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Abstract: We have been performing multi-wavelength monitoring of a sample of γ-ray blazars
since the launch of the Fermi Gamma-ray Space Telescope in 2008. We present γ-ray and optical light
curves for several quasars and BL Lac objects from the sample to illustrate different patterns of
variability. We investigate correlations between γ-ray and R-band light curves and, if these are
statistically significant, determine delays between variations at the two wavebands. Such time delays
can reveal the relative locations of the emitting regions in AGN jets and the origin of the high-energy
photons. We present preliminary results of this analysis. Of the 29 blazars with sufficient time
coverage, 17 display a significant, singular, correlated time lag when tested over the entire 7-year
period. Of these sources, the six that exhibit a consistent time lag across a majority of epochs of high
activity have lags of 0 ± 7 days; the 11 without consistency across epochs of high activity generally
display longer mean lags, with γ-ray leading optical. Eleven sources display no significant singular
correlation over either the entire 7-year period or across shorter intervals. No significant difference is
apparent between the BL Lac objects and FSRQs. Even after 7 years of monitoring, our correlation
analysis remains plagued with uncertainties due to insufficient data.
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1. Introduction

We present preliminary results from a correlation analysis on the 13 BL Lac objects and 21 quasars
monitored by the Boston University blazar team and collaborators since August 2008. Here, we
focus on correlations between γ-ray and optical light curves. The γ-ray light curves at 0.1–200 GeV
are constructed from data provided by the Fermi Large Area Telescope (LAT). Optical light curves
are represented by data in R-band, which has the best time coverage in observations combined
from different telescopes (Table 1 presents the legend for the observatories.) Most correlation
studies of blazars have focused on singular events of contemporaneous multi-wavelength outbursts.
With a 7-year accumulation of data, we examine correlations over multiple periods of high activity in
a number of blazars, testing for evidence of consistency.

Prevailing models for γ-ray production (e.g., [1–3]) explain the origin of γ-rays by inverse
Compton upscattering of infrared to ultraviolet photons by relativistic electrons that also emit
synchrotron optical—ultraviolet photons. The sources of seed photons and locations of the emission
zones continue to be debated (e.g., [4]). Therefore, correlation analysis—especially determination of
delays between variations—between γ-ray and optical light curves is key to understanding where and
how high-energy emission is produced in blazar jets. It is particularly interesting to determine whether
there are consistent correlations among different blazars and for different events in an individual blazar.

Table 1. List of Observatories Providing Measurements for this Study.

Symbol Telescope

Shape Color Observatory (Telescope or
Monitoring Program) and Location Diameter Wavebands

Space-based
3 black Fermi Gamma Ray Space Telescope (LAT) γ-ray (0.1 GeV–200 GeV)

Ground-based
× indigo Lowell Observatory (Perkins Telescope), Flagstaff, Arizona a 1.83 m B, V, R, I
/ light blue Crimean Astrophysical Observatory (AZT-8) b 0.70 m B, V, R, I
O green Observatorio del Roque de los Muchachos 2.00 m R

(Liverpool Telescope), La Palma, Spain a

J orange Calar Alto Observatory (MAPCAT), Andalucía, Spain c 2.20 m R
� blue Cerro Tololo Inter-American Observatory (SMARTS), 0.90–1.50 m B, V, R, J, K

Cerro Tololo, Chile d

. red St. Petersburg University (LX-200), St. Petersburg, Russia b 0.40 m B, V, R, I

a: Data reduction is performed with the ESO software package MIDAS (European Southern Observatory,
Garching bei M ünchen, Germany); refer to [5]; b: Data reduction details provided in [6]; c: Monitoring
AGN with Polarimetry at the Calar Alto Telescopes (MAPCAT); data reduction details provided in [7];
d: The Small and Moderate Aperture Research Telescope System (SMARTS) daily monitoring program;
refer to http://www.astro.yale.edu/smarts/.

2. Results

In the external-radiation inverse Compton model, we expect no optical/high-energy lag, while in
the synchrotron self-Compton model, light-travel delays of the seed photons can cause the high-energy
flux to lag [8]. A delay of optical variations with respect to γ-rays suggests stratification of the emission
region with respect to energy. For this analysis, we limit our lag times to ±50 days, since for longer
delays aliasing is problematic.

For each blazar, we classify the results as follows: (1) The object displays a statistically
significant, single correlation when tested over the entire 7-year period (“Overall Correlation”, OC);
(2) The majority of individual epochs of high activity display a similar correlation (“Consistent
Individual Correlations”, CIC).

