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Abstract: The observation of a scalar resonance at the Large Hadron Collider (LHC),
compatible with perturbative electroweak symmetry breaking, reinforces the Standard Model
(SM) parameterisation of all subatomic data. The logarithmic evolution of the SM gauge
and matter parameters suggests that this parameterisation remains viable up to the Planck
scale, where gravitational effects are of comparable strength. String theory provides a
perturbatively consistent scheme to explore how the parameters of the Standard Model
may be determined from a theory of quantum gravity. The free fermionic heterotic string
models provide concrete examples of exact string solutions that reproduce the spectrum of
the Minimal Supersymmetric Standard Model. Contemporary studies entail the development
of methods to classify large classes of models. This led to the discovery of exophobic
heterotic-string vacua and the observation of spinor-vector duality, which provides an insight
to the global structure of the space of (2,0) heterotic-string vacua. Future directions entail
the study of the role of the massive string states in these models and their incorporation in
cosmological scenarios. A complementary direction is the formulation of quantum gravity
from the principle of manifest phase space duality and the equivalence postulate of quantum
mechanics, which suggest that space is compact. The compactness of space, which implies
intrinsic regularisation, may be tightly related to the intrinsic finite length scale, implied by
string phenomenology.
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1. Introduction

The experimental observation of a scalar resonance by the ATLAS (A Toroidal Large Hadron Collider
Apparatus) [1] and CMS (Compact Muon Solenoid) [2] experiments of the Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN), compatible with the scalar particle
of the Standard Electroweak Model [3], is a pivotal moment in the quest for the unification of the
fundamental theories of matter and interactions. Indeed, nearly thirty years have elapsed since the
experimental discovery of the W± and Z-vector bosons [4,5], and forty years since the demonstration
of renormalisability of spontaneously broken non-Abelian gauge symmetries [6], which were the
earlier milestones on this journey. The discovery of the Higgs boson solidifies the Standard Model
parameterisation of all subatomic experimental observations to date. The observation of a Higgs boson
at 125 GeV suggests that the electroweak symmetry breaking mechanism is perturbative, rather than
non-perturbative. This reinforces the view that the Standard Model provides a viable perturbative
parameterisation of the subatomic interactions up to an energy scale, which is separated by orders of
magnitude from the scale within reach of contemporary accelerator experiments. If this is indeed the
scenario selected by nature, it entails that alternative experimental tests will be required to establish its
validity. These tests will unavoidably look for astrophysical and cosmological imprints that can probe
the much higher energy scales.

The possibility that the Standard Model provides a viable effective parameterisation, up to a
much higher scale, has been entertained in the context of Grand Unified Theories (GUTs) and string
theories [7]. The gauge charges of the Standard Model matter states are strongly suggestive of the
embedding of the Standard Model states in representations of larger gauge groups. This is most striking
in the context of SO(10) GUT, in which each of the Standard Model chiral generations fits into a
16 spinorial representation of SO(10). The gauge charges of the Standard Model matter states are
experimental observables. The Standard Model contains three generations, which are split into six
multiplets that are charged under its three gauge sectors. Therefore, in the framework of the Standard
Model, one needs fifty-four parameters to account for these gauge charges. Embedding the Standard
Model in SO(10) reduces this number of parameters to one parameter, which is the number of spinorial
16 representations of SO(10) needed to accommodate the Standard Model spectrum. Additional
evidence for the high scale unification stems from:

• The logarithmic running of the Standard Model parameters, which is compatible with observations
in the gauge sectors [8,9] and the heavy generation Yukawa couplings [10]. Logarithmic running
in the scalar sector is spoiled by radiative corrections from the Standard Model cut-off scale.
Restoration of the logarithmic running mandates the existence of a new symmetry. Supersymmetry
is a concrete example that fulfils the task. The observation of a scalar resonance at 125 GeV and
the fact that no other particles have been observed up to the multi-TeV energy scale indicate that
the resonance is a fundamental scalar rather than a composite state [11]. This outcome agrees with
the Higgs states in heterotic-string vacua.

• Further evidence for the validity of the renormalisable Standard Model up to a very high energy
scale stems from the suppression of proton decay mediating operators. The Standard Model should
be regarded as providing a viable effective parametrisation, but not as a fundamental accounting
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of the observable phenomena; the reason being that it does not provide a complete description.
Obviously, gravitational effects are not accounted for. Moreover, the Standard Model itself is
not mathematically self-consistent. It gives rise to singularities in the ultraviolet limit. For these
reasons, the Standard Model can only be regarded as an effective theory below some cut-off. A
plausible cut-off is the Planck scale, at which the gravitational coupling is of comparable strength
to the gauge couplings. The renormalisability of the Standard Model is not valid beyond its cut-off
scale. Non-renormalisable operators are induced by whatever theory extends the Standard Model
at and beyond the cut-off scale. We should therefore take into account all the non-renormalisable
operators that are allowed by the Standard Model gauge symmetries and that are suppressed by
powers of the cut-off scale. Such dimension six operators that are invariant under the Standard
Model gauge symmetries lead to proton decay. They indicate that the cut-off scale must be above
1016 GeV, unless they are forbidden by some new symmetries. As global symmetries are, in
general, expected to be violated by quantum gravity effects, the new symmetries should be either
gauge symmetries or local discrete symmetries [12,13].

• Suppression of left-handed neutrino masses is compatible with the generation of heavy mass to the
right-handed neutrinos by the seesaw mechanism.

The Standard Model multiplet structure and the additional evidence provided by logarithmic running,
proton longevity and neutrino masses indicate that the primary guides in the search of a realistic string
vacuum are the existence of three chiral generations and their embedding in SO(10) representations. It
should be noted that this embedding does not entail the existence of an SO(10) gauge symmetry in the
effective low energy field theory. Rather, the SO(10) symmetry is broken at the string level to a maximal
subgroup and, preferably, directly to the Standard Model gauge group.

The Standard Model of particle physics is founded on a causal and renormalisable quantum field
theory with local phase invariance under a product of Abelian and non-Abelian gauge symmetries. These
symmetry principles encode all the subatomic experimental observations to date. Alas, the effects of the
gravitational interactions are not included in this picture. Moreover, there is a fundamental dichotomy
between the principles underlying quantum mechanics and gravitational observations; in particular, with
regard to the treatment of the vacuum. While quantum field theories give rise to energy sources that
contribute to the vacuum energy with a scale of the order of the Quantum chromodynamics (QCD) scale
and beyond, observations show that the vacuum energy is smaller by orders of magnitude. Another point
of contention is with regard to the nature of space. In general relativity, the contemporary theory of
gravity, space is a dynamical field satisfying Einstein’s equations of motion. In quantum field theories,
on the other hand, space provides background parameters and does not correspond to the fundamental
degrees of freedom, which are encoded in the particle wave-functions and their conjugate momenta.
Furthermore, gravity as a quantum field theory is not renormalisable, which is therefore plagued with
infinities and is inconsistent at a fundamental level.

The conundrum may be seen to arise from the fact that quantum field theories may, in principle,
probe space distances that are infinitely small, provided that the corresponding momenta is infinitely
large. We may envision that this outcome is fundamentally unphysical, and what we need is a
fundamental description of matter and interactions, which excludes the possibility of probing infinitely
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small distances. String theory provides such a theory. Moreover, the equivalence postulate formulation of
quantum mechanics implies that space is compact and the existence of a fundamental length in quantum
mechanics [14]. The fundamental cut-off may therefore be intrinsically built into quantum mechanics,
provided that its full set of symmetries are incorporated.

As a finite theory string theory provides a consistent framework for perturbative quantum
gravity [15–18], the consistency of string theory at the quantum level dictates that it must accommodate
a specific number of worldsheet degrees of freedom to produce an anomaly-free and finite theory. Some
of degrees of freedom give rise to the gauge symmetries that we may identify with the subatomic
interactions. Moreover, similar consistency constraints at the quantum level in the case of the superstring
and heterotic-string give rise to matter states that are charged under the gauge degrees of freedom
and may be identified with the Standard Model matter states. Hence, string theory provides a viable
framework for the consistent unification of gravity with subatomic matter and interactions. In turn, this
feature of string theory allows for the development of a phenomenological approach to quantum gravity.

String theory is therefore a mundane extension of the idealisation of point particles with internal
attributes. Furthermore, the rank of the gauge group accounting for the internal attributes is fixed by the
consistency conditions of the theory. The string action is parameterised by two worldsheet degrees of
freedom, corresponding to the proper time and the string internal dimension. The equation of motion of
the worldsheet degrees of freedom is a two-dimensional wave equation. The solutions are separated into
left- and right-moving solutions. The physical states of the quantised string give rise to a tachyonic state,
which is eliminated from the spectrum if the bosonic worldsheet fields are augmented with fermionic
fields. This is achieved provided that the theory possesses N = 2 supersymmetry on the worldsheet,
which guarantees the existence of N = 1 spacetime supersymmetry. Since the tachyonic state does not
have a corresponding fermionic superpartner, the existence of spacetime supersymmetry guarantees that
the tachyonic state is excluded from the physical spectrum. Additionally, the fermionic string gives rise
to spacetime fermions that transforms in representations of the internal gauge symmetry.

String theory is formulated as a perturbative scattering expansion. Using the conformal symmetry on
the worldsheet, the lowest order amplitudes can be mapped to the sphere with vertex operator insertions
corresponding to the external string states. Higher order amplitudes are mapped to higher genus tori,
with the genus one torus being the lowest order quantum correction. The vacuum to vacuum amplitude
is the first order correction when there are no external states, and all the physical states can propagate
in the closed time-like loop. The conformal worldsheet symmetry is translated to invariance of the
torus amplitude under modular transformations of the complex worldsheet parameter, τ . The worldsheet
fermionic fields can pick up non-trivial phases when parallel transported around the non-contractible
loops of the worldsheet torus. The possible transformations for all the worldsheet fermions are encoded
in the so-called spin structures and are mixed non-trivially by the modular transformations. Requiring
invariance under modular transformations leads to a set of non-trivial constraints on the allowed spin
structures [15–18].

