
Article

Electromagnetic Casimir Effect in AdS Spacetime

Anna S. Kotanjyan *, Aram A. Saharian and Astghik A. Saharyan

Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025, Armenia;
saharian@ysu.am (A.A.S.); astghik.saharyan@gmail.com (A.A.S.)
* Correspondence: anna.kotanjyan@ysu.am; Tel.: +374-98-466-251

Received: 21 November 2017; Accepted: 12 December 2017; Published: 19 December 2017

Abstract: We investigate the vacuum expectation value (VEV) of the energy-momentum tensor for
the electromagnetic field in anti-de Sitter (AdS) spacetime in the presence of a boundary parallel
to the AdS horizon. On the boundary, the field obeys the generalized perfect conductor boundary
condition. The VEV of the energy-momentum tensor is decomposed into the boundary-free and
boundary-induced contributions. In this way, for points away from the boundary, the renormalization
is reduced to that for AdS spacetime without the boundary. The boundary-induced energy density is
negative everywhere, and the normal stress is positive in the region between the boundary and the
AdS boundary and is negative in the region between the boundary and the AdS horizon. Near both
the AdS boundary and horizon, the boundary-induced VEV decays exponentially as a function
of the corresponding proper distance. Applications are given for even and odd vector fields in
Randall–Sundrum model with a single brane.
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1. Introduction

The Casimir effect (for reviews see [1–3]) is among the most interesting manifestations of the
influence of boundaries on the properties of quantum vacuum. The boundaries modify the spectrum
of zero-point fluctuations of quantum fields, and as a consequence of that the vacuum expectation
values (VEVs) of physical observables are shifted. In particular, this gives rise to vacuum forces
acting on the boundaries. These forces are sensitive to both the bulk and boundary geometries of the
problem at hand.

Closed expressions for the physical characteristics of the vacuum in the Casimir effect can be
obtained for highly symmetric background geometries only. In particular, motivated by possible
applications in braneworld models and in anti-de Sitter (AdS)/CFT correspondence, the Casimir
effect on anti-de Sitter bulk has attracted a great deal of attention. In braneworld models of the
Randall–Sundrum type with branes parallel to the AdS boundary, the Casimir forces provide an
alternative mechanism for the stabilization of the radion field. The main part of the investigations
of the Casimir effect in AdS bulk (see, for instance, references in [4]) consider global characteristics
of the vacuum, such as the Casimir energy and forces, by using either dimensional or zeta function
regularization methods. More detailed information on the properties of the vacuum is contained in the
local characteristics like the VEV of the energy-momentum tensor. In addition to describing the physical
structure of the quantum field at a given point, this VEV acts as the source in the Einstein equations and
therefore plays an important role in modelling a self-consistent dynamics involving the gravitational
field. The VEV of the energy-momentum tensor for scalar and fermionic fields in the geometry of
two branes parallel to the AdS boundary has been investigated in [5–10]. Both the global and local
characteristics in higher-dimensional generalizations of the AdS spacetime with compact internal
spaces are studied in [11–20]. The case of a brane perpendicular to the AdS boundary is discussed
in [21]. Induced vacuum currents for a charged scalar field in AdS background with toroidally
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compactified spatial dimensions and in the presence of branes have been investigated in [22–25].
The dynamical Casimir effect for a brane moving in AdS bulk is discussed in [26] (on the realization of
the dynamical Casimir effect in circuit quantum electrodynamics involving superconducting quantum
interference devices, see, for instance, [27,28]). The renewed interest in physical models on AdS bulk
is closely related to application of AdS/CFT correspondence in investigations of strongly coupled
condensed matter systems (see, for example, [29,30]).

