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Abstract: We explore the possible cosmological consequences of a running Newton’s
constant, G(2), as suggested by the non-trivial ultraviolet fixed point scenario for Einstein
gravity with a cosmological constant term. Here, we examine what possible effects a
scale-dependent coupling might have on large-scale cosmological density perturbations.
Starting from a set of manifestly covariant effective field equations, we develop the linear
theory of density perturbations for a non-relativistic perfect fluid. The result is a modified
equation for the matter density contrast, which can be solved and thus provides an estimate
for the corrections to the growth index parameter, γ.
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1. Introduction

Recent years have seen the development of a bewildering variety of alternative theories of gravity,
in addition to the more traditional ones, such as scalar-tensor, higher derivative and dilaton gravities,
just to mention a few examples. Many of these theories eventually predict some level of deviation from
classical gravity, which is often parametrized either by a suitable set of post-Newtonian parameters
or, more recently, by the introduction of a slip function [1–4]. The latter has been quite useful in
describing deviations from classical General Relativity (GR) and specifically from the standard ΛCDM
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(Lambda Cold Dark Matter) model, when analyzing the latest cosmological CMB (Cosmic Microwave
Background), weak lensing, supernovae and galaxy clustering data.

In this work, we will focus on the systematic analysis of departures from GR in the growth history of
matter perturbations arising from a quantum running of G, within the narrow context of the non-trivial
ultraviolet fixed point scenario for Einstein gravity with a cosmological term. Thus, instead of looking at
deviations from GR at very short distances, due to new interactions, such as the ones suggested by string
theories [5,6], we will be considering here infrared effects, which could therefore become manifest at
very large distances. We will argue here that such effects are in principle calculable and could therefore
be confronted with present and future astrophysical observations. The classical theory of small density
perturbations is by now well developed in standard textbooks, and the resulting theoretical predictions for
the growth exponents are simple to state and well understood. Except possibly on the very largest scales,
where the data so far is still rather limited, the predictions agree quite well with current astrophysical
observations. Here, we will be interested in computing and predicting possible small deviations in the
growth history of matter perturbations and specifically in the values of the growth exponents, arising
from a very specific scenario, namely a weakly scale-dependent gravitational coupling, whose value
very gradually increases with distance. The specific nature of the scenario we will be investigating here
is motivated by the treatment of field-theoretic models of quantum gravity, based on the Einstein action
with a bare cosmological term. Its long-distance scaling properties are derived from the existence of
a non-trivial ultraviolet fixed point of the renormalization group in Newton’s constant, G [7–21].

The first step in analyzing the consequences of a running of G is thus to re-write the expression for
G(k2) in a coordinate-independent way, either by the use of a non-local Vilkovisky-type effective gravity
action [22–25] or by the use of a set of consistent effective field equations. In going from momentum
to position space, one employs k2 → −2, which gives for the quantum-mechanical running of the
gravitational coupling the replacement G → G(2). One then finds that the running of G is given,
in the vicinity of the Ultra Violet (UV) fixed point, by:

G(2) = G0

[
1 + c0

(
1

ξ22

)1/2ν

+ . . .

]
(1)

where 2 ≡ gµν∇µ∇ν is the covariant d’Alembertian, and the dots represent higher order terms in an
expansion in 1/(ξ22). Current evidence from Euclidean lattice quantum gravity points toward c0 > 0

(implying infrared growth) and ν = 1
3

[15–17]. It is well known that for theories with a non-trivial
ultraviolet fixed point [26–31], the long distance (and thus infrared) universal scaling properties are
uniquely determined, up to subleading correction to exponents and scaling amplitudes, by the (generally
nontrivial) scaling dimensions obtained by renormalization group methods in the vicinity of the UV fixed
point [32–36]. These sets of results form the basis for universal predictions in the non-linear sigma
model [37–39], which provides today the second most accurate test of quantum field theory [40], after
the g − 2 prediction for QED (Quantum Electro-Dynamics) (for a comprehensive set of references,
see [8,34], and the references therein). It is also an established fact of modern RG (Renormalization
Group) theory that in lattice QCD (Quantum Chromo-Dynamics) the scaling behavior of the theory
in the vicinity of the asymptotic freedom UV fixed point unambiguously determines the universal
non-perturbative long distance scaling properties of the theory [41], as quantified by hadron masses,
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vacuum condensates, decay amplitudes, anomalous baryon magnetic moments and the QCD string
tension [42,43].