Different string theories may be formulated depending on the existence, or not, of worldsheet
fermionic fields in the left- and right-moving sectors of the string. Type IIA and Type IIB superstrings
arise if worldsheet fermions are added in both the left- and right-moving sectors. Adding worldsheet
fermions only to the left-moving sector produces the heterotic-string with E8 × E8, or SO(32) gauge
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symmetry in ten dimensions. In the low energy point particle approximation, we expect a string theory
to correspond to an effective field theory approximation. That is, when the energy involved is not
sufficiently high to reveal the internal structure of the string, we expect that it should be described
effectively as some point particle field theory. In the case of the fermionic strings, these are Type IIA or
IIB supergravities, or an effective ten-dimensional supergravity withE8×E8 or SO(32) gauge symmetry.
Additionally, the non-perturbative effective field theory limits of the ten-dimensional string are related to
compactifications of eleven-dimensional supergravity. For example, the Type IIA superstring is related to
compactification of eleven-dimensional supergravity on a circle, whereas the ten-dimensional heterotic
E8 × E8 corresponds to compactification on a circle moded by a Z2 reflection symmetry. The full
set of relations at the quantum level is yet to be unravelled and is traditionally dubbed as M-theory or
F-theory [15–18].

The lesson is that our understanding of the synthesis of gravity and the gauge interactions is still very
rudimentary. String theory is clearly a step in the right direction. It provides a framework to ask questions
about the gauge and gravity unification and to seek consistent answers within that framework. By giving
rise to all the basic fields that are used to parameterise the subatomic and gravitational experimental data,
it enables the development of a phenomenological approach to quantum gravity. However, its is clear that
string theory is not the final answer. The contemporary string theories are believed to be effective limits
of a more fundamental theory. From that perspective, each of the string theories can be used to probe
some properties of the vacuum of the fundamental theory, but not to fully characterise it. The heterotic
E8 ×E8 string is the effective limit that gives rise to spinorial SO(10) representation in the perturbative
spectrum. The heterotic-string, therefore, is the effective limit that should be used if the properties that
we would like to preserve are the existence of three chiral generations and their embedding in spinorial
SO(10) representations.

2. Past

Realistic string models are obtained by compactifying the heterotic-string from ten to four
dimensions. Alternatively, we can construct realistic string models directly in four dimensions by
representing the compactified dimensions in terms of internal conformal field theories propagating on the
string worldsheet. The simplest such theories are in terms of free worldsheet field theories, i.e., in terms
of free bosons [19] or free fermions [20,21], with the main simplification being the implementation of the
modular invariance constraints. Nevertheless, constructions using interacting worldsheet conformal field
theories exist, as well [22], and can be used to construct phenomenological vacua. It should be remarked
that the representations of the four-dimensional string vacua as compactifications on internal manifold
or in terms of internal conformal field theories are not necessarily distinct. For example, theories
that utilise two-dimensional worldsheet free bosons or free fermions are mathematically equivalent.
Similarly, it was demonstrated in some cases that string models with interacting internal conformal
field theory (CFT) correspond to string compactification on a Calabi–Yau manifold at specific points in
the moduli space [22]. This is an important point for the following reason. While the space of distinct
string vacua in the effective field theory limit may seem to be huge, many of these vacua are related by
various perturbative and non-perturbative dualities at the string level. The reason is that at the string
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level massless and massive physical states can be exchanged. Thus, vacua that are topologically and
physically distinct in the effective field theory level are in fact connected at the string level. This feature
is particularly important if we envision the existence of a dynamical vacuum selection mechanism in
string theory.

The simplest phenomenological string models can therefore be constructed by using a free internal
conformal field theory. String theories in which the internal CFT is written in terms of free fermions
correspond to compactifications on a flat six-dimensional torus at a special point in the moduli space [23].
Exactly marginal deformations from the free fermionic point are obtained by adding Thirring interactions
among the worldsheet fermions [24]. The number of allowed deformations correspond exactly to the
number of allowed deformations in compactifications of the corresponding string theory on a flat torus.
Compactifications of the heterotic-string on a flat six-dimensional torus produce N = 4 spacetime
supersymmetry, which is reduced to N = 1 by modding out the internal six-dimensional torus by an
internal symmetry. This produces the so called orbifold compactifications. The simplest such orbifolds
correspond to modding out the internal six-dimensional torus byZ2 symmetries. Modding out by a single
Z2 reduces the number of spacetime supersymmetries from N = 4 to N = 2. Therefore, to reduce the
number of supersymmetries to N = 1 necessitates modding out by two independent Z2 symmetries, i.e.,
by Z2 × Z2.

2.1. NAHE-Based Models

In the free fermionic formulation [20,21] of toroidal compactifications [25,26], all the internal degrees
of freedom needed to cancel the worldsheet conformal anomaly are represented in terms of free fermions
propagating on the string worldsheet. In the usual notation, the 64 worldsheet fermions in the light-cone
gauge are denoted as:

Left-Movers: ψµ, χi, yi, ωi (µ = 1, 2, i = 1, · · · , 6)

Right-Movers:

φ̄A=1,··· ,44 =



ȳi , ω̄i i = 1, · · ·, 6

η̄i i = 1, 2, 3

ψ̄1,··· ,5

φ̄1,··· ,8

In this notation, the ψ1,2, χ1,··· ,6 are the fermionic superpartners of the left-moving bosonic coordinates.
The {y, ω|ȳ, ω̄}1,··· ,6 are the worldsheet real fermions corresponding to the six compactified dimensions
of the internal manifold. The remaining sixteen complex fermions generate the Cartan subalgebra of the
ten-dimensional gauge group, with ψ̄1,··· ,5 being those that generate the SO(10) symmetry, and φ̄1,··· ,8

are those that generate the hidden sector gauge group. The η̄1,2,3 complex worldsheet fermions generate
three U(1) symmetries.
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Under parallel transport around the noncontractible loops of the torus amplitude, the worldsheet
fermionic fields can pick up a phase. The 64 phases are encoded in boundary condition basis vectors,
which generate the one loop partition function,

Z =
∑
all spin
structures

c

(~ξ
~β

)
Z

(~ξ
~β

)

where ~ξ and ~β denote all possible combinations of the basis vectors. The requirement of modular
invariance leads to a set of constraints on the allowed basis vectors and one loop phase. The basis
vectors generate a finite additive group, Ξ, and each sector in the additive group, ξ ∈ Ξ, produces a
Fock space by acting on the vacuum with fermionic and bosonic oscillators. Worldsheet fermionic fields
that are periodic under parallel transport produce a doubly degenerate vacuum that generate the spinorial
charges. The physical states in the Hilbert space are obtained by applying the Generalised Gliozzi,
Scherk, Olive (GSO) projections, which arise due to the modular invariance requirement. The cubic level
and higher order terms in the superpotential are obtained by calculating scattering amplitudes between
vertex operators [27–29]. Finally, string vacua often give rise to a pseudo-anomalous U(1) symmetry,
which is cancelled by the Green–Schwarz mechanism [30,31]. The anomalous U(1) gives rise to a
Fayet–Iliopoulos D-term [31], which breaks spacetime supersymmetry at the string scale. Restoration
of supersymmetry is obtained by assigning non-trivial Vacuum Expectation Value (VEV) to a set of fields
in the physical spectrum and imposing that all the supersymmetry breaking F - and D-terms vanish.

In this manner, a large set of string vacua can be obtained. The early quasi-realistic free fermionic
models were constructed in the late 1980s to early 1990s, and consist of the so-called NAHE
(Nanopoulos, Antoniadis, Hagelin, Ellis. nahe means pretty in hebrew)-based models. The NAHE-set
is a set of five boundary condition basis vectors, {1, S, b1, b2, b3}, which is common to a large class of
the early models [32]. The two basis vectors, {1, S}, correspond to a toroidally compactified model
with N = 4 spacetime supersymmetry and an SO(44) gauge group. The sectors, b1, b2 and b3,
correspond to the three twisted sectors of a Z2 × Z2 orbifold compactification. They reduce the number
of supersymmetries to N = 1 and the gauge symmetry to SO(10) × SO(6)3 × E8. Additionally, they
produce 48 multiplets in the spinorial 16 representation of SO(10). The number of these multiplets is
reduced to three by adding three additional basis vectors to the NAHE set, typically denoted by {α, β, γ},
which also reduce the gauge symmetry. The SO(10)×E8 symmetry is reduced to a maximal subgroup,
and the flavour SO(6)3 symmetries are reduced to U(1)n, with n = 3, · · · , 9. Using this construction
three generation models with:

• SU(5)× U(1) [33];

• SU(3)× SU(2)× U(1)2 [34–36];

• SO(6)× SO(4) [37] and

• SU(3)× SU(2)2 × U(1) [38],

whereas models with SU(4) × SU(2) × U(1) [39] did not yield three generations. It is noted that in
all these models, the Standard Model weak hypercharge possesses the SO(10) embedding and yields
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the canonical GUT normalisation sin2 θW (MS) = 3/8, where MS is the string unification scale. This
is an important feature of these models, because it facilitates agreement with the measured gauge
coupling parameters at the electroweak scale [40]. It should be also be contrasted with other possible
embedding of the weak hypercharge that do not yield the canonical GUT embedding. Such is the case,
for instance, in many orientifold models. However, in orientifold models, the string scale may be lowered
relative to the gravitational scale. Hence, in orientifold models, smaller values of sin2 θW (MS) may be
accommodated. Heterotic-string models may also yield smaller values of sin2 θW (MS), by modifying
the identification of the weak hypercharge in the string models. We recall that sin2 θW (MS) arises as
a result of the relative normalisation of the weak hypercharge relative to the non-Abelian generators at
MS [41]. In heterotic string models, this normalisation is affected by the number of Cartan generators
in the weak hypercharge combination relative to the number of Cartan subgenerators of the non-Abelian
group factors. However, in the perturbative heterotic string, the unification scale is fixed, and therefore,
lower values of sin2 θW (MS) are disfavoured. This constraint may be relaxed in the non-perturbative
heterotic-string [42]. Another point to note in regard to the definition of the weak hypercharge is
the existence of string states that carry fractional electric charge. This is a general feature of string
models; the reason being the breaking of the non-Abelian gauge symmetries by Wilson lines. A general
observation by Wen and Witten [43] and a theorem by Schellekens [44] notes that when a non-Abelian
group is broken in string theory by a Wilson line with a left over unbroken U(1) symmetry, it produces
states that do not satisfy the U(1) charge quantisation of the unbroken non-Abelian symmetry. This
outcome further depends on the identification of the weak-hypercharge. That is, if we relax the canonical
GUT embedding of the weak hypercharge, we modify the GUT quantisation of theU(1) charges and may
therefore obtain integrally charged states. The important point to note is that these are phenomenological
properties of string constructions, and it is yet to be determined how they play out in fully realistic
string constructions.

