. This formula
has to be verified in a very narrow energy band (few eV), thus mosaic crystals or bent crystals
assemblies are typically used to increase the angle of acceptance and, therefore, the energy band.
The incoming radiation beam can be thought as comprising two components: the π component,
which lies parallel to the incidence plane, and the σ component, which is perpendicular to this plane.

If the diffraction angle is 45◦ only the σ component survives and the out-coming beam is 100%
polarized, orthogonally with respect to the incidence plane, as shown in Figure 2. By rotating the
crystal around the beam axis, the flux of the out-coming radiation is modulated, since the polarized
component is alternatively the σ and π component (the modulation period is twice the rotation
period). However, the Bragg formula (see Equation (9)) has to be verified to diffract the polarized
component. Therefore, the spacing d is chosen such that the incidence angle θ, for the specific energy,
is close as possible to 45◦. This technique is extremely inefficient to measure the polarization of
continuous energy spectra, but allows to analyse photons at energies starting from less than 1 keV.
A detailed description of the Bragg diffraction on crystals, for polarimetry, is given in [54]. Currently,
a large technological effort is focused in developing multilayer mirrors to exploit the Bragg diffraction.
Multilayer mirrors allow, with respect to crystals: (1) to choose, to some extent, the energy of interest;
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(2) to shape the mirror as a paraboloid and to focus the incident beam, thus to maximize the signal to
noise ratio.

In Table 2 relevant Bragg diffraction polarimeters and missions planned are listed.

Figure 2. Schematic representation of Bragg diffraction at 45◦ on a crystal. The radiation component,
which is polarized perpendicularly with respect to the plane of incidence, is efficiently diffracted,
while the radiation component that have a parallel polarization with respect to this plane is absorbed
by the crystal.

5.1.1. SOLPEX: SOLar Spectroscopy and Polarimetry EXperiments for Solar Flares

Hard X-rays are well suited to perform polarimetry of solar flares, since at energy larger than
about 15–20 keV, a highly polarized component of non-thermal Bremsstrahlung [14] is dominant in the
energy spectra, with respect to the thermal one [55]. Moreover, at energy lower than 10 keV, there is a
large component of emission lines from hot highly ionized elements [56]. However, the non-thermal
component can be large even at low energy in the early impulsive phase of flares.

The low energy band is the target of B-POL (Bragg POLarimeter) in the SOLPEX experiment.
It will be mounted on the KORTES platform, on board the Nauka Russian module, on the International
Space Station (ISS) [57]. The launch of the KORTES platform to the ISS is expected in the period
2022–2023 [58]. B-POL comprises a Si(111) bent crystal (85.5 mm × 31 mm) at the Brewster
angle of ∼45◦. The bending radius of 610.0 mm allows a spectral range of 3.940–4.505 Å. The readout
detector is a Charge Coupled Device (CCD). The polarimeter system rotates at 1 rev./s to ensure the
measurement of the polarization. The ISS environment allows an easy access and maintenance and
essentially no power limitation. However, the inclined orbit causes an eclipse every 90 min. Moreover,
due to the ISS motion, only few minutes of uninterrupted observation per orbit are possible.

5.1.2. LAMP: Lightweight Asymmetry and Magnetism Probe

Multilayer mirrors were proposed in the early 2000s for the PLEXAS polarimeter [59] to perform
polarimetry by exploiting the Bragg diffraction and focusing soft X-rays (250 eV). Recently, this
idea had a new boost with the project of the LAMP polarimeter. It is a micro-satellite mission
concept for astronomical X-ray polarimetry, which is currently under an early assessment phase
in China. The scientific goals comprise the study of the thermal radiation from the surface of pulsars
and the synchrotron radiation produced by relativistic jets in blazars. X-ray photons at 250 eV are
focused by a segmented paraboloidal multilayer mirror with a collecting area of about 1300 cm2.
A position sensitive detector is placed at the focal plane [60]. The reflection angle varies along the
mirror and the thickness changes to match the Bragg law for the 250 eV photons anywhere on the
mirror. The focal plane detectors, that match the LAMP goals, are both a CCD or the Gas Pixel Detector
(GPD) [61,62] used as a simple imaging detector. Because of the low-cost mission profile based on a
micro-satellite, the GPD is preferable with respect to the CCD.
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5.1.3. REDSoX: Rocket Experiment Demonstration of a Soft X-Ray Polarimeter