Within the quantum-field-theoretic renormalization group treatment, the quantity, ξ, arises as an
integration constant of the Callan–Symanzik renormalization group equations. One challenging issue,
and of great relevance to the physical interpretation of the results, is a correct identification of the
renormalization group invariant scale, ξ. A number of arguments can be given in support of the
suggestion that the infrared scale, ξ (analogous to the ΛMS of QCD), can, in fact, be very large, even
cosmological, in the gravity case (see, for example, [8] and references therein). From these arguments,
one would then first infer that the constant, G0, can, to a very close approximation, be identified with the
laboratory value of Newton’s constant,

√
G0 ∼ 1.6 × 10−33 cm. The appearance of the d’Alembertian

2 in the running of G then naturally leads to a set of non-local field equations; instead of the ordinary
Einstein field equations with constantG, one is now led to consider the modified effective field equations:

Rµν − 1
2
gµν R + λ gµν = 8π G(2)Tµν (2)

with a new non-local term due to the G(2). By being manifestly covariant, they still satisfy some
of the basic requirements for a set of consistent field equations incorporating the running of G. Not
unexpectedly, though, the new nonlocal equations are much harder to solve than the original classical
field equations for constant G.

As stated above, physically, it would seem at first, based on the perturbative treatment alone [7,18],
that the non-perturbative scale, ξ, could take any value (including perhaps a very small one), which
could then possibly preclude any observable quantum effects in the foreseeable future. In perturbation
theory, the reason for this is that the non-perturbative scale, ξ, appears, as in gauge theories, as an
integration constant of the renormalization group equations and is therefore not fixed by perturbation
theory alone. However, a number of recent non-perturbative results for the gravitational Wilson loop on
the Euclidean lattice at strong coupling, giving an area law, and their subsequent interpretation in light
of the observed large-scale semiclassical curvature [8,44–46], would suggest otherwise: namely that the
non-perturbative scale, ξ, appears, in fact, to be related to macroscopic curvature. From astrophysical
observation, the average curvature on very large scales, or, stated in somewhat better terms, the measured
cosmological constant, λ, is very small. This would then suggest that the new scale, ξ, can be very large,
even cosmological, and comparable to the Hubble scale, 1/ξ2 ' λ/3. This would then give a more
concrete semi-quantitative estimate for the scale in the G(2) of Equation (1), namely ξ ∼ 1/

√
λ/3 ∼

1.51× 1028 cm. Note that in common astronomical units (Mpcs), the reference scale appearing in G(2)

is then of the order of ξ ' 4890 Mpc.
A scale-dependent Newton’s constant is already expected to lead to small modifications of the

standard cosmological solutions to the Einstein field equations. The starting point is the quantum
effective field equations of Equation (2), withG(2) defined in Equation (1). In the Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) framework, these are applied to the standard homogeneous isotropic metric.
In the following, we will mainly consider the case k = 0 (a spatially flat universe). The next step,
therefore, is a systematic examination of the nature of the solutions to the full effective field equations,
with G(2) involving the relevant covariant d’Alembertian operator 2 = gµν ∇µ∇ν . To start the
process, one assumes, for example, that the matter, Tµν , has the perfect fluid form:
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Tµν = [ p(t) + ρ(t) ]uµ uν + gµν p(t) (3)

for which one needs to compute the action of 2n on Tµν and, then, analytically continue the answer to
negative fractional values of n = −1/2ν. Even in the simplest case, with G(2) acting on a scalar, such
as the trace of the energy-momentum tensor, T λ

λ , one finds a rather unwieldy expression.
A more general calculation [47] shows that a non-vanishing pressure contribution is generated in

the effective field equations, even if one initially assumes a pressureless fluid, p(t) = 0. After a somewhat
lengthy derivation, one obtains, for a universe filled with non-relativistic matter (p = 0), a set of effective
Friedmann equations incorporating the running of G. It was also noted in [47] that the effective field
equations with a running G can be recast in an equivalent, but slightly more appealing, form by defining
a vacuum polarization pressure, pvac, and density, ρvac, such that, for the FLRW background, one has:

ρvac(t) =
δG(t)

G0

ρ(t), pvac(t) =
1

3

δG(t)

G0

ρ(t) (4)

with G(t) given by:

G(t) ≡ G0

(
1 +

δG(t)

G0

)
= G0

[
1 + ct

(
t

t0

)1/ν

+ . . .

]
(5)

The explicit computations also shows that ct is of the same order as c0 in Equation (1), and t0 = ξ [47];
in the quoted reference, it was estimated ct = 0.450 c0 for the tensor box operator.