2.2. Phenomenology of String Unification

Subsequent to the construction of the string models and analysis of their spectra, we calculate
the cubic level and higher order terms in the superpotential, up to a desired order for a specific
phenomenological problem. The next step entails the analysis of supersymmetric F - and D-flat
directions. Requiring that the vacuum at the string scale is supersymmetric necessitates the assignment
of non-vanishing VEVs to a set of Standard Model singlets in the string models. In this process, some
of the higher order terms in the superpotential become effective renormalisable operators, which are
suppressed relative to the leading order cubic terms, i.e.,

V f
1 V

f
2 V

b
3 · · · ·V b

N → V f
1 V

f
2 V

b
3

〈V b
4 · · ·V b

N〉
MN−3

(1)

where V f,b are fermionic and bosonic vertex operators, respectively; N is the order of the
non-renormalisable operator; and M is the string cut-off scale. Using this methodology, many of the
issues pertaining to the phenomenology of the Standard Model and string unification have been studied
in the framework of the quasi-realistic free fermionic heterotic-string models. A partial list includes:
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• Top quark mass prediction. The analysis of fermion masses entails the calculation of cubic and
higher order terms in the superpotential that are reduced to dimension four terms in Equation (1).
The Standard Model fermion mass terms arise from couplings to the electroweak Higgs with an
assumed VEV of the order of the electroweak scale. Other fermion mass terms arise from coupling
to other scalar fields, and their mass scales may therefore be higher than the electroweak scale.
Analysis of Standard Model fermion masses yielded a viable prediction for top quark mass prior to
its experimental observation [45]. The calculation proceeds as follows. First the top quark Yukawa
coupling is calculated at the cubic level of the superpotential, giving λt = 〈QtcLH〉 =

√
2g, where

g is the gauge coupling at the unification scale. Subsequently, the Yukawa couplings for the bottom
quark and tau lepton are obtained from quartic order terms. The magnitude of the quartic order
coefficients are calculated using standard CFT techniques, and the VEV of the Standard Model
singlet field in the relevant terms is extracted from analysis of the F - and D-flat directions. This
analysis yields effective Yukawa couplings for the bottom quark and tau lepton in terms of the
unified gauge coupling given by λb = λτ = 0.35g3 ∼ 1/8λt [45]. This result for the top quark
Yukawa coupling is common in a large class of free fermionic models, whereas those for the
bottom quark and tau lepton differ between models. Similarly, the Yukawa coupling for the two
lighter generations differ between models and depend on the flat direction VEVs. Subsequent to
extracting the Yukawa couplings at the string scale, they are run to the electroweak scale using the
Minimal Supersymmetric Standard Model (MSSM) Renormalisation Group Equations (RGEs). It
is further assumed that the unified gauge coupling at the string scale is compatible with the value
required by the gauge coupling data at the electroweak scale. The bottom Yukawa is further run
to the bottom mass scale, which is used to extract a value for tan β = v1/v2, with v1 and v2 being
the VEVs of the two MSSMelectroweak Higgs doublets. The top quark mass is then given by:

mt = λt(mt)
v0√

2

tan β

(1 + tan2 β)
1
2

with v0 =
√

2(v2
1 + v2

2) = 246 GeV, yielding mt ∼ 175–180 GeV. It is noted that, up to the
assumptions stated above, the top Yukawa coupling is found near a fixed point. Namely, varying
the top Yukawa between 0.5–1.5 at the unification scale yields λt(MZ) ∼ 1 at the electroweak
scale. This calculation demonstrates the important advantage of string theory over other attempts
of developing a viable framework for quantum gravity. It unifies the gauge and Yukawa couplings
and enables the calculation of the Standard Model Yukawa couplings in terms of the unified string
coupling. While the calculation of the top Yukawa is robust and shared between a large class of
models, the calculation of the corresponding couplings for the lighter quarks and leptons involve
a large degree of model dependence. Before investing substantial efforts to calculate the Yukawa
couplings of the lighter quarks and leptons in a given model, we should enhance the prospect that
a given model is the right model. This line of reasoning underlies the contemporary approach that
is outlined below.

• Standard Model fermion masses. The analysis of the effective Yukawa couplings for the lighter
two generations proceeds by analysing higher order terms in the superpotential and extracting the
effective dimension four operators [27–29]. The analysis should be regarded as demonstrating
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in principle the potential of string models to explain the detailed features of the Standard
Model flavour parameters. It is still marred by too many uncertainties and built in assumptions
to be regarded as a predictive framework. Nevertheless, once an appealing model is
constructed the methodology is in place to attempt a more predictive analysis. The explorations
to date included, for example, the demonstration of the generation mass hierarchy [46],
Cabibbo–Kobayashi–Maskawa (CKM) mixing [47,48], light generation masses [49] and neutrino
masses [50,51].

• Gauge coupling unification. An important issue in heterotic-string models is compatibility with
the experimental gauge coupling data at the electroweak scale. The perturbative heterotic-string
predicts that the gauge couplings unify at the string scale, which is of the order of 5× 1017 GeV.
On the other hand extrapolation of the gauge couplings, assuming MSSM spectra, from the
Z-boson mass scale to the GUT scale, shows that the couplings converge at a scale of the order
of 2 × 1016 GeV. Thus, the two scales differ by a factor of about 20. This extrapolation should
be taken with caution, as the the parameters are extrapolated over 14 orders of magnitude, with
rather strong assumptions on the physics in the region of extrapolation. Indeed, in view of the
more recent results from the LHC, the analysis needs to be revised, as the assumption of MSSM
spectrum at the Z-boson scale has been invalidated. Nevertheless, the issue can be studied in
detail in perturbative heterotic-string models, and a variety of possible effects have been examined,
including heavy string threshold corrections, light supersymmetry (SUSY) thresholds, additional
gauge structures and additional intermediate matter states [40]. Within the context of the free
fermionic models, only the existence of additional matter states may resolve the discrepancy, and
such states indeed exist in the spectrum of concrete string models [52]. This result may be relaxed
in the non-perturbative heterotic-string [42] or if the moduli are away from the free fermionic
point [53].

• Proton stability. Proton longevity is an important problem in quantum gravity, in general, and
in string models in particular. The reason being that we expect only gauge symmetries, or
local discrete symmetries that arise as remnants of broken gauge symmetries, to be respected
in quantum gravity. Within the Standard Model itself baryon and lepton are accidental global
symmetries at the renormalisable level. Thus, we expect, in general, all operators that are
compatible with the local gauge and discrete symmetries in given string models to be generated
from non-renormalisable terms. Such terms can then give rise to dimension four, five and six
baryon and lepton number violating operators that may lead to rapid proton decay. Possible
resolutions have been studied in specific free fermionic models and include the existence of an
additional light U(1) symmetry [54–59] and local discrete symmetries [12,13].

• Squark degeneracy. String models may, in general, lead to non-degenerate squark masses,
depending on the specific SUSY breaking mechanism. For example, SUSY breaking mechanism
which is dominated by the moduli F -term will lead to non-degenerate squark masses, because of
the moduli dependence of the flavour parameters. Similarly, D-term SUSY breaking depends on
the charges of the Standard Model fields under the gauge symmetry in the SUSY breaking sector,
and those are in general family non-universal. Free fermionic models can give rise to a family
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universal anomalous U(1) [60]. If the SUSY breaking mechanism is dominated by the anomalous
U(1) D-term it may produce family universal squark masses of order 1 TeV [61].

• Minimal Standard Heterotic-String Model (MSHSM). Three generation semi-realistic string
models produce, in general, additional massless vector-like states that are charged under the
Standard Model gauge symmetries. Some of these additional vector-like states arise from the
Wilson line breaking of the SO(10) GUT symmetry and therefore carry fractional charge with
respect to the remnant unbroken U(1) symmetries. In particular, they may carry fractional electric
charge, which is highly constrained by observations. These fractionally charged states must
therefore be sufficiently massive or diluted to evade the experimental limits. Mass terms for the
vector-like states may arise from cubic and higher level terms in the superpotential. In the model
of [34] its has been demonstrated in [62] that all the exotic fractionally charged states couple to
a set of SO(10) singlets. In [63,64] F - and D-flat solutions that incorporate this set of fields
have been found. Additionally, all the extra standard-like fields in the model, beyond the MSSM,
receive mass terms by the same set of VEVs. These solutions therefore give rise to the first known
string solutions that produce in the low energy effective theory of the observable sector solely the
states of the MSSM, and are dubbed Minimal Standard Heterotic-String Model (MSHSM). Three
generation Pati–Salam free fermionic models in which fractionally charged exotic states arise only
in the massive spectrum were found in [65]. Flat directions that lead to MSHSM with one leading
Yukawa coupling were found in an exemplary model in this class [66].

• Moduli fixing. An important issue in string models is that of moduli stabilisation. The free
fermionic models are formulated near the self-dual point in the moduli space. However, the
geometrical moduli that allow deformation from that point exist in the spectrum and can be
incorporated in the form of Thirring worldsheet interactions [24]. The correspondence of the
free fermionic models with Z2 × Z2 orbifold implies that the geometrical moduli correspond to
three complex and three Kähler structure moduli. String theory as a theory of quantum geometry,
rather than classical geometry, allows for assignment of asymmetric boundary conditions with
respect to the worldsheet fermions that correspond to the internal dimensions. These correspond
to the asymmetric bosonic identifications under XL + XR → XR − XL. In the free fermionic
models, and consequently in Z2 × Z2 orbifolds, it is possible to assign asymmetric boundary
conditions with respect to six circles of the six-dimensional compactified torus. In such a
model all the complex and Kähler moduli of the untwisted moduli are projected out [67,68].
Additionally, the breaking of the N = 2 worldsheet supersymmetry in the bosonic sector of
the heterotic-string results in projection of the would-be twisted moduli [67,68]. Thus, all the
fields that are naively identified as moduli in models with (2, 2) worldsheet supersymmetry can be
projected out in concrete models. However, the identification of the moduli in models with (2, 0)

worldsheet supersymmetry is not well understood and there may exist other fields in the spectrum
of such models that may be identified as moduli fields. Furthermore, as long as supersymmetry
remains unbroken in the vacuum there exist moduli fields associated with the supersymmetric flat
directions. However, it has been proposed that there exit quasi-realistic free fermionic models
which do not admit supersymmetric flat directions [69,70]. This is obtained when both symmetric
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and asymmetric twistings of the internal dimensions are implemented, resulting in reduction of
the number of moduli fields. In the relevant models supersymmetry is broken due to the existence
of a Fayet–Iliopoulos term, which is generated by an anomalous U(1) symmetry. It was argued
in [69,70] that the relevant models do not admit exact flat directions and therefore supersymmetry
is broken at some level. In such models all the moduli are fixed. It should be noted that this
possibility arises only in very particular string models, rather than in a generic string vacua [71].