In the present paper, we investigate the VEV of the energy-momentum tensor for the
electromagnetic field on a background of (D + 1)-dimensional AdS spacetime in the presence of
a boundary parallel to the AdS horizon. On the boundary, the field obeys the condition that is
a generalization of the perfect conductor boundary condition for an arbitrary number of spatial
dimensions. The two-point function for the electromagnetic field in the boundary-free AdS spacetime
is investigated in [31]. The two-point functions and the vacuum densities in the presence of a flat brane
are evaluated in [4,32]. The electromagnetic Casimir densities in de Sitter spacetime for flat boundaries
have been investigated in [33,34]. The electromagnetic two-point functions and the Casimir effect in
the background of more general Friedmann–Robertson–Walker cosmologies are discussed in [35].

The total Casimir energy for an electromagnetic field in the region between a pair of perfectly
conducting plates in a Randall–Sundrum braneworld model with D = 4 has been investigated in [36]
at both zero and non-zero temperatures. The corresponding Casimir force at zero temperature has also
been discussed in [37] using the scalar field analogy. It should be emphasized that the Kaluza–Klein
masses for electromagnetic and scalar fields are different. Note that in both the papers [36,37]
the interaction part of the Casimir energy is considered. The latter tends to zero in the limit of
large separations between the boundaries. However, in quantum field-theoretical problems with
boundaries, a non-zero self energy for separate boundaries may present, similar to the Casimir energy
for a single spherical shell widely discussed in the literature.

The paper is organized as follows. In the next section we describe the geometry and
present the mode functions and general expressions for the VEV of the energy-momentum tensor.
The boundary-induced contribution in the VEVs for the regions on the left and on the right of the
boundary are explicitly extracted in Sections 3 and 4. The behavior of these contributions in various
asymptotic regions of the parameters is investigated. The main results are summarized in Section 6.

2. Problem Setup and the Electromagnetic Modes

We consider an electromagnetic field with the vector potential Aµ in the background of
(D + 1)-dimensional AdS spacetime. In the Poincaré coordinates, the line element is given by
the expression

ds2 = (α/z)2ηµνdxµdxν, (1)

where z = xD, 0 6 z < ∞, and ηµν = diag(1,−1, . . . ,−1) is the metric tensor for (D + 1)-dimensional
Minkowski spacetime. The parameter α is the AdS curvature radius, and for the Ricci scalar one
has R = −D(D + 1)/α2. The hypersurfaces z = 0 and z = ∞ correspond to the AdS boundary
and horizon, respectively. We assume the presence of a boundary located at z = z0, on which the
electromagnetic field obeys the boundary condition

nν1 ∗Fν1···νD−1 = 0, (2)

where nν1 is the normal vector to the boundary and ∗Fν1···νD−1 is the dual of the field tensor
Fµν = ∂µ Aν − ∂ν Aµ. Condition (2) is a generalization of the perfectly conducting boundary condition
in D = 3 electrodynamics.

In quantum electrodynamics, the boundary condition (2) modifies the spectrum of the zero-point
fluctuations, and as a consequence, the VEVs of physical observables are changed. This is
the well-known Casimir effect, widely discussed in the literature. Among the most important
characteristics of the vacuum state is the VEV of the energy-momentum tensor. Expanding the
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field operator over a complete set of mode functions {A(β)µ, A∗(β)µ}, obeying the boundary condition,
and using the commutation relations for the annihilation and creation operators, for the VEV one finds
the mode-sum formula

〈Tν
µ〉 = −

1
4π ∑

β

[
F(β)µρFνρ∗

(β)
− 1

4
δν

µF(β)ργFργ∗
(β)

]
, (3)

where F(β)µν = ∂µ A(β)ν − ∂ν A(β)µ and the set of quantum numbers β specifies the modes. In (3),
a summation is understood for discrete quantum numbers and an integration over continuous ones.
From the invariance of the problem under the Lorentz boosts along the spatial dimensions parallel
to the boundary, it follows that the vacuum energy-momentum tensor is diagonal in the subspace
perpendicular to the boundary and

〈T0
0 〉 = 〈T1

1 〉 = · · · = 〈TD−1
D−1 〉. (4)