Then, the source term in the effective tt field equation can be regarded as a combination of
the two density terms ρ(t) + ρvac(t), while the effective rr equation involves the new vacuum
polarization pressure term, pvac(t). Just as one introduces the parameter, w, describing the matter
equation of state, p(t) = w ρ(t), with w = 0 for non-relativistic matter, one can do the same for the
remaining contribution by setting pvac(t) = wvac ρvac(t). This more compact notation allows one to
finally re-write the field equations for the FLRW background (and k = 0) as:

3
ȧ2(t)

a2(t)
= 8π G0

(
1 +

δG(t)

G0

)
ρ̄(t) + λ

ȧ2(t)

a2(t)
+ 2

ä(t)

a(t)
= −8π G0

(
w + wvac

δG(t)

G0

)
ρ̄(t) + λ (6)

2. Relativistic Treatment of Matter Density Perturbations

Besides the modified cosmic scale factor evolution just discussed, the running of G(2) given in
Equation (1) also affects the nature of matter density perturbations on very large scales. In computing
these effects, it is customary to introduce a perturbed metric of the form:

dτ 2 = dt2 − a2 (δij + hij) dx
idxj (7)

with a(t) the unperturbed scale factor and hij(x, t) a small metric perturbation; and h00 = hi0 = 0 by
the choice of coordinates. As will become clear later, we will mostly be concerned here with the trace
mode, hii ≡ h, which determines the nature of matter density perturbations. After decomposing the
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matter fields into background and fluctuation contribution, ρ = ρ̄ + δρ, p = p̄ + δp, and v = v̄ + δv, it
is customary in these treatments to expand the density, pressure and metric trace perturbation modes in
spatial Fourier modes, δρ(x, t) = δρq(t) eiq ·x and similarly for δp(x, t), δv(x, t) and hij(x, t), with q

the comoving wavenumber.
The first equation one obtains is the zeroth (in the fluctuations) order energy conservation in

the presence of G(2), which reads:

3
ȧ(t)

a(t)

[
(1 + w) + (1 + wvac)

δG(t)

G0

]
ρ̄(t) +

˙δG(t)

G0

ρ̄(t) +

(
1 +

δG(t)

G0

)
˙̄ρ(t) = 0 (8)

It will be convenient in the following to solve the energy conservation equation not for ρ̄(t), but instead
for ρ̄(a). This requires that, instead of using the expression for G(t) in Equation (5), one uses the
equivalent expression for G(a):

G(a) = G0

(
1 +

δG(a)

G0

)
, with

δG(a)

G0

≡ ca

(
a

a0

)γν
+ . . . (9)

In this last expression, the power is γν = 3/2ν, since from Equation (5), one has for non-relativistic
matter a(t)/a0 ≈ (t/t0)2/3 in the absence of a running G. In the following, we will almost exclusively
consider the case ν = 1

3
[15–17] for which, therefore, γν = 9/2. Then, in the above expression, ca ≈ ct

if a0 is identified with a scale factor appropriate for a universe of size ξ; to a good approximation, this
should correspond to the universe “today”, with the relative scale factor customarily normalized at such
a time to a/a0 = 1. Consequently, and with the above proviso, the constant ca in Equation (9) can safely
be taken to be of the same order as the constant, c0, appearing in the original expressions for G(2) in
Equation (1). The solution to Equation (8) for wvac = 1

3
can then be written as:

ρ̄(a) = ρ̄0

(a0

a

)3

 1 + ca

1 + ca

(
a
a0

)γν
(1+γν)/γν

(10)

with ρ̄(a) normalized, so that ρ̄(a = a0) = ρ̄0. For ca = 0, the above expression reduces, of course, to
the usual result for non-relativistic matter.

The zeroth order field equations with the running of G included were already given in Equation (6).
The next step consists in obtaining the equations that govern the effects of small field perturbations.
These equations will involve, apart from the metric perturbation, hij , the matter and vacuum polarization
contributions. The latter arise from:(

1 +
δG(2)

G0

)
Tµν = Tµν + T vacµν (11)

with a nonlocal T vacµν . Fortunately, to zeroth order in the fluctuations, the results of [47–49] indicated
that the modifications from the nonlocal vacuum polarization term could simply be accounted for by the
substitution ρ̄(t)→ ρ̄(t) + ρ̄vac(t) and p̄(t)→ p̄(t) + p̄vac(t). Here, we will apply this last result to the
small field fluctuations, as well, and set:

δρq(t)→ δρq(t) + δρq vac(t), δpq(t)→ δpq(t) + δpq vac(t) (12)
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The underlying assumptions is, of course, that the equation of state for the vacuum fluid still remains
roughly correct when a small perturbation is added. Furthermore, just like we had p̄(t) = w ρ̄(t) and
p̄vac(t) = wvac ρ̄vac(t) with wvac = 1

3
, we now write for the fluctuations:

δpq(t) = w δρq(t), δpq vac(t) = wvac δρq vac(t) (13)

at least to leading order in the long wavelength limit, q→ 0. In this limit, we then have simply:

δp(t) = w δρ(t), δpvac(t) = wvac δρvac(t) ≡ wvac
δG(t)

G0

δρ(t) (14)

with G(t) given in Equation (5), and we have used Equation (4), now applied to the fluctuation, δρvac(t),

δρvac(t) =
δG(t)

G0

δρ(t) + . . . (15)

where the dots indicate possible additional O(h) contributions. Indeed, a bit of thought reveals that
the above treatment is incomplete, since G(2) in the effective field equation of Equation (2) contains,
for the perturbed RW (Robertson-Walker) metric of Equation (7), terms of order hij , which need to be
accounted for in the effective T µνvac. Consequently, the covariant d’Alembertian has to be Taylor expanded
in the small field perturbation, hij , 2(g) = 2(0) + 2(1)(h) +O(h2), and similarly for G(2):

G(2) = G0

[
1 +

c0

ξ1/ν

(
1

2(0) + 2(1)(h) +O(h2)

)1/2ν

+ . . .