3. Present

Most of the studies discussed so far were done by studying concrete examples of NAHE-based
models, i.e., models that contain the common set {1, S, b1, b2, b3} plus the three (or four) additional
basis vectors {α, β, γ} that extend the NAHE-set and differ between models, with the most studied
models being those of [34,35]. More recent studies involve the exploration of large number of models.
This provides an insight into the general properties of the space of vacua, as well as the development
of a “fishing algorithm” to fish models with specific phenomenological properties. This method led
to discovery of spinor-vector duality [72] and of exophobic vacua [65,66,73,74]. More recently the
method has been applied for the classification of flipped SU(5) free fermionic models [75], as well as
the classification with respect to the top quark Yukawa coupling [76].

3.1. Classification of Fermionic Z2 × Z2 Orbifolds

Over the past decade a systematic method is being developed that allows the explorations of large
number of string vacua and analysis of their spectra. In this method the set of basis vectors is fixed. The
Pati–Salam class of models is generated by a set of thirteen basis vectors:

B = {v1, v2, . . . , v13}

where:

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S = {ψµ, χ1,...,6},
v2+i = ei = {yi, ωi|ȳi, ω̄i}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5}, (2)

v10 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},
v11 = z1 = {φ̄1,...,4},
v12 = z2 = {φ̄5,...,8},
v13 = α = {ψ̄4,5, φ̄1,2}.

In the notation employed in Equation (2) the worldsheet fields appearing in a given basis vector have
periodic boundary conditions, whereas all other fields have anti-periodic boundary conditions. The first
twelve vectors in this set are identical to those used in [77,78] for the classification of fermionic Z2×Z2
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orbifolds with SO(10) GUT symmetry. The thirteenth basis vector, α, breaks the SO(10) symmetry and
generates the Pati–Salam class of models. The set {1, S} generate an N = 4 supersymmetric model,
with SO(44) gauge symmetry. The vectors ei, i = 1, . . . , 6 give rise to all possible symmetric shifts of
the six internal fermionised coordinates (∂X i = yiωi, ∂̄X i = ȳiω̄i). Their addition breaks the SO(44)

gauge group, but preserves N = 4 supersymmetry. The vectors b1 and b2 define the SO(10) gauge
symmetry and the Z2 × Z2 orbifold twists, which break N = 4 to N = 1 supersymmetry. The z1 and z2

basis vectors reduce the untwisted gauge group generators from SO(16) to SO(8)1 × SO(8)2. Finally
v13 is the additional new vector that breaks the SO(10) GUT symmetry to SO(6) × SO(4), and the
SO(8)1 hidden symmetry to SO(4)1 × SO(4)2.

The second ingredient that is needed to define the string vacuum are the Generalised GSO (GGSO)
projection coefficients that appear in the one-loop partition function, c

(
vi
vj

)
= exp[iπ(vi|vj)], spanning

a 13 × 13 matrix. Only the elements with i > j are independent while the others are fixed by modular
invariance. A priori there are therefore 78 independent coefficients corresponding to 278 string vacua.
Eleven coefficients are fixed by requiring that the models possess N = 1 supersymmetry. Additionally,
the phase c

(
b1
b2

)
only affects the overall chirality. Without loss of generality the associated GGSO

projection coefficients are fixed, leaving 66 independent coefficients. Each of the 66 independent
coefficients can take two discrete values ±1 and thus a simple counting gives 266 (that is approximately
1019.9) models in the class of superstring vacua under consideration.

The utility of the classification method is that it provides the means to span all the massless producing
sectors in the models. For example, the twisted matter states arise from the sectors:

B1
`13`

1
4`

1
5`

1
6

= S + b1 + `1
3e3 + `1

4e4 + `1
5e5 + `1

6e6

B2
`21`

2
2`

2
5`

2
6

= S + b2 + `2
1e1 + `2

2e2 + `2
5e5 + `2

6e6

B3
`31`

3
2`

3
3`

3
4

= S + b3 + `3
1e1 + `3

2e2 + `3
3e3 + `3

4e4

where lji = 0, 1, b3 = b1 + b2 + x = 1 + S + b1 + b2 +
∑6

i=1 ei +
∑2

n=1 zn and x is given by the vector
x = {ψ̄1,··· ,5, η̄1,2,3}. These sectors give rise to 16 and 16 representations of SO(10) decomposed under
SO(6) × SO(4) ≡ SU(4) × SU(2)L × SU(2)R. The important feature of this classification method is
that each of the sectors B`i1`

i
2`
i
3`
i
4

for given `i1`
i
2`
i
3`
i
4 gives rise to one spinorial, or one anti-spinorial, or

neither, i.e the states arising at each fixed point of the corresponding Z2×Z2 are controlled individually.
Similarly, the states from the sectors B`i1`

i
2`
i
3`
i
4

+ x produce states in the vectorial 10 representation of
SO(10) decomposed under the Pati–Salam gauge group.

The power of the free fermionic classification method is that it enables translation of the GGSO
projections into generic algebraic forms. From the general expression for the GSO projections on the
states from a given sector ξ ∈ Ξ [20,21]:

eiπ(vj ·Fξ)|S〉ξ = δξc

(
ξ

vj

)∗
|S〉ξ

From this expression we note that, whenever the overlap of periodic fermions between the basis vector
vj and the sector ξ is empty, the operator on the left of this expression is fixed. Hence, depending on the
choice of the GGSO phase on the right, the given state is either in or out of the physical spectrum. For
any given state from specific sectors there are several basis vectors that act as projectors. Introducing the
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notation c
(
ai
aj

)
= exp (ai|aj) with (ai|aj) = 0, 1, we can collect these projectors into algebraic system

of equations of the form: ∆(i) U
(i)
16 = Y

(I)
16 , i = 1, 2, 3, where the unknowns are the fixed point labels:

U
(i)
16 = [pi16, q

i
16, r

i
16, s

i
16] . The ∆i and Y i

16 are given in terms of the GGSO projection coefficients for
each of the three planes. For example, on the first plane for the spinorial 16 or 16 states we have:

∆(1) =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )

(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )

(z1 |e3 ) (z1 |e4 ) (z1 |e5 ) (z1 |e6 )

(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )

 (3)

and: Y
(1)

16 = [(e1 |b1 ) , (e2 |b1 ) , (z1 |b1 ) , (z2 |b2 )] with similar expressions for the second and third
planes. The number of solutions per plane is determined by the relative rank of the matrix ∆i and
the rank of the augmented matrix (∆i, Y i

16). For a given choice of GGSO projection coefficients, the
number of states surviving in the spectrum, is therefore readily obtained. Similar, algebraic expressions
can be obtained for all the sectors that produce massless states in the given basis, as well as for the
chirality of the fermions with periodic boundary conditions.

The methodology outlined above enables the classification of a large number of fermionic Z2 × Z2

orbifolds. Compared to the earlier construction it enables a scan of a large number of models and
extraction of some of the desired phenomenological properties. We can develop a fishing algorithm to
extract models with specific characteristics. For example, a class of Pati–Salam models in which exotic
fractionally charged states appear as massive states but not in the massless spectrum was found using
these tools. The systematic classification methods were developed to date only for models that admit
symmetric boundary conditions with respect to the set of internal worldsheet fermions {y, ω|ȳ, ω̄}1,··· ,6.
On the other hand, NAHE-based models were constructed using symmetric and asymmetric boundary
conditions, with the assignment of asymmetric boundary conditions having distinct phenomenological
implications [79,80].

3.1.1. Spinor-Vector Duality

Another example of the utility of the fermionic classification method is given by the spinor-vector
duality, which was discovered by using these methods and elucidates the global structure of the free
fermionic models, in particular, and that of the larger string landscape, in general. The spinor-vector
duality is a duality in the space of string vacua generated by the basis set vi with i = 1, . . . , 12, and
unbroken SO(10) symmetry. The duality entails an invariance under the exchange of the total number
of (16 + 16) representations and the total number of 10 representations of SO(10). That is, for a given
vacuum with a number of (16+16) and 10 representations, there exist another vacuum in which the two
numbers are interchanged. The origin of this duality is revealed when the SO(10) symmetry is enhanced
to E6. Under the decomposition of E6 → SO(10)× U(1) the 27 and 27 representations decompose as
27 = 16 + 10 + 1 and 27 = 16 + 10 + 1. Therefore, in the case of vacua with E6 symmetry the total
number of (16 + 16) representations is equal to the total of 10 representations. Hence, models with
enhanced E6 symmetry are self-dual under the spinor-vector duality map.