From the symmetry of the problem, we also have 〈TD
µ 〉 = 0 for µ = 0, 1, . . . , D − 1. The

components 〈T0
0 〉 and 〈TD

D 〉 are related by the covariant conservation equation ∇ν

〈
Tν

µ

〉
= 0, where

∇ν is the covariant derivative operator. This equation is reduced to a single equation:

zD+1∂z

(
z−D〈TD

D 〉
)
+ D〈T0

0 〉 = 0. (5)

In accordance with the problem symmetry, the dependence of the mode functions A(β)µ on
the coordinates x = (x1, x2, . . . , xD−1) and on time x0 = t can be taken in the form eik·x−iωt,
with k = (k1, k2, . . . , kD−1). Substituting into the Maxwell equations, it can be seen that the
z-dependence of the modes is given by zD/2−1ZD/2−1(λz), where Zν(x) is a linear combination
of cylinder functions and λ =

√
ω2 − k2, k = |k|. In the gauge AD = 0, ∇i Ai = 0, the mode functions

for the vector potential are presented as

A(β)µ = Cε(σ)µzD/2−1ZD/2−1(λz)eik·x−iωt, (6)

where the polarization vectors ε(σ)µ, σ = 1, . . . , D− 1 obey the relations ηµνε(σ′)µε(σ)ν = −δσσ′ and

D−1

∑
σ=1

ε(σ)µε(σ)ν = −ηµν + kµkν/λ2. (7)

In addition, from the gauge condition one has ε(σ)D = 0 and kµε(σ)µ = 0. With the choice (6),
the set of quantum numbers is specified as (β) = (σλk), where σ corresponds to different polarizations.
From the boundary condition (2) on the plate z = z0, it follows that

ZD/2−1(λz0) = 0. (8)

The coefficient C in (6) is determined from the normalization condition∫
dDx

√
|g|g00gµν A(β)ν A∗(β′)µ = −2π

ω
δσσ′δ

(
k− k′

)
δλλ′ , (9)

where δλλ′ corresponds to the Kronecker delta for discrete λ and to the Dirac delta function for
continuous λ.

Substituting the mode functions in (3) for the normal stress, one finds

〈TD
D 〉 = −

zD+2

8πα4

∫
dk ∑

λ

|C|2 λ2
[

Z2
D/2−2(λz) + Z2

D/2−1(λz)
]

, (10)
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where we used the relation

∂z

[
zD/2−1ZD/2−1(λz)

]
= λzD/2−1ZD/2−2(λz), (11)

for the cylinder functions. In (10), ∑λ is understood as summation for discrete λ and the integration
for continuous λ. The energy density is most easily found from the relation (5):

〈T0
0 〉 = −

zD+2

8πDα4

∫
dk ∑

λ

|C|2 λ2
[
(D− 4) Z2

D/2−1(λz)− (D− 2) Z2
D/2−2(λz)

]
. (12)

To proceed further, we need to specify the region under consideration. Below, the separate regions
0 6 z 6 z0 and z0 6 z < ∞ will be referred to as L- and R-regions, respectively (left and right regions).

3. VEV of the Energy-Momentum Tensor: L-Region

We start our consideration of the vacuum energy-momentum tensor with the L-region,
which corresponds to the region between the AdS boundary and the plate. For the Neumann
function YD/2−1(λz), the normalization integral (9) diverges in the lower limit of the integration
over z (namely, at z = 0). Consequently, for the normalizable modes we should take ZD/2−1(λz) =
JD/2−1(λz), where Jν(x) is the Bessel function. Let us denote by jn, n = 1, 2, . . . the nth positive zero of
the function JD/2−1(x): JD/2−1(jn) = 0. From (8) we obtain the eigenvalues of the quantum number λ:
λ = jn/z0. From (9) with the z-integration over [0, z0], for the normalization coefficient one gets

C2 =
2 (2π)2−D α3−D

z2
0ω J′2D/2−1(jn)

, (13)

where ω =
√

j2n/z2
0 + k2. Note that we have J′D/2−1(jn) = −JD/2(jn).