]
(16)

To compute the correction of O(h) to δρvac(t), one needs to consider the relevant term in the expansion
of (1 + δG(2)/G0)Tµν , which we write as:

− 1

2 ν

1

2(0)
·2(1)(h) · δG(2(0))

G0

· Tµν (17)

This last form allows us to use the results obtained previously for the FLRW case in [47–49], namely:

δG(2(0))

G0

Tµν = T vacµν (18)

with here T vacµν = [pvac(t) + ρvac(t)]uµ uν + gµν pvac(t), and (see Equation (4)), to zeroth order in h,

ρvac(t) =
δG(t)

G0

ρ̄(t) pvac(t) = wvac
δG(t)

G0

ρ̄(t) (19)

with wvac = 1
3
. Therefore, in light of the results of [47–49], the problem has been dramatically reduced

to just computing the much more tractable expression:

− 1

2 ν

1

2(0)
·2(1)(h) · T vacµν (20)

Still, in general, the resulting expression for 1
2(0) ·2(1)(h) is rather complicated if evaluated for arbitrary

functions. Here, we will resort, for lack of better insights, to a treatment where one assumes a harmonic
time dependence for the metric trace fluctuation h(t) = h0 e

iωt and similarly for a(t) = a0 e
iΓt

and ρ(t) = ρ0 e
iΓt. In the following, we will assume that the complex functions, ω(t) and Γ(t),
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can be treated as slowly varying, with the time fluctuation scale in h comparatively smaller than
the time scales relevant for the background quantities, a and ρ. One should then be allowed to
do a derivative (or Wentzel-Kramers-Brillouin (WKB)) expansion on ω(t) and Γ(t), neglecting in
a first approximation the derivative terms. In this way, one can separate fast (h) from slow (a,
ρ, δG) modes, so that, for example, ḣ/h � ȧ/a. The specific nature of the time dependence
of h(t) will then depend on whether the slowly varying functions, Λ and ω, are purely real or
imaginary. One useful result in this context is the fact that, as shown below, the combination that
is relevant here, namely (ȧ/a) (h/ḣ, can be traded for the growth exponent f(a) = dlogh/dloga.
In the limit ω � Γ, corresponding to ḣ/h� ȧ/a, one finds for the fluctuation, δρvac(t):

δρvac(t) =
δG(t)

G0

δρ(t) +
1

2 ν
ch
δG(t)

G0

h(t) ρ̄(t) (21)

The O(h) correction factor, ch, for the tensor box is then found to be:

ch =
11

3

ȧ

a

h

ḣ
(22)

with all other off-diagonal matrix elements vanishing. Furthermore, one finds to this order, but only for
the specific choice wvac = 1

3
in the zeroth order T vacµν , δpvac(t) = 1

3
δρvac(t), i.e., the O(h) correction

preserves the original result wvac = 1
3
.

As far as the magnitude of the correction, ch, in Equation (22), one can argue that from Equation (23),
one can relate the combination (ḣ/h)(a/ȧ) to the growth index, f(a),

ḣ

h

a

ȧ
=

∂ log h(a)

∂ log a
=

∂ log δ(a)

∂ log a
≡ f(a) (23)

where δ(a) is the matter density contrast and f(a) the known density growth index [50]. Then, in the
absence of a running G (which is all that is needed here, to the order one is working), an explicit form
for f(a) is known in terms of suitable derivatives of a Gauss hypergeometric function. These can then
be inserted into Equation (22). Alternatively, one can make use again of the fact that for a scale factor
referring to “today” a/a0 ≈ 1 and for a matter fraction Ω ≈ 0.25, one knows that f(a = a0) ' 0.4625,
and thus, in Equation (21), ch ' (11/3)× 2.1621 = +7.927. Furthermore, as an exercise, one can redo
the whole calculation in the much simpler scalar box acting on the T λ

λ case, where one finds the smaller
value ch ' +2.162.