The spinor-vector duality therefore arises from the breaking of the E6 symmetry to SO(10) × U(1).
This breaking is generated in the orbifold language by Wilson-lines, or in the free fermionic construction,
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by choices of the GGSO projection coefficients. It is important to recognise that these two descriptions
are not distinct, but are mathematically identical. That is we can translate the GGSO projection
coefficients to Wilson line and visa versa [23]. Thus, when theE6 symmetry is broken to SO(10)×U(1),
there exist a choice of GGSO projection coefficients, or of Wilson lines, that keeps a number of spinorial
(16 + 16) and a number of vectorial 10 representations of SO(10), and another choice for which the
two numbers are interchanged. It is important to note that this is an exact duality symmetry operating in
the entire space of string vacua in which the SO(10) symmetry is not enhanced to E6 [72,81–83]. It is
further noted that the spinor-vector duality can be interpreted in terms of a spectral flow operator [83].
In this context the spectral flow operator in the twisted sector may be seen as a deformed version of the
operator inducing the Massive Spectral boson-fermion Degeneracy Symmetry (MSDS) [84]. Therefore,
the spinor-vector duality extends to the massive sectors [83], albeit in a fashion that still needs to be
determined in the general case. Similarly, we note that the generalisation of the spinor-vector duality to
the case of interacting internal CFTs can be studied by adopting the following methodology, e.g., in the
case of minimal models. The starting point is an heterotic-string compactified to four dimensions with
(2, 2) worldsheet supersymmetry and an internal interacting CFT representing the compact space. The
next step is to break the worldsheet supersymmetry in the bosonic sector of the heterotic-string. The
spectral flow operator then induces a map between distinct (2, 0) vacua [85].

We can also understand the spinor-vector duality operationally in terms of the free phases in the
fermionic language [81] or as discrete torsion in the orbifold picture [82,83]. For that purpose we recall
the level one SO(2n) characters [86]:

O2n =
1

2

(
θn3
ηn

+
θn4
ηn

)
, V2n =

1

2

(
θn3
ηn
− θn4
ηn

)
S2n =

1

2

(
θn2
ηn

+ i−n
θn1
ηn

)
, C2n =

1

2

(
θn2
ηn
− i−n θ

n
1

ηn

)
where:

θ3 ≡ Zf

(
0

0

)
θ4 ≡ Zf

(
0

1

)
θ2 ≡ Zf

(
1

0

)
θ1 ≡ Zf

(
1

1

)
where Zf is the partition function of a single worldsheet complex fermion, given in terms of theta
functions [86]. The partition function of the E8 ×E8 heterotic-string compactified on a six-dimensional
torus is given by:

Z+ = (V8 − S8)

(∑
m,n

Λm,n

)⊗6 (
Ō16 + S̄16

) (
Ō16 + S̄16

)
(4)

where as usual, for each circle,

piL,R =
mi

Ri

± niRi

α′
and Λm,n =

q
α′
4
p2L q̄

α′
4
p2R

|η|2

Next, a Z2 × Z ′2 : g × g′ projection is applied, where the first Z2 is a freely acting
Scherk–Schwarz-like projection, which couples a fermion number in the observable and hidden sectors
with a Z2-shift in a compactified coordinate, and is given by g : (−1)(F1+F2)δ where the fermion
numbers F1,2 act on the spinorial representations of the observable and hidden SO(16) groups as
F1,2 : (O

1,2

16 , V
1,2

16 , S
1,2

16 , C
1,2

16 ) −→ (O
1,2

16 , V
1,2

16 ,−S
1,2

16 ,−C
1,2

16 ) and δ identified points shifted by a Z2
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shift in the X9 direction, i.e., δX9 = X9 +πR9.The effect of the shift to insert a factor of (−1)m into the
lattice sum in Equation (4), i.e., δ : Λ9

m,n −→ (−1)mΛ9
m,n. The second Z2 acts as a twist on the internal

coordinates given by g′ : (x4, x5, x6, x7, x8, x9) −→ (−x4,−x5,−x6,−x7,+x8,+x9). The effect of the
first Z2 is to reduce the gauge symmetry from E8 × E8 to SO(16)× SO(16). The Z ′2 twist reduces the
number of spacetime supersymmetries from N = 4 to N = 2, and reduces the gauge symmetry arising
from SO(16) × SO(16) to SO(12) × SO(4) × SO(16). Additionally, it produces a twisted sector that
gives rise to massless states in the spinorial 32 and 32′, and vectorial 12, representations of SO(12).
In this vacuum the spinor-vector duality operates in terms of the representations of SO(12) × SU(2)

rather than in terms of representations of SO(10)×U(1), as the enhanced symmetry point possess an E7

symmetry rather than E6. The spinor-vector duality operates identically in the two cases and the case of
the single non-freely acting Z2 twist elucidates more readily the underlying structure of the spinor-vector
duality. The orbifold partition function is given by:

Z =

(
Z+

Zg × Zg′

)
=

[
(1 + g)

2

(1 + g′)

2

]
Z+

The partition function contains an untwisted sector and three twisted sectors. The winding modes in the
sectors twisted by g and gg′ are shifted by 1/2, and therefore these sectors only produce massive states.
The sector twisted by g gives rise to the massless twisted matter states. The partition function has two
modular orbits and one discrete torsion ε = ±1. Massless states are obtained for vanishing lattice modes.
The terms in the sector g contributing to the massless spectrum take the form:

Λp,q

{
1

2

(∣∣∣∣2ηθ4

∣∣∣∣4 +

∣∣∣∣2ηθ3

∣∣∣∣4
)[

P+
ε QsV 12C4O16 + P−ε QsS12O4O16 ] +

1

2

(∣∣∣∣2ηθ4

∣∣∣∣4 − ∣∣∣∣2ηθ3

∣∣∣∣4
)[

P+
ε QsO12S4O16 ]

}
+ massive (5)

where:

P+
ε =

(
1 + ε(−1)m

2

)
Λm,n ; P−ε =

(
1− ε(−1)m

2

)
Λm,n (6)

Depending on the sign of the discrete torsion ε = ± we note from Equation (6) that either the spinorial
states, or the vectorial states, are massless. In the case with ε = +1 we see from Equation (7) that in
this case massless momentum modes from the shifted lattice arise in P+

ε whereas P−ε produces only
massive modes. Therefore, in his case the vectorial character V 12 in Equation (6) produces massless
states, whereas the spinorial character S12 generates massive states. In the case with ε = −1 we note
from Equation (8) that exactly the opposite occurs:

ε = + 1 ⇒ P+
ε = Λ2m,n P−ε = Λ2m+1,n (7)

ε = − 1 ⇒ P+
ε = Λ2m+1,n P−ε = Λ2m,n (8)

Another observation from the term appearing in Equation (5) is the matching of the number of massless
degrees of freedom in the two cases. In the case with ε = −1 the number of degrees of freedom in the
spinorial representation of SO(12) is 32. In the case with ε = +1 the number of degrees of freedom in
the vectorial representation of SO(12) is 12. As seen from the first line in Equation (5) the term in the
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partition function producing the vectorial states also transforms as a spinor under the SO(4) symmetry.
Hence the total number of states is 24, i.e., there is still a mismatch of 8 states between the two cases.
However, we note from the second line in Equation (5) that in the case with ε = +1 eight additional
states are obtained from the first excited states of the internal lattice. We note therefore that the total
number of degrees of freedom is preserved under the duality map, i.e., 12 · 2 + 4 · 2=32

Given the relation of free fermionic models to toroidal orbifolds, we can anticipate that the
spinor-vector duality can be realised in terms of the moduli of the toroidal lattices. Those are the
six-dimensional metric, the antisymmetric tensor field and the Wilson lines [25]. Indeed, the discrete
torsion appearing in Equation (5) can be translated to a map between two Wilson lines [83]. We note
that in the case of (5) the map between the Wilson lines is continuous. The reason is the fact that we
employed a single Z2 twist on the internal coordinates. The moduli associated with the Wilson line
mapping are not projected out in this case and therefore the interpolation between the two Wilson lines
is continuous. In the more general case with a Z2 × Z2 twist these moduli are projected out and the
mapping between the two Wilson lines is discrete.

Additionally, we can understand the spinor-vector duality in terms of a spectral flow operator [83],
which may be generalised to other cases. We recall that vacua with E6 extended gauge symmetry
are self-dual under the spinor-vector duality, and that they correspond to vacua with (2, 2) worldsheet
supersymmetry. Just like the case of the worldsheet supersymmetry in the supersymmetric sector of
the heterotic-string, there is a spectral flow operator that acts as a generator of E6 in the vacua with
enhancedE6 symmetry. On the supersymmetric side the spectral flow operator mixes states with different
spacetime spin, whereas on the non-supersymmetric side it mixes states that differ by their U(1) charge
in the decomposition E6 → SO(10)×U(1), i.e., it mixes the states that transform as spinors and vectors
of SO(10). When the E6 symmetry is broken, i.e., when the worldsheet supersymmetry is broken from
(2, 2) to (2, 0), the spectral flow operator induces the spinor-vector duality map between the two distinct
vacua [83].

The spinor-vector duality is a novel symmetry that operates in the global space of Z2 and Z2 × Z2

heterotic-string orbifolds and provides valuable insight and interesting questions for future research.
First, we note that the spinor-vector duality is a map between vacua that are completely unrelated in the
effective field theory limit. For example, we may envision a map between a model with three spinorial 16
representations, and one vectorial 10 representation, to a model with three vectorial 10 representations
and one spinorial 16 representation. In terms of the low energy physics the two cases are fundamentally
different. On the other hand, from the point of view of string theory they are identical. Namely, there is
an exact map from one to the other. The distinction between the string representation versus the effective
field theory limit is that the string can access its massive modes, which are not seen in the effective field
theory limit. Therefore, vacua that seem distinct in the effective field theory limit are in fact related in the
full string theory. We may further envision that at some early stage in the evolution of the universe, when
the heavy string modes are excited that the two vacua can in fact mix. This possibility has implications
on the counting of distinct string vacua and therefore on the string landscape. It is evident that our
contemporary understanding of the string landscape is still very rudimentary and we should proceed with
caution before overstating our case. The spinor-vector duality may also have interesting implications
from a purely mathematical point of view. Namely, in the effective field theory limit there should exist a
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description of the massless degrees of freedom in terms of a smooth effective field theory i.e., in terms
of a supergravity theory with a classical geometry (i.e., some Calabi–Yau six-dimensional manifold)
with a vector bundle accounting for the gauge degrees of freedom. The existence of the spinor-vector
duality map implies that there should be a similar map between the two effective theory limits of the two
vacua. This is particularly interesting in terms of the counting of the additional states that are needed to
compensate for the mismatch in the number of states between the two vacua. How do they arise in the
effective field theory limit? In the very least, the spinor-vector duality provides a valuable tool to study
the moduli spaces of (2, 0) heterotic-string compactifications.