The expressions for the diagonal components of the VEV of the energy-momentum tensor are
presented as (no summation over µ):

〈Tµ
µ 〉 = −

(4π)(1−D)/2 zD+2

Γ ((D− 1)/2) αD+1z4
0

∫ ∞

0
dk kD−2

∞

∑
n=1

j2n f (µ)L (jnz/z0)

ω J′2D/2−1(jn)
, (14)

where
f (µ)L (x) = (1− 4/D) J2

D/2−1(x)− (1− 2/D) J2
D/2−2(x), µ 6= D,

f (D)
L (x) = J2

D/2−1(x) + J2
D/2−2(x).

(15)

The expression on the right hand side of (14) diverges. In order to have a finite expression,
we assume that some cutoff function is introduced without writing it explicitly. The special form of
that function will not be important for the further discussion.

In (14), the zeros jn are given implicitly, and that expression is not convenient for the investigation
of the properties. For the transformation of the series over n, we use the generalized Abel–Plana
formula [38,39]:

∑∞
n=1

f (jn)
jn J′2D/2−1(jn)

=
1
2
∫ ∞

0 du f (u) +
1

2π

∫ ∞
0 du

KD/2−1(u)
ID/2−1(u)

×
[
e−πiD/2 f (iu) + eπiD/2 f (−iu)

]
,

(16)

where Iν(x) and Kν(x) are the modified Bessel functions and the function f (u) is analytic in the right
half plane Re u > 0. After the application of (16), the VEV is decomposed as

〈Tµ
µ 〉 = 〈T

µ
µ 〉0 + 〈T

µ
µ 〉b, (17)
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where

〈Tµ
µ 〉0 = − (4π)(1−D)/2 zD+2

2Γ ((D− 1)/2) αD+1

∫ ∞

0
dk kD−2

∫ ∞

0
du

u3 f (µ)L (uz)√
u2 + k2

, (18)

and

〈Tµ
µ 〉b = − (4π)(1−D)/2 zD+2

πΓ ((D− 1)/2) αD+1

∫ ∞

0
dk kD−2

∫ ∞

k
du

u3F(µ)
L (uz)√

u2 − k2

KD/2−1(uz0)

ID/2−1(uz0)
. (19)

In (19) we have introduced the notation

F(µ)
L (x) = (1− 4/D) I2

D/2−1(x) + (1− 2/D) I2
D/2−2(x), µ 6= D,

F(D)
L (x) = I2

D/2−1(x)− I2
D/2−2(x).

(20)

The contribution (18) comes from the first integral on the right-hand side of (16). It does not
depend on z0, whereas the part (19) vanishes in the limit z0 → ∞. From here we conclude that the
term 〈Tµ

µ 〉0 corresponds to the VEV in AdS spacetime in the absence of the boundary at z = z0 and the
term 〈Tµ

µ 〉b is induced by that boundary. Note that for z < z0 the boundary-induced part is finite in the
absence of the cutoff function and the renormalization is required for the boundary-free part 〈Tµ

µ 〉0 only.
From the maximal symmetry of the AdS spacetime it follows that the corresponding renormalized
VEV should have the structure 〈Tν

µ〉0 = const · δν
µ.

We can further simplify the boundary-induced contribution (19). Introducing a new integration
variable y =

√
u2 − k2 instead of u and passing to polar coordinates in the plane (k, y), after the

integration over the angular coordinate we get (no summation over µ):

〈Tµ
µ 〉b = − (4π)−D/2 (z/z0)

D+2

Γ (D/2) αD+1

∫ ∞

0
dx xD+1 KD/2−1(x)

ID/2−1(x)
F(µ)

L (xz/z0). (21)

The boundary-induced part depends on z and z0 in the form of the ratio z/z0. This property is a
consequence of the maximal symmetry of the AdS spacetime. Note that the coordinate y that measures
the physical distance from the boundary is given by

y = α ln(z/α). (22)

In terms of this coordinate, one has z/z0 = exp[(y− y0)/α], where y0 = α ln(z0/α) and y0 − y is
the proper distance of the observation point from the boundary. By taking (20) into account, we can
see that the boundary-induced contribution to the energy density is negative and the normal stress is
positive, 〈T0

0 〉b < 0, 〈TD
D 〉b > 0.