Finally, one can do the same analysis in the opposite, but less physical, limit ω � Γ or ḣ/h� ȧ/a.
However, this second limit is, in our opinion, less physical, because of the fact that, now, the background
is assumed to be varying more rapidly in time than the metric perturbation itself, ȧ/a � ḣ/h.
Furthermore, one disturbing, but not entirely surprising, general aspect of the whole calculation in this
second ω � Γ limit is its extreme sensitivity as far as magnitudes and signs of the results are concerned,
to the set of assumptions initially made about the time development of the background. For the reasons
mentioned, in the following, we will no longer consider this limit of rapid background fluctuations
any further.

To summarize, the results for a scalar box and for a very slowly varying background, ḣ/h� ȧ/a,
give the O(h) corrected expression for δρvac(t) in Equation (21) and δpvac(t) = wvac δρvac(t) with
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ch ' +2.162, while the tensor box calculation, under essentially the same assumptions, gives the
somewhat larger result ch ' +7.927. From now on, these will be the only two choices we shall
consider here.

The next step in the analysis involves the derivation of the energy-momentum conservation to first
order in the fluctuations and a derivation of the relevant field equations to the same order. After that,
energy conservation is used to eliminate the h field entirely and, thus, obtain a single equation for
the matter density fluctuation, δ. First, we will look here at the implications of energy-momentum
conservation, ∇µ

(
Tµν + T vacµν

)
= 0, to first order in the fluctuations. After defining the matter density

contrast, δ(t), as the ratio δ(t) ≡ δρ(t)/ρ̄(t), the energy conservation equation to first order in the
perturbations is found to be:[

−1

2

(
(1 + w) + (1 + wvac)

δG(t)

G0

)
− 1

2ν
ch
δG(t)

G0

]
ḣ(t)

+

[
1

2ν
ch

(
3 (w − wvac)

ȧ(t)

a(t)

δG(t)

G0

−
˙δG(t)

G0

)]
h(t) =

[
1 +

δG(t)

G0

]
δ̇(t) (24)

In the absence of a running G (δG(t) = 0), this reduces simply to −1
2

(1 + w) h(t) = δ(t). This last
result then allows us to solve explicitly, at the given order, i.e., to first order in the fluctuations and to first
order in δG, for the metric perturbation, ḣ(t), in terms of the matter density fluctuation, δ(t) and δ̇(t).

Furthermore, to first order in the perturbations, the tt and ii effective field equations become,
respectively,

ȧ(t)

a(t)
ḣ(t)− 8π G0

1

2ν
ch
δG(t)

G0

ρ̄(t)h(t) = 8π G0

(
1 +

δG(t)

G0

)
ρ̄(t) δ(t) (25)

and:

ḧ(t) + 3
ȧ(t)

a(t)
ḣ(t) + 24π G0

1

2ν
chwvac

δG(t)

G0

ρ̄(t)h(t) = − 24π G0

(
w + wvac

δG(t)

G0

)
ρ̄(t) δ(t) (26)

In the second ii equation, the zeroth order ii field equation of Equation (6) has been used to achieve some
simplification. It is easy to check the overall consistency of the first order energy conservation equation
of Equation (24) and of the two field equations given in Equations (25) and (26).

To obtain an equation for the matter density contrast δ(t) = δρ(t)/ρ̄(t), one needs to eliminate the
metric trace field, h(t), from the field equations. This is first done by taking a suitable linear combination
of the two field equations in Equations (25) and (26), to get the equivalent equation:

ḧ(t) + 2
ȧ(t)

a(t)
ḣ(t) + 8π G0

1

2ν
ch (1 + 3wvac)

δG(t)

G0

ρ̄(t)h(t)

= − 8π G0

[
(1 + 3w) + (1 + 3wvac)

δG(t)

G0

]
ρ̄(t) δ(t) (27)

Then, the first order energy conservation equations to zeroth and first order in δG allow one to completely
eliminate the h, ḣ and ḧ field in terms of the matter density perturbation, δ(t), and its derivatives.
The resulting equation reads, for w = 0 and wvac = 1

3
,
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δ̈(t) +

[(
2
ȧ(t)

a(t)
− 1

3

˙δG(t)

G0

)
− 1

2ν
· 2 ch ·

(
ȧ(t)

a(t)

δG(t)

G0

+ 2
˙δG(t)

G0

)]
δ̇(t)

+

[
− 4π G0

(
1 +

7

3

δG(t)

G0

− 1

2ν
· 2 ch ·

δG(t)

G0

)
ρ̄(t)

− 1

2ν
· 2 ch ·

(
ȧ2(t)

a2(t)

δG(t)

G0

+ 3
ȧ(t)

a(t)

˙δG(t)

G0

+
ä(t)

a(t)

δG(t)

G0

+
¨δG(t)

G0

)]
δ(t) = 0

(28)

This last equation then describes matter density perturbations to linear order, taking into account the
running of G(2) and is, therefore, the main result of this work. The terms proportional to ch, which can
be clearly identified in the above equation, describe the feedback of the metric fluctuations, h, on the
vacuum density, δρvac, and pressure, δpvac, fluctuations.