The REDSoX polarimeter [63,64] is a demonstration experiment aimed to perform polarimetry
by means of multilayer laterally graded mirrors [65]. The scientific goals of the REDSoX polarimeter
comprise the measurement of the polarization of pulsars, AGNs, jets in binary systems and discs.
The X-ray polarization is measured by means of a chain which comprises critical angle transmission
(CATs) gratings that disperses the radiation by matching the Bragg condition at the first order of
laterally graded multilayer mirrors (LGMLs) that illuminate CCD detectors.

Table 2. Bragg diffraction polarimeter experiments and missions planned.

Name Time Schedule Focal Plane F.O.V En. Range Science Obj. References

SOLPEX launch 2022–2023 no 2× 2 arcmin2 3.940–4.505 Å solar flares [57,58]

LAMP assesment yes few arcmin 250 eV pulsars thermal emission,
jet blazars [60]

REDSoX development yes pointing jitter . 15 arcsec 0.2–0.8 keV
AGNs and binaries jets
and discs, Isolated NSs
and pulsars

[63–65]

5.2. Photoelectric Polarimeters

When a photon is absorbed via photoelectric effect by an atom, a photoelectron is emitted.
The direction of emission depends on the differential cross-section defined as [66]:

dσph

dΩ
=

σtot
ph

4π

[
1 +

b
2

(
3 sin2(θ) cos2(φ)

(1 + β cos(θ))4 − 1

)]
(10)

where θ and φ are the photoelectron polar and azimuthal angles of emission, respectively (see Figure 3).
The electric vector of the absorbed photon defines the φ = 0 angular direction in Figure 3.
The photoelectron is emitted with a higher probability parallel to this direction. The parameter b is
called orbital asymmetry factor and it is equal to 2 for s orbitals, while it is less than 2 for the other cases.
In the first case, the constant term vanishes and only the cos2(φ) modulated term remains. Therefore,
the photo-absorption due to spherical orbitals, is a perfect polarization analyser. A gas detector is
suitable to perform polarimetry by exploiting the photoelectric effect, because the photoelectron track
length in gas is in the range of millimetres for absorbed photons of energy from 1 keV up to some
tens of keV.

Figure 3. Scheme of the photoelectric effect absorption. See Equation (10).
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Two different technologies are available to perform polarimetry by exploiting the photoelectric
effect. The schematic views of these two kinds of detectors are shown in Figures 4 and 5. They are the
Gas Pixel Detector (GPD) [61,62] (developed in Italy by INFN and INAF-IAPS research institutes) and
the Time Projection Chamber (TPC) [67] (developed in USA by the GSFC). In both cases, the X-ray
photon is absorbed in a gas cell and the ionization charges, produced by the photoelectron, are drifted
and multiplied by a Gas Electron Multiplier (GEM) and, eventually, read out by an anodic plane.

Figure 4. The GPD polarimeter concept design.

Figure 5. The TPC polarimeter concept design.

In the GPD the readout plane is a finely subdivided pixel plane, while in the TPC the readout is
performed by means of a strip detector. The other relevant difference between these two polarimeters is
given by the orientation of the readout plane with respect to the optical axis. In the GPD the incoming
photon direction is perpendicular to the readout plane. Therefore, the readout plane is also parallel to
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the plane of maximum probability of emission of the photoelectrons (θ = π/2 in Equation (10)).
This geometry allows to make the image of the tracks along their extension and the ionization charges
are affected by the same drift field (given the angle θ) for all the φ angles from 0 to 2π.

Differently with respect to the GPD, in the TPC the incoming photon direction is parallel to the
readout plane. The ionization charges are drifted orthogonally with respect to the optical axis and the
detector quantum efficiency can be increased simply by making a deeper gas cell. Moreover, its length
does not affect the charge diffusion along the drift. On the contrary, in the GPD, a thicker gas cell
implies a larger diffusion and ionization charge dispersion. However, the TPC geometry is intrinsically
asymmetric, since for θ ∼ π/2 (see Equation (10)), photoelectrons are emitted towards the GEM or
in the opposite direction. This asymmetry produces systematics which can to be mitigated by the
rotation of the polarimeter and by a careful timing analysis on the track readout signals (ionization
charges produced closer to the GEM give rise to a signal earlier with respect to the other ones as shown
in the bottom panel of Figure 5).