In the special case D = 3, one gets

〈T3
3 〉b =

π2(z/z0)
4

240α4 , 〈Tl
l 〉b = −1

3
〈TD

D 〉b, (23)

for l = 0, 1, 2. In this special case, the electromagnetic field is conformally invariant and the
boundary-induced contribution is expressed in terms of the corresponding VEV in the region between
two conducting plates in Minkowski bulk by the standard conformal relation.

For D > 4, the boundary-induced contribution diverges on the plate. Near the boundary, the main
contribution to the integral in (21) comes from large values of x, and to the leading order one gets

〈Tµ
µ 〉b ≈ 〈Tµ

µ 〉(M) = −
(D− 3) (D− 1) Γ((D + 1) /2)

2 (4π)(D+1)/2 |y0 − y|D+1
, µ 6= D,

〈TD
D 〉b ≈

y− y0

α
〈T0

0 〉(M),

(24)
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where 〈Tµ
µ 〉(M) is the corresponding VEV for a plate in Minkowski spacetime. Note that in Minkowski

spacetime the normal stress vanishes 〈TD
D 〉(M) = 0. Near the AdS boundary, z → 0, the boundary-

induced VEVs tend to 0 with the leading terms

〈TD
D 〉b ≈

24−2D (D− 1) (z/z0)
2D−2

πD/2Γ(D/2)Γ2(D/2− 1)αD+1

∫ ∞

0
dx x2D−3 KD/2−1(x)

ID/2−1(x)
. (25)

and 〈Tl
l 〉b ≈ (2/D− 1)〈TD

D 〉b for l = 0, 1, . . . , D− 1.
The Minkowskian limit of (21) corresponds to α → ∞, for a fixed value of the proper distance

from the boundary |y − y0|. In this limit, z/z0 ≈ 1 + (y − y0)/α and the ratio z/z0 is close to 1.
By accounting for the fact that the main contribution in (21) comes from the region x . 1/(z/z0 − 1)
and using the asymptotic expressions for the modified Bessel functions for large arguments, we can
see that 〈Tµ

µ 〉b → 〈T
µ
µ 〉(M) for µ 6= D and 〈TD

D 〉b → 0, where 〈Tµ
µ 〉(M) is given by (24).

In Figure 1 we have plotted the boundary-induced contributions in the VEVs of the energy density
(left panel) and the normal stress (right panel) as functions of the ratio z/z0 for the number of spatial
dimensions D = 4, 6 (numbers near the curves).
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Figure 1. The VEVs of the energy density (left panel) and of the normal stress (right panel) versus the
ratio z/z0 in spatial dimensions D = 4, 6 (numbers near the curves).

For the evaluation of the mode-sum (14), we have applied a variant of the generalized Abel–Plana
Formula (16). That allowed us to explicitly extract the boundary-free contribution and to present
the boundary-induced contribution in terms of strongly converging integral for points away from
the boundary. The latter feature is related to the fact that the Abel–Plana formula automatically
rotates the integration contour to the imaginary axis. With the extracted boundary-free part from
the VEVs, the renormalization of local observables is reduced to that in the boundary-free geometry.
Another important advantage of the procedure based on the Formula (16) is that the explicit knowledge
of the eigenvalues for the quantum number λ is not required. Other applications of the generalized
Abel–Plana formula to the Casimir effect can be found in [39]. Note that a similar procedure,
widely employed for the evaluation of the global characteristics of the vacuum in the Casimir effect,
is based on the argument principle (see, for example, [1–3]). In particular, this method has been used
for the evaluation of the renormalized Casimir energy in braneworld models on AdS bulk.

