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Abstract: One of the algebraic potentials most commonly used to represent a galactic bar in the stellar
orbits integration is the Ferrers potential. Some researchers may be inclined to implement a numerical
differentiation for it in the motion or variational equations, since it can be very laborious to calculate
such derivatives algebraically, despite a possible polynomial form, and there are no publications
showing the second partial explicit derivatives. The purpose of this work is to present the explicit
algebraic form of the partial derivatives of the Ferrers potential using the simplifications suggested
by Pfenniger.
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1. Introduction

It is estimated that 65% of known disk galaxies has a bar substructure [1,2]. This justifies the
importance of studying galaxies of this type. It is common to use the integration of stellar orbits
immersed in gravitational potentials to conduct a dynamic study of galaxies, including barred galaxies.
In this context, the galaxy to be studied is modeled as a composite of several models of gravitational
potential that represent each galactic substructure.

In dealing with the bar substructure, there are several analytical potentials that can be chosen
to compose the total analytical potential model. The Ferrers potential has a great fidelity in the
representation of the galactic bar and it has been extensively used in many works (e.g., [3–6]).
However it does not have a friendly mathematical constitution to work analytically. Some researchers
implement a Ferrers numerical differentiation in the motion or variational equations, since it can be
very laborious to calculate such derivatives algebraically and there are no publications showing the
second partial explicit derivatives.

Therefore, the purpose of this work is to present the explicit algebraic form of the partial derivatives
of the Ferrers potential using the simplifications to polynomial form suggested by Pfenniger [6].

2. The Ferrers Potential

This potential model was proposed in 1877 by Ferrers [7].
Bringing to the bars context, in this model, the density is given by

ρB(x, y, z) = ρc(1 − m2)2 , m < 1

ρB(x, y, z) = 0 , m ≥ 1
(1)
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where the central density is ρc =
105
32π

GMB
abc , MB is the bar mass and m2 = x2

a2 + y2

b2 + z2

c2 , where a > b >

c > 0 are the semi-axes of the ellipsoid which represents the bar.
The potential created by the galactic bar is:

ΦBar = −πGabc
ρc

3

∫ ∞

λ

du
∆(u)

(1 − m2(u))3 (2)

where m2(u) = x2

a2+u + y2

b2+u + z2

c2+u , ∆2(u) = (a2 + u)(b2 + u)(c2 + u) and λ is the positive solution of
m2(λ) = 1 for the region outside the bar (m ≥ 1) and λ = 0 for the region inside the bar (m < 1).

In 1984, Pfenniger [6], using the Generalized Multinomial Theorem in (1− m2(u))3, simplified the
Ferrers potential expression.

The multinomial expansion used was:

(1 − m2(u))3 =

(
1 − x2

a2 + u
− y2

b2 + u
− z2

c2 + u

)3

= ∑
i+j+k+l=3,

i,j,k,l≥0

3!
i!j!k!l!

1i
(

x2

a2 + u

)j ( y2

b2 + u

)k ( z2

c2 + u

)l

(−1)2−i

= ∑
i+j+k+l=3,

i,j,k,l≥0

3!
i!j!k!l!

(−1)2−ix2jy2kz2l .
(

1
a2 + u

)j ( 1
b2 + u

)k ( 1
c2 + u

)l

(3)

Which, replacing in the Equation (2), implies

ΦBar = −πGabc
ρc

3

∫ ∞

λ

du
∆(u)

(1 − m2(u))3

= −πGabc
ρc

3

∫ ∞

λ

du
∆(u)

 ∑
i+j+k+l=3,

i,j,k,l≥0

3!
i!j!k!l!

(−1)2−ix2jy2kz2l .
(

1
a2 + u

)j ( 1
b2 + u

)k ( 1
c2 + u

)l

 (4)

That implies

ΦBar = −πGabc
ρc

3 ∑
i+j+k+l=3,

i,j,k,l≥0

3!
i!j!k!l!

(−1)2−ix2jy2kz2l .
∫ ∞

λ

du
∆(u)

((
1

a2 + u

)j ( 1
b2 + u

)k ( 1
c2 + u

)l
)

(5)

And so

ΦBar = −πGabcρc ∑
i+j+k+l=3,

i,j,k,l≥0

2!
i!j!k!l!

(−1)2−ix2jy2kz2l .
∫ ∞

λ

du
∆(u)

(
1

(a2 + u)j(b2 + u)k(c2 + u)l

)
(6)

Taking

Wjkl =
∫ ∞

λ

du
∆(u)

1
(a2 + u)j(b2 + u)k(c2 + u)l (7)
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where Wjkl depends on λ. We can write the potential1 given by the Equation (2) as

ΦBar = −πGabcρc ∑
i+j+k+l=3,

i,j,k,l≥0

2!
i!j!k!l!