The TPC design was proposed on board GEMS [68–72] and PRAXyS [73–76] mission proposals.
The GPD design was proposed in the past in many mission proposals (the most relevant are:
IXO [77], NHXM [78], POLARIX [79], ESA Medium class mission XIPE [80]) and currently in the
IXPE mission [81,82] approved by NASA and eXTP mission [83] selected as background mission1 by the
Chinese Academy of Sciences.

In Table 3 the missions scheduled for a launch which host photoelectric X-ray polarimeters
are listed.

5.2.1. IXPE: Imaging X-ray Photoelectric Polarimeter

The GPD is currently the polarimeter on board the IXPE mission, selected by NASA in the
framework of the Explorer missions, which is scheduled for the launch in 2021 [81,82]. IXPE is a joint
mission between NASA and ASI. The focal plane comprises three GPD polarimeters provided by the
Italian collaboration. The GPD on board IXPE allows to perform imaging spectro-polarimetry due to the

capability to measure the interaction point, the ionization charge (energy resolution
∆EFWHM

E
' 16%

at 5.9 keV) and the direction of emission of the photoelectrons (φ azimuthal angles). This is obtained
by means of the analysis of the statistical momenta of the ionization charge distribution of each track
projected onto the readout plane. A detailed description of the current state of development of the GPD
for the IXPE mission is given by [84–86]. The three GPDs on board IXPE are sensitive in the 2–10 keV
energy range and they are filled with a gas mixture which comprises 20% He and 80% Dimethyl Ether
(DME) at 1 bar of pressure in a 1 cm thick gas cell. The active area is 15× 15 cm2 and it is subdivided
in 300× 352 pixels with 50 µm of pitch. The total effective area of the three telescopes is 854 cm2

at 3 keV, the angular resolution is ≤30 arcsec and the field of view is 12.8× 12.8 arcmin. IXPE will
conduct precise X-ray polarimetry for several categories of cosmic sources, ranging from neutron stars
and stellar-mass black holes, to SNRs and AGNs. For the brighter and extended sources, such as
PWNe, SNR and AGN large scale jets, IXPE will perform X-ray polarimetric imaging for the first time.
For example, the imaging capability will allow to obtain the polarimetric map, with ≤30 arcsec angular
resolution, of the Crab nebula, improving the result obtained in the ’70 by OSO 8, which measured the
mean polarization of the entire source [6].

1 A background mission in the “Strategic Priority Space Science Program” of the Chinese Academy of Sciences is a project
selected to be launched that undergoes an assessment phase. The launch time schedule is adjusted depending on the level of
technology readiness reached by the project during the assessment.
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Table 3. Photoelectric X-ray polarimetric missions planned.

Name Time Schedule Focal Plane F.O.V En. Range Science Obj. References

IXPE launch 2021 yes 12.8× 12.8 arcmin2 2–10 keV
BH, NSs isolated
and accreting, AGNs,
PWNs, SNRs, Sgr B2

[81,82,84–86]

eXTP launch before 2025 yes 12× 12 arcmin2 2–10 keV
BH, NSs isolated
and accreting, AGNs,
PWNs, SNRs, Sgr B2

[83]

5.2.2. eXTP: Enhanced X-ray Timing and Polarimetry Mission

The GPD is also the polarimetric detector on board the eXTP mission [83]. The launch is planned
earlier than 20252. The primary goals of eXTP comprise the study of the equation of state of matter
at supra-nuclear density, Quantum Electro-Dynamics (QED) effects in highly magnetized star and
accretion in the strong-field regime of gravity. eXTP exploits simultaneous spectral-timing observations
(Silicon Drift Detector (SDD)) in the 0.5–30 keV energy range and polarimetry (GPD) in the 2–10 keV
energy range. eXTP is a mission selected as background mission in the “Strategic Priority Space Science
Program” of the Chinese Academy of Sciences since 2011. The mission consortium comprises Chinese,
European and USA institutions. In the updated configuration eXTP comprises 4 telescopes for X-ray
polarimetry in the 2–10 keV energy band (GPD 20/80 He/DME at 1 bar of pressure, 1 cm thick gas cell).
The effective area of the telescopes is 500 cm2 at 2 keV with a field of view of 12 arcmin and an angular
resolution better than 30 arcsec.