4. VEV in the R-Region

Now let us consider the R-region, z0 6 z < ∞. In this region, the function ZD/2−1(λz) in (6)
is a linear combination of the Bessel and Neumann functions. The relative coefficient in the linear



Galaxies 2017, 5, 102 7 of 11

combination is determined by the boundary condition (8), and the eigenvalues of the quantum number
λ are continuous. For the function ZD/2−1(λz), one gets

ZD/2−1(λz) = gD/2−1(λz0, λz), (26)

where
gν(x, y) = Jν(y)YD/2−1(x)− JD/2−1(x)Yν(y). (27)

In the normalization condition, the symbol δλλ′ corresponds to the Dirac delta function δ(λ− λ′).
For the normalization coefficient, we find

C2 =
α3−Dλ

(2π)D−2 ω

[
J2
D/2−1(λz0) + Y2

D/2−1(λz0)
]−1

. (28)

For the VEV of the energy-momentum tensor, one gets (no summation over µ):

〈Tµ
µ 〉 = −

(4π)(1−D)/2 zD+2

2Γ ((D− 1)/2) αD+1

∫ ∞

0
dk
∫ ∞

0
dλ

λ3

ω

kD−2 f (µ)R (λz0, λz)
J2
D/2−1(λz0) + Y2

D/2−1(λz0)
, (29)

with

f (µ)R (x, y) = (1− 4/D) g2
D/2−1(x, y)− (1− 2/D) g2

D/2−2(x, y), µ 6= D,

f (D)
R (x, y) = g2

D/2−1(x, y) + g2
D/2−2(x, y). (30)

As before, the presence of a cutoff function is assumed in (29). For z > z0, the divergences when
one removes the cutoff are the same as those in the boundary-free geometry.

In order to extract the boundary-free contribution from (29), we use the relation

g2
ν (x, y)

J2
D/2−1(x) + Y2

D/2−1(x)
= J2

ν(λz)− 1
2 ∑

j=1,2

JD/2−1(x)

H(j)
D/2−1(x)

H(j)2
ν (y), (31)

with ν = D/2− 1 and ν = D/2− 2. Here H(j)
ν (x), j = 1, 2, are the Hankel functions. The part in the

VEV corresponding to the first term on the right-hand side of (31) coincides with the boundary-free
VEV (18). In the remaining boundary-induced part, we rotate the integration contour in the complex
plane λ by the angle π/2 for the term j = 1 and by the angle −π/2 for the term j = 2. As a result,
the VEV in the R-region is decomposed as (17) with the boundary-induced contribution

〈Tµ
µ 〉b = − (4π)(1−D)/2 zD+2

πΓ ((D− 1)/2) αD+1

∫ ∞

0
dk kD−2

∫ ∞

k
du

u3F(µ)
R (uz)√

u2 − k2

ID/2−1(uz0)

KD/2−1(uz0)
, (32)

and with the functions

F(µ)
R (x) = (1− 4/D)K2

D/2−1(x) + (1− 2/D)K2
D/2−2(x), µ 6= D,

F(D)
R (x) = K2

D/2−1(x)− K2
D/2−2(x).

(33)

The further simplification is similar to that for the L-region, and one gets the final expression

〈Tµ
µ 〉b = − (4π)−D/2 (z/z0)

D+2

Γ (D/2) αD+1

∫ ∞

0
dx xD+1 ID/2−1(x)

KD/2−1(x)
F(µ)

R (xz/z0). (34)

As seen, the boundary-induced VEVs in the L- and R-regions are obtained from each other by the
replacements Iν(x)� Kν(x) of the modified Bessel functions.
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In the special case D = 3, the boundary-induced VEV (34) vanishes in the R-region. For D > 4,
all the components are negative, 〈Tµ

µ 〉b < 0. For points near the boundary, y− y0 � α, the ratio z/z0 is
close to 1 and the contribution of large x dominates in (34). By using the corresponding asymptotics for
the modified Bessel functions, for the leading terms we obtain the expressions (24). Near the boundary,
the dominant contribution to the VEV comes from wavelengths smaller than the curvature radius, and
the influence of the gravity is weak.