4. Other Approaches

The free fermionic models represents one of the approaches to string phenomenology. Several other
approaches are being pursued, leading to overlapping and complementary results, in the perturbative
and non-perturbative domains. The literature on these subjects is vast and include several monographs,
including, for example [7]. A partial and incomplete list of some of these studies include: geometrical
studies [87–91]; orbifolds [92–96]; interacting CFTs [97–99]; orientifolds [100–102]. It should be
emphasised that the present article does not aim to review these important contributions, but merely
those of the author. A comprehensive review is provided in reference [7], as well as in [15–18].

5. Future

With the observation that the agent of electroweak symmetry breaking is compatible with an
elementary scalar, particle physics and string phenomenology are set for a bright future. In the particle
physics realm the main questions are experimental. Are there additional states associated with the
electroweak symmetry breaking mechanism? E.g., is spacetime supersymmetry realised in nature, and
within reach of contemporary colliders? Can we improve on the contemporary measurements of the
Standard Model parameters and by how much? Can we build accelerators to probe energy scales in the
deca-TeV region and above? These are rather general questions and experiments should target more
specific questions, e.g., can we cool the muon phase space in a muon storage ring or a muon collider?
The construction of a muon based facility will advance the accelerator based technology to a new era,
and may be used as a Higgs factory in one of its initial missions [103].

Particle physics and string phenomenology are two sides of the same coin, and should not be regarded
as distinct entities. Particle physics shows that experimental data can be parameterised by a model, which
is based on the principles of point quantum field theories, i.e., locality, causality and renormalisability.
This led to the development of the Standard Model, which is a quantum field theory with internal
symmetries. A point quantum gravity theory fails to satisfy these criteria. String theory resolves the
problem with the third property by relaxing the first. String models provide consistent approaches to
quantum gravity, in which the internal symmetries are dictated by the consistency of the theory. As a
common setting for the gauge and gravitational interactions string theory facilitates the calculation of
the Standard Particle Model parameters in a reduced framework.
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5.1. Toward String Predictions

String theory leads to distinct signatures beyond the Standard Model. In the first instance all the
known stable string vacua at the Planck scale are supersymmetric [104]. Whether supersymmetry
is manifested within reach of contemporary experiments is a wild speculation. Nevertheless, this
hypothesis is motivated on the ground that it facilitates extrapolation of the Standard Model parameters
from the unification scale to the electroweak scale. Furthermore, electroweak symmetry breaking at the
low scale is generated in the supersymmetric scheme by the interplay of the top quark Yukawa coupling
and the gauge coupling of the strong interaction [105,106].

Low scale supersymmetry is therefore not a necessary outcome of string theory, but certainly its
observation will provide further evidence that the different structures of string constructions are realised
in nature. Specific SUSY breaking scenarios in string models give rise to distinct supersymmetric spectra
and that in turn will be used to constrain further the phenomenological string vacua [107]. It is further
noted that R-parity is generically broken in string vacua [108] and that the LSP is not expected therefore
to provide a viable dark matter candidate.

A generic prediction of string theory is the existence of additional gauge degrees of freedom,
beyond those of the Standard Model, and is dictated by the consistency conditions of string theory.
However, construction of viable string models that allow for extra gauge symmetries within reach of
contemporary experiments is highly non-trivial. On the other hand, an extra U(1) symmetry may be
instrumental to understand some phenomenological features of the Supersymmetric Standard Model,
like the suppression of proton decay mediating operators and the µ-parameter.

Another generic outcome of string models is the existence of exotic matter states. This feature of
string constructions arises as a result of the breaking of the non-Abelian GUT symmetries by Wilson
lines, which results in exotic states that do not obey the quantisation rules of the original GUT group.
Thus, one can get, for example, states that carry fractional electric charge. The lightest of the fractionally
charged states is necessarily stable by electric charge conservations. The experimental restrictions on
states that carry fractional electric charge are severe and they must be either sufficiently heavy, and/or
sufficiently diluted to evade detection. Nevertheless, given that the bulk of the matter in the universe is
dark, i.e., does not interact electromagnetically, stable string relics with a variety of properties can be
contemplated [109]. This includes for example the possibility that the string relics come as fractionally
charged hadrons and leptons, with charge±1/2. Such states will continue to scatter in the early universe
until they form a bound hydrogen-like state with another fractionally charged companion. Provided that
they are sufficiently heavy and sufficiently rare they could have evaded detection by searches for rare
isotopes. Another possibility of exotic stable string relics arises when the SO(10) GUT symmetry is
broken to SU(3)× SU(2)× U(1)2. This case gives rise to states that carry the regular Standard Model
charges, but carry fractional charges with respect to the extra U(1)Z′ ∈ SO(10). This case, depending on
the Higgs representations that break the U(1)Z′ , can result in discrete symmetries that forbid the decay
of the exotic states to the Standard Model states. It can therefore give rise to meta-stable heavy string
relics that are Standard Model singlets. Depending on the cosmological evolution in the early universe
they could have been diluted and reproduced as super-heavy states after reheating [109]. Such states can
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produce viable dark matter [109] candidates as well as candidates for Ultra High Energy Cosmic Rays
(UHECR) [110].

5.2. Cosmological Evolution

The early studies in string phenomenology, articulated in Section 2, entailed the in depth exploration
of exemplary models and the study of phenomenological properties. These studies focussed on the
properties of the massless spectra of these exemplary models and led to the construction of the first
known Minimal Standard Heterotic String Models (MSHSM) [34,63,64].

The more recent studies, articulated in Section 3, involve the classification of large classes of models
and the relations between them. The string vacua in this investigation are fermionic Z2 × Z2 orbifolds
and are therefore related to the exemplary models in Section 2. More importantly, the contemporary
studies involve the analysis of the partition functions associated with this class of string vacua. In
that context they aim to explore how the massive string spectrum may play a role in the determination
of the phenomenological and mathematical properties of string models. This led to the discovery of
spinor-vector duality in heterotic-string models [72].

One direction therefore in future string phenomenology studies will involve the investigation of
the associated string partition function, and in particular away from the free fermionic point. The
most general form of the partition function affiliated with the Z2 × Z2 orbifolds, and hence with the
phenomenological free fermionic models is given by:

Z =

∫
d2τ

τ 2
2

τ−1
2

η12η̄24

1

23

(∑
(−)a+b+abϑ [ab ]ϑ

[
a+h1
b+g1

]
ϑ
[
a+h2
b+g2

]
ϑ
[
a+h3
b+g3

])
ψµ,χ

×

(
1

2

∑
ε,ξ

ϑ̄
[
ε
ξ

]5
ϑ̄
[
ε+h1
ξ+g1

]
ϑ̄
[
ε+h2
ξ+g2

]
ϑ̄
[
ε+h3
ξ+g3

])
ψ̄1...5,η̄1,2,3

×

(
1

2

∑
H1,G1

1

2

∑
H2,G2

(−)H1G1+H2G2ϑ̄
[
ε+H1
ξ+G1

]4
ϑ̄
[
ε+H2
ξ+G2

]4)
φ̄1...8

×

(∑
si,ti

Γ6,6

[
hi|si
gi|ti

])
(yωȳω̄)1...6

× eiπΦ(γ,δ,si,ti,ε,ξ,hi,gi,H1,G1,H2,G2)

where the internal lattice is for one compact dimension is given by:

Γ1,1[hg ] =
R
√
τ2

∑
m̃,n

exp

[
−πR

2

τ2

|(2m̃+ g) + (2n+ h) τ |2
]

and Φ is a modular invariant phase. The properties of the string vacua, away from the free fermionic
point, can be explored by studying this partition function and the role of the massive states. Furthermore,
while the current understanding of string theory is primarily limited to static solutions, exploration
of dynamical scenarios can be pursued by compactifying the time coordinate on a circle and using
the Scherk–Schwarz mechanism [111] in the compactified time-like coordinate. One then obtains a
finite temperature-like partition function that can be used to explore cosmological scenarios. Indeed,
this is the string cosmology program pursued by the Paris group over the past few years [112]. In
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a similar spirit partition functions of string compactifications to two dimensions have been explored
revealing rich mathematical structures and the so-called massive supersymmetry, in which the massive
spectrum exhibits Fermi–Bose degeneracy, whereas the massless spectrum does not [84]. One can
envision interpolations of the two-dimensional partition functions, associated with the cosmological
and massive supersymmetry scenarios to the four-dimensional partition functions associated with the
phenomenological free fermionic models. The ultimate aim of this program will be to explore possible
mechanisms for dynamical vacuum selection in string theory.

5.3. Dualities and Fundamental Principles

Physics is first and foremost an experimental science. There is no absolute truth. There is only
perception of reality as registered in an experimental apparatus (including astrophysical observations).
Be that as it may, the language that is used to interpret the experimental signals is mathematics. The
scientific methodology then entails: the existence of some initial conditions, which are either preset or
set up in experiment; the construction of a mathematical model that predict (or postdict) the outcome
of the experiment; the confrontation of the predictions of the mathematical model with the outcome of
the experimental observations. A successful mathematical model is the one that is able to account for a
wider range of experimental observations. This scientific methodology has been developed over the past
five hundred years or so.

To construct a mathematical model one needs to define a set of variables that are to be measured
experimentally. The set of variables is key to the interpretation of the experimental outcome. Over the
years modern physics has undergone a process of evolution in terms of these basic set of variables. In
the Galilean–Newtonian system the basic set of variables are the position and velocities. In modern
experiments the relevant measured variables are typically the initial and final energy and momenta.
In the Lagrangian formalism the set of variable is generalised to any set of configuration coordinates
and their derivatives with respect to time. In the Hamiltonian formalism the set of variables are the
generalised configuration coordinates and their conjugate momenta, which constitute the phase space.
This represents a nontrivial conceptual evolution from the Galilean–Newtonian system of position
and velocities.

String theory provides a consistent framework for the perturbative unification of the gauge and
gravitational interactions. The string characterisation of the basic constituents of matter reproduces
the picture of elementary particles with internal attributes. String theory unifies the spacetime and
internal properties of elementary particles. In the modern description of matter and interactions, the
three subatomic interactions are in a sense already unified. They are based on the gauge principle. By
giving rise to the mediators of the subatomic interactions that satisfy the gauge principle, and at the
same time giving rise to the mediator of the gravitational interactions, that satisfy the gravitational gauge
principle, string theory also unifies the principles underlying these theories.