The above equation can now be compared with the corresponding, much simpler, equation obtained
for constant G, i.e., for G→ G0 and still w = 0 (see, for example, [50,51]):

δ̈(t) + 2
ȧ

a
δ̇(t)− 4π G0 ρ̄(t) δ(t) = 0 (29)

It is common practice at this point to write an equation for the density contrast, δ(a), as a function not
of t, but of the scale factor, a(t). This is done by utilizing simple derivative identities to relate derivatives
with respect to t to derivatives with respect to a(t), with H ≡ ȧ(t)/a(t) the Hubble constant. This last
quantity can be obtained from the zeroth order tt field equation, sometimes written in terms of current
density fractions:

H2(a) ≡
(
ȧ

a

)2

=

(
ż

1 + z

)2

= H2
0

[
Ω (1 + z)3 + ΩR (1 + z)2 + Ωλ

]
(30)

with a/a0 = 1/(1 + z), where z is the red shift and a0 the scale factor “today”. Then, H0 is the Hubble
constant evaluated today, Ω the (baryonic and dark) matter density, ΩR the space curvature contribution
corresponding to a curvature, k, term and Ωλ the dark energy or cosmological constant part, all again
measured today. In the absence of spatial curvature k = 0, one has today:

Ωλ ≡
λ

3H2
0

, Ω ≡ 8 π G0 ρ̄0

3H2
0

, Ω + Ωλ = 1 (31)

It is convenient at this stage to introduce a parameter, θ, describing the cosmological constant fraction
as measured today, θ ≡ Ωλ/Ω. While the following discussion will continue with some level of
generality, in practice, one is mostly interested in the observationally favored case of a current matter
fraction Ω ≈ 0.25, for which θ ≈ 3. In terms of the parameter, θ, the growing solution to the differential
equation for the density contrast, δ(a), for constant G is:

δ0(a) ∝ a · 2F1

(
1

3
, 1;

11

6
;−a3 θ

)
(32)

where 2F1 is the Gauss hypergeometric function. The subscript, 0, in δ0(a) is to remind us that this
solution is appropriate for the case of constant G = G0. To evaluate the correction to δ0(a) coming from
the terms proportional to ca, one sets:

δ(a) ∝ δ0(a) [ 1 + caF(a) ] (33)
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and inserts the resulting expression in Equation (28), written now as a differential equation in a(t).
One only needs to determine the differential equations for density perturbations, δ, up to first order in the
fluctuations, so it will be sufficient to obtain an expression for Hubble constant,H , from the tt component
of the effective field equation to zeroth order in the fluctuations, namely the first of Equations (6).
One has:

H(a) =

√
8π

3
G0

(
1 +

δG(a)

G0

)
ρ̄(a) +

λ

3
(34)

with G(a) given in Equation (9) and ρ̄(a) in Equation (10). In this last expression, the exponent is
γν = 3/2ν ' 9/2 for a matter dominated background universe, although more general choices, such as
γν = 3(1 + w)/2ν, are possible and should be explored (see the discussion later). Furthermore, ca ≈ ct

if a0 is identified with a scale factor corresponding to a universe of size ξ; to a good approximation,
this corresponds to the universe “today”, with the relative scale factor customarily normalized at that
time to a/a0 = 1. In [47], it was found that in Equation (5), ct ' 0.785 c0 in the scalar box case and
ct ' 0.450 c0 in the tensor box case; in the following, we will use the more relevant tensor box value.

After the various substitutions and insertions have been performed, one obtains, after expanding to
linear order in a0, a second order linear differential equation for the correction, F(a) to δ(a), as defined
in Equation (33). Since this equation looks rather complicated for general δG(a), it will not be recorded
here, but it is easily obtained from Equation (28) by a sequence of straightforward substitutions and
expansions. The resulting equation can then be solved for F(a), giving the desired density contrast,
δ(a), as a function of the parameter, Ω.

To obtain an explicit solution to the δ(a) equation, one needs to know the coefficient, ca, and the
exponent, γν , in Equation (9), whose likely values are discussed above and right after the quoted
expression for G(a). For the exponent, ν, one has ν ' 1

3
, whereas for the value for ch, one finds,

according to the discussion in the previous section, ch ' 7.927 for the tensor box case. Furthermore,
one needs at some point to insert a value for the matter density fraction parameter, θ, which, based on
current observation, is close to θ = (1− Ω)/Ω ' 3.