At distances from the boundary larger than the AdS curvature radius, y − y0 � α one has
z/z0 � 1. The dominant contribution to the integral in (34) comes from small values of x. By using
the corresponding asymptotic expressions for the functions ID/2−1(x) and KD/2−1(x), for the leading
order terms we find

〈Tµ
µ 〉b ≈ − (D− 1)2 (D− 2)(D− 3)

2πD/2αD+1(z/z0)D−2
Γ2 (D) Γ (3D/2− 2)

Γ2(D/2)Γ(2D)
,

〈TD
D 〉b ≈

D〈T0
0 〉b

2 (D− 1)
,

(35)

with µ 6= D. As seen, at large distances the boundary-induced VEVs—as functions of the proper
distance—are suppressed by the factor e−(D−2)(y−y0)/α. At distances from the boundary larger than
the AdS curvature radius, the effects of gravity are essential and the behavior of the VEV is completely
different from that on the Minkowski bulk. In the latter case, the decay of the VEVs, as functions of
y− y0, is as power law, as 1/ (y− y0)

D+1 for the energy density and stresses parallel to the boundary.
For the R-region, the dependence of the boundary-induced energy density and the normal stress

on the ratio z/z0 is presented in Figure 1.

5. Applications to Randall–Sundrum Model with a Single Brane

With the results given above, we can find the Casimir densities for the electromagnetic field in
Randall–Sundrum braneworld model with a single brane (RSII model) [40] (for reviews see [41,42]).
The original model has been formulated on the AdS bulk with D = 4. Here we will consider
the generalization for an arbitrary value of the spatial dimension. In terms of the coordinate (22),
measuring the physical distance from the brane located at y = 0, the line element has the form

ds2 = e−2|y|/αηikdxidxk − dy2, (36)

where i, k = 0, 1, . . . , D − 1. The absolute value of the y coordinate in the metric components
incorporates the Z2-symmetry with respect to the brane: the points with the coordinates y and
−y are identified. From (36), it follows that in RSII model only the R-region of the AdS spacetime is
employed. In terms of the coordinate z, the brane is located at z = z0 = α.

The boundary conditions for fields on the brane are dictated by the Z2-symmetry [43]. Two types
of boundary conditions are realized corresponding to the even and odd fields under the Z2-symmetry.
First let us consider the case of odd fields. These fields obey the boundary condition Aµ|y=0 = 0.
For the modes (6), this corresponds to the boundary condition (8). Hence, the electromagnetic Casimir
densities in RSII model are obtained from the results given above for the R-region with z0 = α. The only
difference is that in the RSII model the integration over y in the normalization integral for the modes (6)
goes over the region (−∞,+∞) instead of the interval [0,+∞). This leads to an additional factor 1/

√
2

in the normalization coefficient for the mode functions. Consequently, the Casimir densities for odd
fields in the RSII model are given by (34) with an additional factor 1/2. Note that in this case there is
no Kaluza–Klein zero mode.
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For even fields, the boundary condition on the brane reads ∂y Aµ|y=0 = 0. For the modes (6) it is

reduced to ∂z

[
zD/2−1ZD/2−1(λz)

]
= 0 at z = z0. By taking into account that for cylinder functions

one has ∂x [xνZν(x)] = xνZν−1(x), this condition is rewritten as

ZD/2−2(λz0) = 0. (37)

Note that the boundary condition for even fields can be written in terms of the field tensor as
nµFµν = 0. This type of boundary condition is used to confine the gluon fields in QCD (in particular,
in MIT bag models). The procedure for the evaluation of the vacuum energy-momentum tensor in the
R-region for this type of boundary condition is similar to that described in Section 4. We will omit the
details and present the final result for the RSII model (no summation over µ):

〈Tµ
µ 〉b = − (4π)−D/2 (z/z0)

D+2

2Γ (D/2) αD+1

∫ ∞

0
dx xD+1 ID/2−2(x)

KD/2−2(x)
F(µ)

R (xz/z0), (38)

with z > z0 and z0 = α. As it has been explained above, the additional factor 2 in the denominator
is related to the presence of two regions (−∞, 0] and [0,+∞) for the coordinate y connected by the
Z2-symmetry. The qualitative behavior of the brane-induced energy density and the normal stress is
similar to that depicted in Figure 1. Note that in [36] the Casimir energy is considered for even fields.