(−1)2−ix2jy2kz2lWjkl (8)

The calculations to obtain the Wjkl values depends on first and second order elliptic integrals and
a extensive mathematics. Such calculations, which can be checked in [6], will not be exposed here.

Finally, after all the algebraic manipulation presented, we have that the Ferrers potential can be
compacted in the following polynomial way:

ΦBar =
C
6
(W000 − 6x2y2z2W111 + x2[x2(3W200 − x2W300)

+y2W120 − x2W210)− W100)] + y2[y2(3W020 − y2W030)

+3(z2(2W011 − z2W012 − y2W021)− W010)] + z2[z2(3W002 − z2W003)

+3(x2(2W101 − x2W201 − z2W102)− W001)])

(9)

where C = 2πGabcρc.

3. The Partial Derivatives

The Wjkl values depend on λ and λ depend on x, y and z. Thus, to calculate the partial

derivatives of this potential, it is necessary the derivatives
∂Wjkl

∂x
=

∂Wjkl

∂λ

∂λ

∂x
,

∂Wjkl

∂y
=

∂Wjkl

∂λ

∂λ

∂y

and
∂Wjkl

∂z
=

∂Wjkl

∂λ

∂λ

∂z
.

To this end, the quantities
∂Wjkl

∂λ
,

∂λ

∂x
,

∂λ

∂y
and

∂λ

∂z
are:

∂Wjkl

∂λ
= − 1

(a2 + λ)j+ 1
2 (b2 + λ)k+ 1

2 (c2 + λ)l+ 1
2

(10)

∂λ

∂x
=

2x
a2 + λ

x2

(a2 + λ)2 +
y2

(b2 + λ)2 +
z2

(c2 + λ)2

(11)

∂λ

∂y
=

2y
b2 + λ

x2

(a2 + λ)2 +
y2

(b2 + λ)2 +
z2

(c2 + λ)2

(12)

∂λ

∂z
=

2z
c2 + λ

x2

(a2 + λ)2 +
y2

(b2 + λ)2 +
z2

(c2 + λ)2

(13)

Also note that
∂ΦBar

∂λ
= 0.

Taking into account the facts described in the previous lines, the partial derivatives of this potential
are presented below. The first derivatives were introduced by Pfenniger [6] and will be presented here
for completeness. The main contribution of this paper is to present the second derivatives.

1 At this point the reader may notice a small typing error in the text presented by [6], where the signal from Equation (8)
is changed.
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∂ΦBar
∂x

= −Cx[W100 + x2(x2W300 + 2(y2W210 − W200))

+y2(y2W120 + 2(z2W111 − W110))

+z2(z2W102 + 2(x2W201 − W101))]

(14)

∂ΦBar
∂y

= −Cy[W010 + x2(x2W210 + 2(y2W120 − W110))

+y2(y2W030 + 2(z2W021 − W020))

+z2(z2W012 + 2(x2W111 − W011))]

(15)

∂ΦBar
∂z

= −Cz[W001 + x2(x2W201 + 2(y2W111 − W101))

+y2(y2W021 + 2(z2W012 − W011))

+z2(z2W003 + 2(x2W102 − W002))]

(16)

∂2ΦBar
∂x∂x

= −C[W100 + x2(5x2W300 + 6(y2W210 − W200))

+y2(y2W120 + 2(z2(W111 − W110))

+z2(z2W102 + 6x2W201 − 2W101)]

−∂λ

∂x
Cx[

∂W100

∂λ
+ x2(x2 ∂W300

∂λ
+ 2(y2 ∂W210

∂λ
− ∂W200

∂λ
))

+y2(y2 ∂W120

∂λ
+ 2(z2 ∂W111

∂λ
− ∂W110

∂λ
))

+z2(z2 ∂W102

∂λ
+ 2(x2 ∂W201

∂λ
− ∂W101

∂λ
))]

(17)

∂2ΦBar
∂x∂y

= −4Cxy(x2W210 + y2W120 + z2W111 − W110)

−∂λ

∂y
Cx[

∂W100

∂λ
+ x2(x2 ∂W300

∂λ
+ 2(y2 ∂W210

∂λ
− ∂W200

∂λ
))

+y2(y2 ∂W120

∂λ
+ 2(z2 ∂W111

∂λ
− ∂W110

∂λ
))

+z2(z2 ∂W102

∂λ
+ 2(x2 ∂W201

∂λ
− ∂W101

∂λ
))]

(18)

∂2ΦBar
∂x∂z

= −4Cxz(x2W201 + y2W111 + z2W102 − W101)

−∂λ

∂z
Cx[

∂W100

∂λ
+ x2(x2 ∂W300

∂λ
+ 2(y2 ∂W210

∂λ
− ∂W200

∂λ
))