3. Relativistic Growth Index with G(2)

When discussing the growth of density perturbations in classical General Relativity, it is customary
at this point to introduce a scale factor-dependent growth index, f(a), defined as:

f(a) ≡ ∂ ln δ(a)

∂ ln a
(35)

which is, in principle, obtained from the differential equation for any scale factor, a(t). Nevertheless,
here, one is mainly interested in the neighborhood of the present era, a(t) ≈ a0. One therefore introduces
today’s growth index parameter, γ, via:

f(a = a0) ≡ ∂ ln δ(a)

∂ ln a

∣∣∣∣
a=a0

≡ Ωγ (36)

The solution of the above differential equation for δ(a) then determines an explicit value for the growth
index, γ, parameter, for any value of the current matter fraction, Ω. In the end, because of observational
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constraints, one is mostly interested in the range Ω ≈ 0.25, so the following discussion will be limited
to this case only, although from the original differential equation for δ(a), one can, in principle, obtain
a solution for any sensible Ω.

It is known that in the absence of a running Newton’s constant G (G → G0, thus ca = 0), one has
f(a = a0) = 0.4625 and γ = 0.5562 for the standard ΛCDM scenario with Ω = 0.25 [50]. On the other
hand, when the running of G(2) is taken into account, one finds from the solution to Equation (28) for
the growth index parameter, γ, at Ω = 0.25 the following set of results. For γ, one has:

γ = 0.5562− (0.703 + 25.04 ch) ca +O(c2
a) (37)

with ch = (11/3) × 2.1621 = 7.927 in the tensor box case (see Equation (21)) and ch = 2.1621 in the
scalar box case. In the Newtonian (non-relativistic) treatment, one finds the much smaller correction:

γ = 0.5562− 0.0142 ca +O(c2
a) (38)

Among these last expressions, the tensor box case is supposed to give ultimately the correct answer;
the scalar box case only serves as a qualitative comparison. The ch term is responsible for the feedback
of the metric fluctuations h on the vacuum density, δρvac, and pressure, δpvac, fluctuations.

To quantitatively estimate the actual size of the correction in the above expressions for the growth
index parameter, γ, and to make some preliminary comparison to astrophysical observations, some
additional information is needed. The first item is the coefficient c0 ≈ 8.02 ± 0.55 in Equation (1),
as obtained from lattice gravity calculations of invariant correlation functions at a fixed geodesic
distance [52]. We have re-analyzed and extended the results of [52], which involve rather large
uncertainties for this particular quantity; nevertheless, it would seem very difficult to accommodate
values for c0 that are more than an order of magnitude smaller than the quoted value.

The next item that is needed here is a quantitative estimate for the magnitude of the coefficient, ca, in
Equation (9) in terms of ct in Equation (5) and, therefore, in terms of c0 in the original Equation (1). First
of all, one has ca = ct (t0/ξ)

3, where t0 represents the current age of the universe (about 13.82 Gyrs),
giving ca = 0.646 ct. The factor (t0/ξ)

3 ≈ 0.646 accounts for the fact that the two time scales, t0
(“today”) and ξ/c, do not coincide exactly and differ instead by a rather small, but relevant, amount.
Regarding the numerical value of the coefficient, ct, itself, it was found in [47] that in Equation (5),
ct ' 0.785 c0 in the scalar box case and ct ' 0.450 c0 in the tensor box case. In both cases, these
estimates refer to values obtained from the zeroth order covariant effective field equations. In the
following, we will take for concreteness the tensor box value, thus ct ≈ 0.450 c0; then, for all three
covariant calculations recorded above ca ≈ 0.450×8.02×(t0/ξ)

3 ≈ 2.33, a rather large coefficient. From
all of these considerations, one would tend to get estimates for the growth parameter, γ, with rather large
corrections! For example, in the tensor box case, the corrections would add up to−199.20 ca ≈ −464.1.

Nevertheless, it would seem that one should account somewhere for the fact that the largest galaxy
clusters and superclusters studied today up to redshifts z ' 1 extend for only about, at the very most,
1/20 the overall size of the visible universe. This would suggest then that the corresponding scale for the
running coupling, G(t) or G(a), in Equations (5) and (9), respectively, should be reduced by a suitable
ratio of the two relevant length scales, one for the largest observed galaxy clusters or superclusters and the
second for the very large, cosmological scale ξ ∼ 1/

√
λ/3 ∼ 1.51 × 1028 cm, entering the expression
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for δG(2) in Equations (1) and (2). This would then reduce the overall magnitude of the quantum
correction by a factor of (scale/ξ)3 on slightly smaller scales, with the correction factor attaining unity
only on the largest accessible scales, comparable to ξ. Note that this cubic scaling is already implicit in
the form ofG(k) orG(2) given in Equation (1) with ν = 1

3
. When this suppression is taken properly into

account, one finds that the quantum correction to the growth exponent, γ, drops to about 10% on scales
of 240 Mpc, to 5% on scales of 190 Mpc and to a rather small 1% effect on scales of about 110 Mpc.