5.2.3. Photoelectric Polarimetry with the GPD towards Hard X-rays

At energies larger than 10 keV, to increase the quantum efficiency of the GPD, a heavier gas
mixture (for example using Ar in place of He) and a thicker absorption gap are needed. In Figure 6,
the quality factor (see Equation (8)) is reported for the low and high energy configurations of the GPD.
The peak of the quality factor represents the peak of the sensitivity of the polarimeter. This peak is
around 3 keV for a He based, or only DME, gas mixtures, at a pressure of 1 bar with an absorption
gap of 1 cm. An Ar based gas mixture at 3 bar of pressure with an absorption gap of 3 cm shows the
sensitivity peak at about 10 keV [87].

Figure 6. Quality factor for different configurations of the GPD.

2 http://www.isdc.unige.ch/extp/.

http://www.isdc.unige.ch/extp/
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A hard X-ray configuration, sensitive up to some tens of keV, is suitable for solar flare polarimetry.
The high flux of solar flares allows polarimetry also without optics. However, in this case no image is
obtained and only the integrated polarization of the flaring region is possible. The hard X-ray
configuration of the GPD was proposed both for distant astrophysical sources [88] and the Sun [89,90],
but never approved.

5.3. Scattering Polarimetry

The scattering of a photon of energy E on a free electron is described by the Klein-Nishina cross
section [91]: (

dσ

dΩ
(E, E′, θ, φ)

)
KN

=
r2

0
2

E′2

E2

[
E
E′

+
E′

E
− 2 sin2 θ cos2 φ

]
(11)

The out-coming photon has an energy E′ which is:

E′ =
E

1 + E
mec2 (1− cosθ)

(12)

The scattering angle θ is the angle between the direction of the incoming photon and the
out-coming one. The azimuthal angle φ is 0 for the direction parallel to the electric vector of the
incoming photon. The Equation (11) tells us that: (1) the maximum of the cos2 term is for φ = 0, due to
the minus sign of the modulated term. Therefore, differently from the photoelectric effect, the photon
is scattered with a higher probability orthogonally to the direction of polarization of the incoming

photon; (2) The constant term
E
E′

+
E′

E
makes the incoherent scattering not a perfect polarization

analyser. Only if E = E′ (Thomson limit), for scattering at θ = π/2 the Klein-Nishina cross section is
re-written as the Thomson cross section for scattering at θ = π/2:(

dσ

dΩ
(

π

2
, φ)

)
Th.

= r2
0 sin2 φ (13)

which describes a perfect polarization analyser.
The theoretical modulation factor achievable by an ideal Compton polarimeter is:

µ(θ) =
Nmax(θ)− Nmin(θ)

Nmax(θ) + Nmin(θ)
=

( dσ
dΩ )φ= π

2
− ( dσ

dΩ )φ=0

( dσ
dΩ )φ= π

2
+ ( dσ

dΩ )φ=0
=

sin2 θ
E
E′ +

E′
E − sin2 θ

(14)

The modulation factor, as expressed by Equation (14), is shown for different energies in Figure 7.
The modulation factor is higher for scattering at θ = π/2 and it is lower for higher energy of the
incoming radiation. At the Thomson limit, the modulation factor for scattering at θ = π/2 is equal to 1
(perfect polarization analyser).

In Compton scattering, the interaction of the photon depends also on the influence of the atomic
electrons distribution and binding energies, described by the scattering function S(χ, Z). The product of
the scattering function with the Klein-Nishina cross-section gives the angular distribution of scattered
photons in matter [92], which is:

dσ

dΩ
=

(
dσ

dΩ

)
KN
· S(χ, Z) (15)

where Z is the atomic number and χ = sin( θ
2 )/λ[Å], in which λ is the incident photon

wavelength. The scattering function essentially suppresses forward scattering with respect to the
Klein-Nishina formula.
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Figure 7. Modulation factor as a function of the scattering angle for different energies of the
incoming photon.