+y2(y2 ∂W120

∂λ
+ 2(z2 ∂W111

∂λ
− ∂W110

∂λ
))

+z2(z2 ∂W102

∂λ
+ 2(x2 ∂W201

∂λ
− ∂W101

∂λ
))]

(19)
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∂2ΦBar
∂y∂x

= −4Cyx(x2W210 + y2W120 + z2W111 − W110)

−∂λ

∂y
Cy[

∂W010

∂λ
+ x2(x2 ∂W210

∂λ
+ 2(y2 ∂W120

∂λ
− ∂W110

∂λ
))

+y2(y2 ∂W030

∂λ
+ 2(z2 ∂W021

∂λ
− ∂W020

∂λ
))

+z2(z2 ∂W012

∂λ
+ 2(x2 ∂W111

∂λ
− ∂W011

∂λ
))]

(20)

∂2ΦBar
∂y∂y

= −C[W010 + x2(x2W210 + 6(y2W120 − W110))

+y2(5y2W030 + 6z2W021 − 6W020)

+z2(2x2W111 + z2W012 − 2W011)]

−∂λ

∂y
Cy[

∂W010

∂λ
+ x2(x2 ∂W210

∂λ
+ 2(y2 ∂W120

∂λ
− ∂W110

∂λ
))

+y2(y2 ∂W030

∂λ
+ 2(z2 ∂W021

∂λ
− ∂W020

∂λ
))

+z2(z2 ∂W012

∂λ
+ 2(x2 ∂W111

∂λ
− ∂W011

∂λ
))]

(21)

∂2ΦBar
∂y∂z

= −4Cyz(x2W111 + y2W021 + z2W012 − W011)

−∂λ

∂z
Cy[

∂W010

∂λ
+ x2(x2 ∂W210

∂λ
+ 2(y2 ∂W120

∂λ
− ∂W110

∂λ
))

+y2(y2 ∂W030

∂λ
+ 2(z2 ∂W021

∂λ
− ∂W020

∂λ
))

+z2(z2 ∂W012

∂λ
+ 2(x2 ∂W111

∂λ
− ∂W011

∂λ
))]

(22)

∂2ΦBar
∂z∂x

= −4Czx(x2W201 + y2W111 + z2W102 − W101)

−∂λ

∂x
Cz[

∂W001

∂λ
+ x2(x2 ∂W201

∂λ
+ 2(y2 ∂W111

∂λ
− ∂W101

∂λ
))

+y2(y2 ∂W021

∂λ
+ 2(z2 ∂W012

∂λ
− ∂W011

∂λ
))

+z2(z2 ∂W003

∂λ
+ 2(x2 ∂W102

∂λ
− ∂W002

∂λ
))]

(23)

∂2ΦBar
∂z∂y

= −4Czy(x2W111 + y2W021 + z2W012 − W011)

−∂λ

∂y
Cz[

∂W001

∂λ
+ x2(x2 ∂W201

∂λ
+ 2(y2 ∂W111

∂λ
− ∂W101

∂λ
))

+y2(y2 ∂W021

∂λ
+ 2(z2 ∂W012

∂λ
− ∂W011

∂λ
))

+z2(z2 ∂W003

∂λ
+ 2(x2 ∂W102

∂λ
− ∂W002

∂λ
))]

(24)
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∂2ΦBar
∂z∂z

= −C[W001 + x2(x2W201 + 2y2W111 − 2W101)

+y2(y2W021 + 6z2W012 − 2W011

+z2(5z2W003 + 6x2W201 − 6W002)]

−∂λ

∂y
Cz[

∂W001

∂λ
+ x2(x2 ∂W201

∂λ
+ 2(y2 ∂W111

∂λ
− ∂W101

∂λ
))

+y2(y2 ∂W021

∂λ
+ 2(z2 ∂W012

∂λ
− ∂W011

∂λ
))

+z2(z2 ∂W003

∂λ
+ 2(x2 ∂W102

∂λ
− ∂W002

∂λ
))]

(25)

We invite the reader to know our work [3] where we use all the equations shown in this text to
study the influence of galactic bars on the stability of the orbits supported by them. In order to write
this study, all these equations were exhaustively tested.

4. Conclusions

In this text, we have studied some of the algebraic manipulations made by Pfenniger in the Ferrers
potential, in order to make this potential more accessible in a polynomial form.

We also calculated the partial derivatives of this potential in an algebraic and explicit way.
Such derivatives are laborious despite the polynomial form. Thus, those who wish to implement these
derivatives in the motion or variational equations to study the stellar orbits dynamics in analytical
potentials, for example, can use the above analytical form instead of numerical methods.
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