Can string theory be the final chapter in the unification of the gauge and gravitational interactions.
Unlike general relativity and quantum mechanics, string theory is not formulated by starting from a
fundamental principle and deriving the physical consequences. Ultimately this is what we would like
to have.
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Perturbative and non-perturbative dualities have played a key role in trying to obtain a rigorous
understanding of string theory. T -duality is an important perturbative property of string theory [113].
We may interpret T -duality and phase space duality in compact space. An additional important property
of T -duality in string theory is the existence of self-dual states under T -duality.

We may envision promoting phase-space duality to a level of a fundamental principle. This is the
program that was undertaken in [114]. The key is the relation between the phase space variables via a
generating function S, p = ∂qS. To obtain a dual structure we define a dual generating function T , with
q = ∂pT . The two generating functions are related by the dual Legendre transformations:

S = p∂pT − T (9)

and
T = q∂qS − S (10)

Furthermore, one can show that S(q) transforms as a scalar function under the
GL(2, C)-transformations:

q̃ =
Aq +B

Cq +D
, p̃ = ρ−1(Cq +D)2p, (11)

where ρ = AD − BC 6= 0. We can associate the two Legendre transformations Equations (9) and (10)
with a second order differential equations whose solutions are {q√p;√p} and {p√q;√q}, respectively.
A special class of solutions are those which satisfy the two sets of differential equations, i.e., p = γq, with
γ = constant. These are the self-dual solutions under the Legendre duality of Equations (9) and (10).

Given that the Legendre transformations are not defined for linear functions we have that the
phase-space duality is not consistent for physical systems with S = Aq + B, i.e., precisely for the
self-dual states. It is further noted that the second order differential equations are covariant under
coordinate transformations, but that their potential functions are only invariant under the Möbius
transformations Equation (11). This suggests the fundamental equivalence postulate [114,115]:

Given two physical systems labelled by potential functions W a(qa) ∈ H and W b(qb) ∈ H , where H
denotes the space of all possible W ’s, there always exists a coordinate transformations qa → qb = v(qa)

such that W a(qa)→ W av(qb) = W b(qb).
This postulate implies that there should always exist a coordinate transformation connecting any state

to the state W 0(q0) = 0. Inversely, this means that any nontrivial state W ∈ H can be obtained from the
states W 0(q0) by a coordinate transformation.

The classical Hamilton–Jacobi (HJ) formalism provides a natural setting to apply this postulate. In the
HJ formalism a mechanical problem is solved by using canonical transformations to map the Hamiltonian
of a nontrivial physical system, with nonvanishing kinetic and potential energies, to a trivial Hamiltonian.
The solution is given by the Classical Hamilton–Jacobi Equation (CHJE) and the functional relation
between the phase space variables is extracted by the relation p = ∂qS, with S being the solution of the
HJ equation. We can pose a similar question, but imposing the functional relations p = ∂qS(q) on the
trivialising transformation q → q0(q) and S0(q0) = S(q). This procedure is not consistent with the CHJE
because the state W 0(q0) is a fixed point under the coordinate transformations [114,115]. Consistency
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of the equivalence postulate therefore implies that the CHJE should be deformed. Focussing on the
stationary case, the most general deformation is given by:

1

2m

(
∂qS0

)2
+W (q) +Q(q) = 0. (12)

The equivalence postulate implies that Equation (12) is covariant under general coordinate
transformations. This is obtained provided that the combination (W + Q) transforms as a quadratic
differential. On the other hand all nontrivial states should be obtained from the state W 0(q0) by a
coordinate transformation. The basic transformation properties are then:

W v(qv) = (∂qvq
a)2W a(qa) + (qa; qv),

Qv(qv) = (∂qvq
a)2Qa(qa)− (qa; qv).

Comparing the transformations qa → qb → qc with qa → qc fixes the cocycle condition for the
inhomogeneous term [116]:

(qa; qc) = (∂qcq
b)2
[
(qa; qb)− (qc; qb)

]
(13)

The cocycle condition uniquely fixes the transformation properties of the inhomogeneous term, and it is
shown to be invariant under Möbius transformations. In the one-dimensional case the Möbius symmetry
fixes the functional form of the inhomogeneous term to be given by the Schwarzian derivative {qa, qb},
where the Schwarzian derivative is given by:

{f(q), q} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

The Quantum Stationary Hamilton–Jacobi Equation (QSHJE) then takes the form of a
Schwarzian identity:

(∂qS0)2 = β2/2 ({exp (2iS0/β), q} − {S0, q}) (14)

With β = ~ and the identifications:

W (q) = V (q)− E = − ~2

4m
{exp (2iS0/β), q} (15)

Q(q) =
~2

4m
{S0, q} (16)

the QSHJE takes the form:

1

2m

(
∂S0

∂q

)2

+ V (q)− E +
~2

4m
{S0, q} = 0 (17)

which can be derived from the Schrödinger equation by taking:

ψ(q) =
1√
S ′0

e±
iS0
~

It is noted that the QSHJE is a non-linear differential equation, whose solutions are given in terms of
the two linearly independent solutions, ψ and ψD, of the corresponding Schrödinger equation. Denoting
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w = ψD/ψ, and from the properties of the Schwarzian derivative, it follows that the solution of the
QSHJE is given, up to a Möbius transformation, by:

e
i2
~ S0{δ} = eiα

w + i¯̀

w − i`
(18)

where δ = {α, `} with α ∈ R and Re` 6= 0, which is equivalent to the condition S0 6= const. We note
that the condition that the condition S0 6= const is synonymous with the condition for the definability
of all phase space duality for all physical states. Thus, we find that the phase space duality and the
equivalence postulate are intimately related. In essence, they are manifestation of the Möbius symmetry
that underlies quantum mechanics. It is further noted that the trivialising map to the W 0(q0) state is
given by q → q0 = w.

The equivalence postulate formalism reproduces the key phenomenological properties of quantum
mechanics, without assuming the probability interpretation of the wave function. It implies that the
momentum is real also in the classically forbidden regions, hence implying the tunnelling effect of
quantum mechanics [115,117]. It implies quantisation of energy levels for bound states with square
integrable wave function. Additionally, it implies that time parameterisation of trajectories is ill defined
in quantum mechanics [118]. The last two properties are a direct consequence of the underlying Möbius
symmetry. The Möbius symmetry, which includes a symmetry under inversions, entails that space must
be compact. In the one-dimensional case this is seen as imposing gluing conditions on the trivialising
map at ±∞ [115,117,119]. If space is compact the energy levels are always quantised.

The compactness of space also explains the inherent probabilistic nature of quantum mechanics, and
the inconsistency of a fundamental trajectory parameterisation. There are two primary means to define
time parameterisation of trajectories. In Bohmian mechanics [120,121] time parameterisation is obtained
by identifying the conjugate momentum with the mechanical momentum, i.e., p = ∂qS = mq̇, where S
is the solution of the quantum Hamilton–Jacobi equation. In the classical Hamilton–Jacobi theory time
parameterisation is introduced by using Jacobi theorem:

t =
∂Scl

0

∂E
(19)

In classical mechanics this is equivalent to identifying the conjugate momentum with the mechanical
momentum. Namely, setting:

p = ∂qScl
0 = mq̇ (20)

yields:

t− t0 = m

∫ q

q0

dx

∂xScl
0

=

∫ q

q0

dx
∂

∂E
∂xScl

0 =
∂Scl

0

∂E
(21)

which provides a solution for the equation of motion q = q(t). Therefore, Bohmian mechanics brings
back the notion of trajectories for point particles. However, the agreement between the definition of time
via the mechanical time p = mq̇, and its definition via Jacobi theorem Equation (19) is no longer valid
in quantum mechanics. In quantum mechanics we have:

t− t0 =
∂Sqm

0

∂E
=

∂

∂E

∫ q

q0

dx∂xS
qm
0 =

(m
2

)∫ q

q0

dx
1− ∂EQ

(E − V −Q)1/2
(22)
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The mechanical momentum is then given by:

m
dq

dt
= m

(
dt

dq

)−1

=
∂qS

qm
0

(1− ∂EV)
6= ∂qS

qm
0 (23)

where V denotes the combined potential V = V (q) + Q(q). Therefore, in quantum mechanics the
Bohmian time definition does not coincide with its definition via Jacobi’s theorem.

Floyd proposed to define time by using Jacobi’s theorem [122], i.e.,

t− t0 =
∂Sqm

0

∂E
(24)

Floyd’s proposal would in principle provide a trajectory representation of quantum mechanics by
inverting t(q) → q(t), which would seem to be in contradiction with inherently probabilistic nature
of quantum mechanics. However, if space is compact then the energy levels are always quantised, albeit
with an experimentally indistinguishable splittings [123]. Hence, at a fundamental level one cannot
differentiate with respect to time, and time parameterisation of trajectories by Jacobi’s theorem is ill
defined in quantum mechanics. Hence, time parameterisation of trajectories can only be regarded as
an effective semi-classical approximation and in that sense can provide a useful tool in many practical
problems [121]. The observation that time cannot be defined as a fundamental variable in quantum
mechanics may be extended to space-time. That is the notion of space-time may be a semi-classical
approximate notion rather than a fundamental one in quantum gravity. One should emphasise that
statements such as “time does not exist” or “space is emergent” are nonsensical. The physical question
is “what are the relevant variables to parameterise the outcome of experimental observations?” Thus,
the undefinability of time parameterisation of trajectories in quantum mechanics is at the heart of its
probabilistic interpretation, which is well documented in experiments.