There is a wide zoology of polarimeters based on Compton and Thomson scattering. The incoherent
nature of Compton scattering allows to deposit a certain amount of energy in the scatterer element,
which can be readout in coincidence with the energy deposit in the absorber, where the scattered photon
stops. This approach allows to reduce drastically the background with respect to Thomson scattering
polarimeters, which do not allow to readout the energy deposition in the scatterer. In both cases the
scattering process competes with photo-absorption and, therefore, scatterers are made of light elements,
which are scintillating (plastics or crystals) in Compton polarimeters and passive (for example Lithium)
in Thomson polarimeters. The incoherent scattering, in Compton polarimeters, identifies a natural
energy threshold above which the scattering process is more efficient with respect to absorption.
This is shown in Figure 8 for two typical materials of scatterers (BC-404 and p-terphenyl), where the
mass attenuation coefficint for scattering (coherent and incoherent) and photo-absorption are reported.
Above about 20 keV (point dashed green vertical line)the incoherent scattering in plastic scintillators is
the dominating interaction.

Figure 8. Mass attenuation coefficients of photoelectric absorption, coherent scattering and incoherent
scattering for typical plastic scintillator materials (BC-404 and p-terphenyl) which the scatterers are
made of.
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The Compton polarimeters can be classified into two categories, depending on the material of
the scatterer and of the absorber. The one phase polarimeters are those in which the scatterer and
the absorber are made of the same low Z material. The two phase polarimeters are those in which
the scatterer is made of a low Z material (higher scattering probability with respect to photoelectric
absorption) and the absorber is made of a high Z material, which maximize the absorption probability.
Moreover, scattering polarimeters can be focal plane detectors for pointed observations (large effective
area depends on the optics) or non-focal plane ones, which can have a large field of view (for example to
observe GRBs) or a narrow field of view for pointed observations, if they are collimated.

The typical critical parameters for scattering polarimeters are:

• background rejection, if large sensitive volumes are involved. The mitigation of background is
possible by means of the scatterer/absorber coincidence (it is intrinsic of the Compton scattering
technique), anticoincidence, passive shielding and a careful estimation of sensitive volumes
needed. For Thomson polarimeters background is a very critical issue.

• Scintillation light cross-talk. The mitigation of this effect is possible by means of a careful choice
and application of the wrapping around the scintillating elements.

• Scintillating element light loss (for example from the edges). The mitigation of this effect is
possible by means of a careful choice of the wrapping and of the optical contact between the
interfaces towards the light sensor.

Many scattering polarimeters have been proposed and a lot of demonstrators and pathfinder
are flown until nowadays. Relevant examples are discussed in the following sections and their
characteristics are sumarized in Table 4.

Table 4. Relevant scattering polarimeters examples.

Name Time Schedule Focal Plane F.O.V En. Range Science Obj. References

Thomson

POLIX launch 2019 no 3◦ × 3◦ 5–30 keV accr. powered
pulsars, BH [93,94]

SPR-N launched 2001 no - 20–100 keV solar flares [95,96]

Compton 1 phase

POLAR launched 2016 no ∼1/3 of full sky 50–500 keV GRB [97–99]

PoGOLite launched 2013 no ∼2◦ × 2◦ 20–240 keV Crab emission [100–103]

PoGO+ launched 2016 no ∼2◦ × 2◦ 20–150 keV
Crab pulsar and
nebula, Cygnus
X-1

[100–103]

AstroSat
CZTI
(imager)

launched 2015 no - 100–380 keV
Crab pulsar and
nebula, bright
X-ray sources

[104,105]

Compton 2 phases

X-Calibur launched 2014,
2016 yes 8 arcmin at 20 keV 20–60 keV BHs, NSs, magnetars,

AGN jets [106–110]

PolariS assesment
yes/no (also a
wide field
polarimeter)

10 × 10 arcmin2 10–80 keV
SNRs, BHs, accretion
in X-ray pulsars,
GRBs

[111]

GRAPE
launched 2014
and 2016; new
design assesment

no wide 50–500 keV
transient
sources, GRBs,
solar flares

[112–117]

PHENEX launched 2006 no 4.8◦ 40–200 keV Crab Nebula [118–120]

GAP launched 2010 no π sr 50–300 keV GRBs, Crab pulsar
and nebula [121–124]

SPHiNX Phase-A/B1
assessment no ±60◦ 50–500 keV GRBs [125]