Table 2 displays the preliminary results of our analysis. We quote the time lag as determined by the
z-transformed discrete correlation function (ZDCF) maximum likelihood method [9] if the bootstrap
analysis also gives a significance exceeding a 2-σ probability. Five sources (0528+134, 1127-145,
1406-076, 1611+343, and 3C446) did not have sufficient coverage of data to determine correlations.
From each classification, we display one object’s light curves and correlation results in Figures 1–4.

http://www.astro.yale.edu/smarts/
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Figure 1. Sample light curves and correlation plots of 3C454.3. Panels (a) contain the light curves of the
data across energy bands. The sources of the data are indicated by symbols and colors identified in
Table 1. Vertical dashed lines indicate the epochs selected for analysis. Panels (b) contain the results
of the correlation analysis over the entire period of available data and Panels (c) display a series of
correlation results analyzed over shorter periods (as indicated in Panels (a)). The highest significantly
correlated time lags from the bootstrap analysis are labeled in red if greater than 3σ, black if exceeding
2σ. Dotted lines are ±2σ.
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Figure 2. Sample light curves and correlation plots of 3C279. See Figure 1 for details.
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Figure 3. Sample light curves and correlation plots of OJ287. See Figure 1 for details.
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Figure 4. Sample light curves and correlation plots of Mkn501. See Figure 1 for details.
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Table 2. Correlation Classification. Time lags in days are in parentheses; a negative value denotes γ-ray
leading optical variations.

Consistent Individual Correlations: Consistent Individual Correlations:

−−Yes −− −−No − −
BL Lac FSRQ BL Lac FSRQ

Overall Correlation: Yes

0716+714 (-1) 1633+382 (0) 0235+164 (-6) 0336-019 (-10)
BL Lac (-1) 1730-130 (2) 0954+658 (-1) 0420-014 (-12)

CTA102 (0) 1219+285 (-11) 0827+243 (-22)
3C454.3 (0) 1749+096 (0) 1222+216 (-23)

Mkn421 (-13) 1622-297 (+1)
3C279 (-43)

Overall Correlation: No

OJ287 (-1) 0735+178 0836+710
0829+046 1156+295
1055+018 1308+326
Mkn501 1510-089
3C66A 3C273

3C345

Although the ZDCF algorithm has been shown to effectively determine correlations of unevenly
sampled data, both the binning of the Fermi data and the gaps in optical observations affect the
resolution of lag times. Most of our Fermi data during periods of high activity have been binned over
1–3 days, low activity over 7 days. The uncertainty of a time lag is derived as the FWHM of the ZDCF
peak and cannot be less than the binning interval.

3. Method

We perform the correlation analysis using the ZDCF and Maximum Likelihood PLIKE
algorithm [10]. We verify the significance of the correlation by comparing with the statistics of
correlations of 3000 pairs of bootstrapped artificial light curves (ALC).

• Each object’s active periods are identified based on the light curve behavior (details can be found
in [11]).

• Most γ-ray active periods with fluxes exceeding 〈Fν〉 + 3σwν are re-reduced, allowing the photon
index to vary and binning on a shorter time interval. Optical data are binned into 1-day periods.

• For each source, the ZDCF is calculated for the entire time span of observations and for each
active period.

• Each ALC is built by randomly selecting and randomly placing active periods, preserving the
observational dates by either using the closest observed point, if within 7 days, or interpolating
the data.

• After the active periods have been placed in the ALC, the remaining observational fluxes are
randomly selected and randomly placed on the remaining observational dates.

• The ALCs are randomly paired and sent through the ZDCF for analysis.
• Results of the ZDCF analysis of ALCs are used to derive 1-, 2-, and 3-σ probabilities to obtain

a given coefficient of correlation by chance.

4. Summary

Our preliminary results reveal a statistically significant correlation for 7-year light curves in seven
BL Lacs and 10 FSRQs. Generally, the 17 sources exhibiting a consistent OC correspond to either γ-ray
leading optical outbursts or zero time lag within the uncertainty. The six sources consistent in both OC
and CIC display lag times of 0 ± 7 days, while the 11 sources consistent in OC but not CIC generally
have longer lag times.
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In many cases, the classification is somewhat uncertain. For example, 1510-089 exhibits statistically
significant correlations at two lag times (−12 days and 1 day), although one also could classify it as
a single, broad correlation. However, the individual-period plots display patterns that support each
peak. OJ287 displays an apparent correlation of −1 day, but it is not statistically significant according
to our bootstrap analysis. Many objects (e.g., Mrk421) have prolonged periods of high γ-ray activity,
causing broad correlations over a range of lag times. No significant difference in behavior is seen
between the BL Lacs and the quasars.
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