In this respect it is useful to provide an additional argument that shows that time parameterisation
of trajectories is ill defined due to the Möbius symmetry that underlies quantum mechanics, and
consequently due to the compactness of space. In Bohmian mechanics the wave function is set as:

ψ(q, t) = R(q)eiS/~ (25)

where R(q) and S(q) are the two real functions of the Quantum Hamilton–Jacobi Equation (QHJE), and
ψ(q) is a solution of the Schrödinger equation. The conjugate momentum is then given by:

~Im
∇ψ
ψ

which we may use to define trajectories by identifying it with mq̇. The flaw in this argument is in
the Bohmian identification of the wave function by Equation (25). The issue is precisely the boundary
conditions imposed by the Möbius symmetry that underlies quantum mechanics and the compactness of
space. If space is compact then the wave function is necessarily a linear combination of the two solutions
of the Schrödinger equation:

ψ = R(q)
(
Ae

i
~S +Be−

i
~S
)

(26)

albeit one of the coefficients A or B can be very small, but neither can be set identically to zero. In this
case the:

∇S 6= ~Im
∇ψ
ψ
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and the Bohmian definition of trajectories is invalid.
The equivalence postulate approach therefore reproduces the main phenomenological characteristics

of quantum mechanics. In fact, in retrospect this is not a surprise. It may be regarded as conventional
quantum mechanics with the addendum that space is compact, as dictated by the Möbius symmetry that
underlies the formalism.

The one-dimensional case reveals the Möbius symmetry that underlies the equivalence postulate
and hence underlies quantum mechanics. The equivalence postulate formalism extends to the higher
dimensional case both with respect to the Euclidean and Minkowski metrics [124]. For brevity I
summarise here only the non-relativistic case. The relativistic extensions as well as the generalisation
to the case with gauge coupling are found in [124]. The key to these extensions are the generalisations
of the cocycle condition Equation (13), and of the Schwarzian identity Equation (14). Denoting the
transformations between two sets of coordinate systems by:

q → qv = v(q) (27)

and the conjugate momenta by the generating function S0(q):

pk =
∂S0

∂qk
(28)

Under the transformations Equation (27) we have Sv0 (qv) = S0(q), hence:

pk → pvk =
D∑
i=1

Jkipi (29)

where J is the Jacobian matrix:
Jki =

∂qi
∂qvj

(30)

Introducing the notation:

(pv|p) =

∑
k(p

v
k)

2∑
k p

2
k

=
ptJ tJp

ptp
(31)

the cocycle condition takes the form:

(qa; qc) = (pc|pb)
[
(qa; qb)− (qc; qb)

]
(32)

which captures the symmetries that underlie quantum mechanics. It is shown that the cocycle condition,
Equation (32) is invariant under D-dimensional Möbius transformations, which include dilatations,
rotations, translations and reflections in the unit sphere [124]. The quadratic identity, Equation (14),
is generalised by the basic identity:

α2(∇S0)2 =
∆(ReαS0)

ReαS0
− ∆R

R
− α

R2
∇ · (R2∇S0) (33)

which holds for any constant α and any functions R and S0. Then, if R satisfies the continuity equation:

∇ · (R2∇S0) = 0 (34)
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and setting α = i/~, we have:

1

2m
(∇S0)2 = − ~2

2m

∆(Re
i
~S0)

Re
i
~S0

+
~2

2m

∆R

R
(35)

In complete analogy with the one-dimensional case, we make identifications,

W (q) = V (q)− E =
~2

2m

∆(Re
i
~S0)

Re
i
~S0

(36)

Q(q) = − ~2

2m

∆R

R
(37)

Equation (36) implies the D-dimensional Schrödinger equation:[
− ~2

2m
∆ + V (q)

]
Ψ = EΨ (38)

and the general solution:
Ψ = R(q)

(
Ae

i
~S0 +Be−

i
~S0

)
(39)

is mandated by consistency of the equivalence postulate. We note that the key to these generalisations
is the symmetry structure that underlies the formalism. Seeking further generalisation of this approach
simply entails that this robust symmetry structure is retained.

5.3.1. The Classical Limit

The invariance of the cocycle condition under Möbius transformations may only be implemented
if space is compact. The decompactification limit may represent the case when the spectrum of the
free quantum particle becomes continuous. In that case time parameterisation of quantum trajectories
is consistent with Jacobi’s theorem [115,118,122]. However, the decompactification limit can be seen
to coincide with the classical limit. For this purpose we examine again the case of the free particle in
one dimension. This is sufficient since all physical states can be mapped to this state by a coordinate
transformation. The quantum potential associated with the state W 0(q0) ≡ 0 is given by:

Q0 =
~2

4m
{S0

0 , q
0} = −~2(Re `0)2

2m

1

|q0 − i`0|4
(40)

It is noted that the limit q0 → ∞ coincides with the limit Q0 → 0, i.e., with the classical limit [14].
This observation is consistent with the recent claim that the universe cannot be closed classically [125].
Possible signatures for nontrivial topology in the CMB has been of recent interest [126]. Further
experimental support for the equivalence postulate approach to quantum mechanics may arise from
modifications of the relativistic-energy momentum relation [127], which affects the propagation of
cosmic gamma rays [128].

5.3.2. Where is the Connection with String Theory?

The simple answer to the question may be: in the future. Nevertheless, we may attempt to gather
some hints how the connection may exist. String theory is a self-consistent perturbative framework for
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quantum gravity. As such it provides an effective approach, but is not formulated from a fundamental
principle. An important property of string theory is T-duality, which may be interpreted as phase space
duality in compact space. We may conjecture that phase space duality is the fundamental principle and
use that as a starting point for formulating quantum gravity. This is what the equivalence postulate
approach aims at.

Consistency of the equivalence postulate approach dictates that the CHJE is replaced by the QHJE and
that the quantum potential Q(q) is never zero. In the one-dimensional case, the Schwarzian derivative
may be interpreted as a curvature term [123,129,130]. In the higher dimensional case it is proportional
to the curvature of the function R(q). Thus, we may interpret the quantum potential as an intrinsic
curvature term associated with an elementary particle. Point particles do not have curvature. Hence, the
interpretation of the quantum potential as a curvature term hints to the connection with internal structure
of elementary particles.

The Möbius symmetry underlying quantum mechanics in the equivalence postulate formalism
also implies the existence of a finite length scale [131]. For this purpose we can again study the
one-dimensional stationary case with W 0(q0) = 0. The Schrödinger equation takes the form:

∂2

∂q2ψ = 0

The two linearly independent solutions are ψD = q0 and ψ = const. Consistency of the equivalence
postulate mandates that both solutions must be retained. The solution of the corresponding QHJE is
given by [114,115]:

e
2i
~ S

0
0 = eiα

q0 + i¯̀0

q0 − i`0

where `0 is a constant with the dimension of length [115,131], and the conjugate momentum p0 = ∂q0S
0
0

takes the form:

p0 = ± ~(`0 + ¯̀
0)

2|q0 − i`0|2
(41)

It is noted that p0 vanishes only for q0 → ±∞. The requirement that in the classical limit lim~→0 p0 = 0

suggests that we can set [115,131]:

Re `0 = λp =

√
~G
c3

(42)

i.e., we identify Re `0 with the Planck length. The invariance under the Möbius transformations mandates
the existence of a finite length scale. Additionally, from Equation (41) follows that p0 is maximal for
q0 = −Im`0, i.e.,

|p0(−Im`0)| = ~
Re`0

(43)

The equivalence postulate mandates that Re`0 6= 0. Consequently, p0 is always finite, and `0 acts as
an ultraviolet cut-off. As we would expect, the existence of an ultraviolet cut-off is tightly linked to
the existence of a finite length scale. The fundamental feature is the Möbius symmetry at the core of
quantum mechanics.
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6. Conclusions

The indication from the LHC of a scalar resonance compatible with perturbative electroweak
symmetry breaking reinforces the Standard Model parameterisation of all subatomic experimental data.
The logarithmic evolution is the Standard Model gauge, and the matter parameters suggest that the
Standard Model provides a viable parameterisation up to the Planck scale. Supersymmetry preserves the
logarithmic running also in the scalar sector, which provides reasonable motivation to seek experimental
evidence for its validity in the LHC, Very Large Hadron Collider (VLHC) and other future machines. It
should be stressed that the viability of the experimental program rests on its ability to deliver a working
machine in the first place and to measure the parameters of the Standard Model with better accuracy in
the second. Discovering new physics is an added bonus.

The Planck scale is an ultraviolet cut-off, at which gravitational effects are of comparable strength to
the gauge interactions. String theory provides a perturbatively consistent framework that incorporates
gravity and the gauge interactions and enables the construction of phenomenological models. The
state-of-the-art in this regard is string models that reproduce the spectrum of the Minimal
Supersymmetric Standard Model. The understanding of string theory, as well as that of the space of
string solutions, is still in its infancy. As long as the experimental data does not indicate that this is
on the wrong track, its exploration continues to be of interest. Ultimately, in the future, we would like
to formulate quantum gravity from a fundamental principle. Phase space duality and the equivalence
postulate of quantum mechanics provide a good starting point for that purpose.
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and the hidden antisymmetric tensor of quantum mechanics. Class. Quantum Gravity 2000, 17,
doi:10.1088/0264-9381/17/19/302.

125. Davidson, A.; Rubin, S. Normalized general relativity: Non-closed universe and zero
cosmological constant. Phys. Rev. D 2014, 89, doi:10.1103/PhysRevD.89.024036.

126. Aslanyan, G.; Manohar, A.V.; Yadav, A.P.S. The topology and size of the universe from CMB
temperature and polarization data. J. Cosmol. Astropart. Phys. 2013, 2013, doi:10.1088/1475-
7516/2013/08/009.

http://xxx.lanl.gov/abs/1305.2809


Galaxies 2014, 2 258

127. Faraggi, A.E. Superluminality and the equivalence postulate of quantum mechanics. Eur. Phys.
J. C 2012, 72, doi:10.1140/epjc/s10052-012-1944-y.

128. Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum
gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765.

129. Flanders, H. The Schwarzian as a curvature. J. Differ. Geom. 1970, 4, 515–519.
130. Faraggi, A.E.; Matone, M. Quantum transformations. Phys. Lett. A 1998, 249, 180–190.
131. Faraggi, A.E.; Matone, M. Equivalence principle, Planck length and quantum Hamilton-Jacobi

equation. Phys. Lett. B 1998, 445, 77–81.

c© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Past
	NAHE-Based Models
	Phenomenology of String Unification

	Present
	Classification of Fermionic Z2Z2 Orbifolds
	Spinor-Vector Duality


	Other Approaches
	Future
	Toward String Predictions
	Cosmological Evolution
	Dualities and Fundamental Principles
	The Classical Limit
	Where is the Connection with String Theory?


	Conclusions