PENGUIN-M launched 2009, lost no - 20–150 keV solar flares [126]

PING-P launch after 2025 no - 20–150 keV solar flares [127]
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5.3.1. POLIX

POLIX [93,94] is a Thomson scattering X-ray polarimeter of the Raman Research Institute (RRI)
for a small satellite mission of ISRO. The launch is planned in 2019. The polarimeter consists of
proportional counters as X-ray detectors, placed on all sides of a scattering element. A collimator
restricts the field of view of the instrument to 3◦ × 3◦. The polarimeter rotates around the viewing axis.
It operates in the 5–30 keV energy band. The MDP of 2–3% is achieved for a 50 mCrab source with
1× 106 s of exposure.

5.3.2. SPR-N, PENGUIN-M and PING-P

In the recent past, since 2000, only three detectors measured the X-ray polarization of solar
flares: SPR-N, RHESSI and PENGUIN-M. RHESSI [128] (launched in 2002) was designed as an
imaging-spectrometer exploiting Compton scattering among Ge elements. It has, therefore,
polarimetric capabilities. On the contrary, SPR-N and PENGUIN-M were designed specifically to
measure the polarization of X-rays by means of scattering. These polarimeters, as well as the upcoming
PING-P, are part of the effort along the pathway to develop sensitive polarimeters for solar flare physics.

The SPR-N polarimeter was launched in 2001 on board the past mission CORONAS-F. The SPR-N
polarimeter measured the X-ray polarization degree in the energy ranges 20–40 keV, 40–60 keV and
60–100 keV [95,96]. SPR-N exploits Thompson scattering on beryllium plates mounted inside a hollow
hexagonal prism. Six scintillation detectors are symmetrically mounted on the prism faces around the
scatterer. A phoswich detector (CsI(Na)/plastic scintillator) is used to discriminate charged particles.
The geometric area of each detector is about 8 cm2. The effective area ranges from'0.3 cm2 to'1.5 cm2

at 20 keV and 100 keV, respectively.
The PENGUIN-M instrument [126], on board the CORONAS-PHOTON mission, is designed to

measure the degree of linear polarization of X-rays from solar flares in the energy range
20–150 keV and their X-ray spectra in the energy range 2–500 keV by means of Compton scattering.
CORONAS-PHOTON was launched in 2009, but due to a failure of the spacecraft it was lost in 2010.

Therefore, PING-P [127] is the new Compton polarimeter under development. The launch is
scheduled after 2025. PING-P comprises three p-terphenyl (C18H14) scatterers and six units of CsI(Tl)
crystals as absorber detectors. It will operate in the 20–150 keV energy range. Scintillating elements
are coupled to photomultiplier tubes (PMTs).

5.3.3. POLAR

POLAR [97–99] is a compact wide field polarimeter developed by an international collaboration of
Switzerland, China and Poland. It was launched on 15 September 2016 to be hosted on-board the
China Space Laboratory TG-2. POLAR is aimed to measure the linear polarization of hard X-rays from
transient sources between 50 keV to 500 keV. It consists of 25 identical modules comprising 64 plastic
scintillator bars, which are readout by multi-anode photo multiplier tubes (MAPMTs). POLAR energy
range is optimized for the detection of the prompt emission of the gamma-ray bursts.

5.3.4. PoGOLite and PoGO+: Polarised Gamma-Ray Observer

PoGOLite [129] is a pathfinder balloon-born experiment which flew in 2013. It operated in the
20–240 keV energy range. PoGOLite design is conceived for pointed observations, since a collimator is
placed in front of an array of 61 low Z plastic scintillator bars. A detector bar is 20 cm long and it is
sandwiched between two anti-coincidence components: a BGO (Bismuth Germanate—Bi4Ge3O12)
scintillator (4 cm long) and the collimator made of an active plastic scintillator (60 cm long).
The anti-coincidence is complemented with additional 30 rods of BGO scintillators (60 cm tall) placed
around the main detector cells. The scintillators of the detector are readout by PMTs. A first stage of
background rejection is performed by means of the pulse discrimination in the detector and in
the BGO veto system. A post-flight analysis allows for a more accurate background subtraction.
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Moreover, an additional passive neutron shield made of polyethylene surrounds the instrument. This
experience allowed to optimize the detector to design the PoGO+ polarimeter, which flew in the
summer 2016 [100–103,130].