6. Conclusions

For (D + 1)-dimensional AdS spacetime, we have investigated the influence a planar boundary,
parallel to the AdS horizon, on the properties of the electromagnetic vacuum. On the boundary,
the electromagnetic field obeys the condition that generalizes the perfect conductor boundary condition
for D = 3. As the local characteristic of the vacuum state we have considered the VEV of the
energy-momentum tensor. The latter is among the most important quantities in quantum field theory
on curved backgrounds. The vacuum energy-momentum tensor is diagonal, and the stresses parallel
to the boundary are equal to the energy-density. The latter property is a direct consequence of the
Lorentz invariance with respect to the boosts along the spatial dimensions parallel to the boundary.

The quantum properties of the vacuum are completely different for the region between the
boundary and the AdS boundary (region 0 6 z 6 z0, referred to here as the L-region) and for the
region between the boundary and AdS horizon (region z0 6 z < ∞, referred to as the R-region). In the
first region, in addition to the boundary condition at z = z0, the field operator is constrained by the
boundary condition on the AdS boundary. The latter is required by the normalizability condition
of the mode functions. As a consequence, in the L-region the eigenvalues of the quantum number
λ form a discrete set determined by the zeros of the Bessel function JD/2−1(x). The mode-sum for
the energy-momentum tensor contains a summation over these zeros. For the transformation of the
corresponding series, we have applied the generalized Abel–Plana formula that allowed the extraction
of the boundary-free part from the VEV. For points away from the boundary, the renormalization
is required for that part only. The boundary-induced contribution is given by the expression (21).
The vacuum energy density is negative, and the normal stress is positive. In the special case D = 3,
the problem for the L-region is conformally related to the problem in Minkowski bulk with two parallel
conducting plates, and for the energy-momentum tensor we have a simple result (23). In this special
case, the VEV is finite on the boundary. This is not the case for D > 4, and the VEV diverges on
the boundary with the leading terms given by (24). On the AdS boundary, the boundary-induced
contributions vanish like (z/z0)

2D−2. As a function of the proper distance from the AdS boundary,
this corresponds to the exponential suppression by the factor exp[2 (D− 1) y/α] with y→ −∞.

In the R-region, the quantum number λ is continuous and the boundary-induced contribution to
the VEV of the energy-momentum tensor is presented as (34). Both the energy density and the normal
stress are negative for D > 4. In the case D = 3, the problem in the R-region is conformally related to
the Minkowskian problem with a single conducting plate, and the boundary-induced contribution
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vanishes. For points near the boundary, the main contribution to the VEV comes from the fluctuations
with wavelengths smaller than the AdS curvature radius. The influence of the gravitational field on
those fluctuations is weak and the leading terms in the asymptotic expansion coincides with those
in the Minkowski bulk. The influence of the gravitational field is essential at distances from the
boundary larger than the curvature radius. At large distances, the boundary-induced contribution
is suppressed by the factor exp [−(D− 2)(y− y0)/α] and it vanishes on the AdS horizon. From the
expressions for the VEV of the energy-momentum tensor in the R-region, the corresponding formulas
can be obtained for odd and even vector fields in Randall–Sundrum model with a single brane.
For odd fields, the boundary condition on the brane is equivalent to the perfectly conducting boundary
condition, and the VEV is given by (34) with z0 = α and with an additional factor 1/2. The latter is
related to the orbifold nature of the background in Randall–Sundrum models. For even vector fields,
the boundary condition is given by (37). The latter is employed for the confinement of gluon fields in
QCD. The corresponding VEV is given by the expression (38).
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