It should also be emphasized here that, so far, all of the above results have been obtained by solving
the differential equation for δ(a) with G(a) given in Equation (9) and exponent γν = 3/2ν ' 9/2

relevant for a matter dominated background universe. However, it is this last choice that needs to be
critically analyzed, as it might give rise to a definite bias. Our value for γν , so far, reflects our choice of a
matter dominated background. More general choices, such as an “effective” γν = 3(1 + w)/2ν with an
“effective” w, are, in principle, possible. Then, although Equation (28) for δ(t) remains unchanged, the
differential equation for δ(a) needs to be solved with new parameters. Therefore, we will discuss here
a number of options that should allow one to refine the accuracy of the above result and, in particular,
correct the possible shortcomings coming so far from the specific choice of the exponent, γν .

Before we used a(t) ∼ a0(t/t0)2/3 in relatingG(a) in Equation (9) toG(t) in Equation (5). In general,
if w is not small, one should use the more general equation relating the variable, t, to a(t). The problem
here is that, loosely speaking, for w 6= 0, at least two ws are involved, w = 0 (matter) and w = −1

(λ term). This issue considerably complicates the problem of relating δG(t) to δG(a) and, therefore, the
solution to the resulting differential equation for δ(a) [53–55]. As a tractable approximation, we will
set here instead a(t) ∼ a0(t/t0)2/3(1+w) and, then, use an “effective” value of w ≈ −7/9, which would
seem more appropriate for the final target value of a matter fraction Ω ≈ 0.25. For this choice, one then
obtains a significantly reduced power in Equation (9), namely γν = 3(1 + w)/2ν = 1. Furthermore,
the resulting differential equation for δ(a) is still relatively easy to solve, by the same methods used in
the previous section.

One then obtains for the growth index parameter, γ, at Ω = 0.25 the following set of results:

γ = 0.5562− (0.920 + 7.70 ch) ca +O(c2
a) (39)

with, again as before, ch = (11/3)×2.1621 = 7.927 in the tensor box case. Using again ca = (t0/ξ)
3ct =

0.646ct and ct ' 0.450 c0 for the tensor box case, with c0 ≈ 8.02 from the lattice calculation, one has,
as before, ca ≈ 2.33. One then obtains for the growth parameter, γ, a quantum correction of magnitude
−61.96 ca ≈ −144.4. The latter number is the correction on the largest possible scales, comparable to
the length scale, ξ. On smaller scales, a suppression factor, (scale/ξ)3, needs to be taken into account.
When this factor is included, one finds that the quantum correction to the growth exponent, γ, drops to
about 10% on scales of 360 Mpc, to 5% on scales of 280 Mpc, and to a rather small 1% effect on scales
of about 170 Mpc. Note that these numbers are not very different from what was obtained earlier for the
case of pure matter w = 0. When the cosmological constant term is taken into account in Ω, one needs
to go to slightly larger scales to get that same size correction to the growth exponent.

As a practical example, consider the galaxy clusters studied recently in [56–60], which typically
involve comoving radii of ∼8.5 Mpc and viral radii of ∼1.4 Mpc. For these, one would obtain an
approximate overall scale reduction factor of (8.5/4890)3 ≈ 5.3× 10−9. This would give for the tensor
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box (ch = 7.927) correction to the growth index, γ, in Equation (39) the still rather small order of
magnitude estimate, ∼10−6. To clearly see the corrections, larger clusters will be needed. Nevertheless
this last case is suggestive of a trend, quite independent of the specific value of ch and, therefore, of
the overall numerical coefficient of the correction in Equation (39): namely, that the correction to the
growth index parameter is expected to be negative and will gradually and quite rapidly increase with the
size of the cluster. In view of these results, it would seem rather worthwhile to further investigate, from
an observational point of view, what happens on very large astrophysical scales, comparable to either
H−1

0 or ξ.

4. Conclusions

In this work, we have presented some preliminary results on the evolution of matter density
perturbations in quantum-gravity motivated models, where Newton’s constant,G(2), is scale dependent,
due to strong infrared quantum radiative corrections. Such a scale dependence arises naturally in the
non-perturbative treatment of Euclidean quantum gravity via the covariant path integral approach, in
close analogy to what happens in other perturbatively non-renormalizable theories, such as the non-linear
sigma model. The relevant scaling violation scale, ξ, similar to the ΛMS of QCD, is seen here to be
naturally related to the infrared cutoff, H−1

0 , or perhaps, more appropriately (since the latter is time
dependent), to the scaled cosmological constant, λ, via ξ ∼ 1/

√
λ/3. As in non-abelian gauge theories

and QCD, the infrared cutoff scale is, in turn, expected to be connected, by scaling considerations, to a
non-perturbative gravitational condensate:

〈R 〉 = 4λ =
12

ξ2
(40)

From all of the above considerations, it should be clear that the results presented in this paper
are completely different from what one would expect based on a naive perturbative treatment of
quantum gravity.
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