5.3.5. X-Calibur

X-Calibur [106–110] is a balloon-born hard X-ray scattering polarimeter aimed to measure the
polarization from BHs, NSs and AGNs. InFOCµS (International Focusing Optics Collaboration for
µ-Crab Sensitivity) grazing incidence X-ray mirror focuses X-rays onto a 13 mm diameter scatterer
made of a plastic scintillator rod. The absorbers are an array of Cadmium-Zinc-Telluride (CZT)
detectors surrounding the scattering rod. X-Calibur was launched in 2014 and 2016 and a new launch
is scheduled in 2018/2019 from McMurdo, Antarctica.

5.3.6. PolariS

PolariS (Polarimetry Satellite) [111] is a proposed small mission (JAXA) designed to perform
polarimetry in the 10–80 keV energy band. The main scientific objective of PolariS mission is the
hard X-ray polarimetry of bright SNRs, BHs and NSs. Moreover, PolariS mission is aimed to
measure the X-ray and γ-ray polarization of transient sources such as GRBs by means of a wide
field polarimeter based on the GAP design (see Section 5.3.8). The main instrument of Polaris
payload comprises three hard X-ray telescopes coupled to three Compton scattering polarimeters in
a focal plane configuration. The scattering polarimeters are an optimization derived by PHENEX,
which is a non-focal plane version prototype (flown on a balloon born experiment in 2006 [118],
see Section 5.3.7). The polarimeters consists of two kinds of (plastic and GSO) scintillator pillars and
MAPMTs. A coarse imaging capability (few arcmin) is allowed by the scattering elements that are
readout separately. However, the asymmetric light cross-talk between neighbour rods introduces
systematics that need to be controlled.

5.3.7. PHENEX (Polarimetry for High ENErgy X-ray)

PHENEX was launched on a balloon flight on June 2006 to observe for about one hour the
polarization of the Crab Nebula in hard X-ray band [118]. The high level of background measured
(3 times the Crab signal) and problems to the attitude control system compromised the observation.

The PHENEX polarimeter comprises 4 modules of 6×6 squared plastic scintillators surrounded by
28 CsI(Tl) elements. The CsI(Tl) scintillators are shielded by a passive graded shields made of Pb and
Sn on the side and on the top. The detector comprises a Mo collimator to perform pointed observations
with an opening angle limited to 4.8◦ (FWHM) in an energy range of 20–200 keV.

5.3.8. GAP: Gamma-Ray Burst Polarimeter

GAP is flying aboard the small solar power sail demonstrator IKAROS [121–124]. It is a
compact polarimeter (17 cm of diameter and 16 cm of height). The central scatterer is a dodecagon
plastic scintillator (6 cm of length) coupled with a non-position sensitive photomultiplier tube.
It is surrounded by 12 CsI scintillators, which are also coupled to PMTs to measure coincidence signals.
GAP is mounted on the bottom panel of IKAROS and observes always in the anti-solar direction.

5.3.9. GRAPE (Gamma Ray Polarimeter Experiment)

The GRAPE [112–117] polarimeter is based on Compton scattering between low-Z scatterers and
high-Z absorbers in a squared array of scintillating bars. It is a balloon-born hard X-ray polarimeter
which operate between 50 keV and 500 keV, for GRBs observations. It flew during two long duration
flights in 2011 and 2014. During the first flight the Crab was observed to validate the scientific
capability of the polarimeter, but the background was much higher than expected. The second flight
was terminated without a sufficient data collection.
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An updated design of the polarimeter underwent some assessments [131] during different mission
proposals to NASA (Astrophysics Mission of Opportunity (MoO) in 2012 and Small Explorer (SMEX)
in 2014).

The original design of the GRAPE detector module comprised 64 optically independent scintillator
elements organized in a 8× 8 array. The central 6 × 6 array was made of low-Z plastic scintillator
(5 mm × 5 mm × 6 cm). It was surrounded by the remaining 28 elements of high-Z inorganic
scintillator, which acted as a calorimeter to detect with high efficiency the Compton scattered photons.
A single detector module was readout by multi-anode photo-multiplier tube (MAPMT). This design
was affected by a relevant optical cross-talk between adjacent elements of the scintillator array, due to
light spreading at the base of scintillating bars [131].

In the new design an array of completely isolated scintillator elements, each with its own PMT
readout, was employed. The number of array elements was reduced to 49. Moreover, the Compton
imaging capability was added by including a depth measurement, within each scintillator element,
to allow GRBs localization. This capability allows also to reduce the cosmic diffuse γ-ray background.

5.3.10. SPHiNX: Segmented Polarimeter for High eNergy X-rays

SPHiNX [125] is a proposal to the Swedish Space Agency that underwent a Phase-A/B1
assessment study. It comprises 42 triangular units of low Z plastics scintillators grouped in hexagons
and readout by PMTs. Around each hexagon there are 120 units of high Z rectangular GAGG
(Gd3Al2Ga3O12) scintillators, which are readout by multi-pixel photon counters (MPPC) to allow
the detection of scattered photons. With a field of view of ±60◦ and an energy range between
50–500 keV, it is optimized to study the GRB prompt emission.

5.3.11. Scattering Polarimetry CdTe/CZT

New different configurations based on CdTe/CZT detectors [132] for high-energy polarimetry are
under exploration. They include 2D and 3D CZT/CdTe spectroscopic imagers with coincidence readout
logic to handle scattering events and to perform simultaneously polarization, spectroscopy, imaging,
and timing measurements. Particularly interesting is the development of Laue lenses that would
allow a high energy wide band-pass. In CdTe and CZT detectors the mass attenuation coefficcient3 of
Compton scattering equals the photoelectric absorption at about 250 keV (see Figure 8 as a comparison
with plastic scintillators for which the energy threshold is about 20 keV). Therefore, at lower energy
the scattering process is less efficient with respect to photoelectric absorption.

Recently, the AstroSat CZT imager measured the Crab pulsar and nebula polarization in the
100–380 keV energy band [104]. The AstroSat CZT imager is a coded aperture telescope designed for
hard X-ray observations, calibrated also on ground for polarization measurements [105]. It consists of
a pixilated detector plane with a geometric area of 976 cm2 with a pixel thickness of 5 mm and a size of
2.5 mm × 2.5 mm. The polarization measurement is performed by detecting coincident events among
neighbour pixels. In the 100–380 keV energy range the recoil electron has an energy much lower than
the scattered photon. Therefore, it is assumed that the pixel with the lower energy deposition is the
scattering pixel, while the second pixel is the absorbing one. Pixels are squared and the instrument
does not rotate. The polarization dependence of the off-pulse polarization claimed by AstroSat was
not confirmed by PoGo+ in a partially overlapping energy band [130].

6. Conclusions

In the last years X-ray polarimetry in astronomy started to be a crowded field of new theoretical
studies, instrument designs and also detectors, which flew on board balloon experiments or

3 Derived from https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.

https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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demonstrative missions. Many different physical processes are responsible for the emission of
polarized X-rays. These processes involve particle acceleration, emission in strong and ultra-strong
magnetic fields, scattering on aspherical geometries and also fundamental physics. The panorama of
astrophysical sources spans from galactic to extragalactic ones and from point like (BHs, NS) to
extended (PWNe, SNRs, Molecular Clouds). Some of the new polarimeters under assessment or
development (PolariS, IXPE, eXTP, updated version of GRAPE) have an imaging capability that would
allow for the first time to measure the polarization of different regions of extended sources, thus better
constraining the parameters of source models. Among these polarimeters, IXPE and eXTP are based
on the GPD technology, which allows a quite fine imaging, at the level of some tens of arcseconds.
Their imaging capability is currently limited by the optics performance, not by the detector itself.
The detector technologies available in the quite large energy range, from .1 keV to hundreds of keV,
are based on diffraction onto multilayer mirrors (or crystals), photoelectric effect and scattering
(Thomson or Compton). New activities are planned for the near future and a critical mass (among
Europe, USA, Japan, China, India etc.) in the scientific community starts to be relevant to sustain
larger new projects. In this framework, particularly relevant is the approval of the Imaging X-ray
Polarimetry Explorer (IXPE) that represents the first step towards these larger activities and will make
X-ray polarimetry a valuable observational tool worth to be used as well as imaging, spectroscopy
and timing.
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