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Abstract: Using the multiplicity of solutions for the projectable case of the covariant
extension of Hořava-Lifshitz gravity, we show that an appropriate choice for the auxiliary
field allows for an effective description of galaxy rotation curves. This description is based
on static and spherically symmetric solutions of covariant Hořava-Lifshitz gravity and does
not require Dark Matter.
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1. Introduction

Although General Relativity (GR) has been accurately checked in the solar system, the small distance
behaviour of gravity is still not understood, and several alternatives to GR have been proposed. Amongst
these modified theories is Hořava-Lifshitz (HL) gravity [1], which is based on the Lifshitz approach and
consists of introducing an anisotropy between space and time: when space is rescaled as x → bx, time
is rescaled as t → bzt, where z is an integer. In Lifshitz models, Lorentz invariance must be recovered
for z = 1, and the situation z 6= 1 leads to new renormalizable interactions: the convergence of loop
integrals is improved by inclusion of higher orders in space derivatives, without introducing ghosts, since
the number of time derivatives remains the minimum. A review of Lifshitz-type quantum field theories
in flat space time can be found in [2], and the HL power-counting renormalizable theory of gravity is
reviewed in [3–5].
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A fundamental problem of the original model of HL gravity is the existence of an additional scalar
degree of freedom for the metric, which can be understood as a Goldstone mode arising from breaking
of 4-dimensional diffeomorphism [6,7]. A solution to this problem has been proposed in [8], where an
auxiliary field A is introduced, such that its “equation of motion” leads to an additional constraint,
eliminating the unwanted scalar degree of freedom of the metric. The resulting theory is invariant
under a new Abelian gauge symmetry UΣ(1) which involves the metric components, the auxiliary
field A and an additional auxiliary field ν. This gauge symmetry, together with the 3-dimensional
diffeomorphism of HL gravity, can be shown to be equivalent to a 4-dimensional diffeomorphism at
the lowest order in a post-Newtonian expansion, showing the equivalence with GR at long distances. For
this reason, this modified version of HL gravity is called covariant HL gravity. We note, however, that the
long-distance limit is not obviously recovered: it has been shown in [9] that the equivalence principle is
not automatically retrieved in the infrared, and that the meaning of the auxiliary field A and its coupling
to matter are still open questions.

Because of the anisotropy between space and time, HL gravity is naturally described in terms of the
Arnowitt-Deser-Misner (ADM) decomposition of the metric, which expresses a space-time foliation. An
important consequences of space-time anisotropy is the possibility of imposing the lapse function N to
depend on time only. This situation is called the projectable case and leads to an interesting feature: the
solutions of the equations of motion are not unique. Indeed, the Hamiltonian constraint, obtained by
variation of the action with respect to N , leads to an integral equation, which does not have a unique
solution, as will be seen in the present article. This multiplicity of solutions is independent of the above
mentioned new gauge symmetry UΣ(1), and the different solutions for A in the projectable case belong
to different gauge orbits. On the other hand, in the non-projectable case where N depends on both
space and time, the Hamiltonian constraint leads to a differential equation, which has a unique solution,
after fixing the constants of integration. The non-projectable case has been studied in [10] for static
spherically symmetric solutions of covariant HL gravity.

In this article we use the freedom of choice of the auxiliary field A in the projectable case to study
the possibility of fitting galaxy rotations curves without the need for Dark Matter. One can argue that the
ambiguity in the choice of A leaves its physical interpretation unclear. This may be understood as one of
the incomplete aspects of covariant HL gravity, and one could conjecture the existence of an additional
symmetry which would restrict the set of solutions for the auxiliary field A, but this still remains to be
studied. We note that the multiplicity of solutions, arising from a Hamiltonian constraint expressed in
terms of an integral over space, has been discussed in [11] as an alternative to Dark Matter, in the context
of the original HL gravity. Fits to galaxy rotation curves have been studied in the framework of the
original HL gravity in [12,13], where a detailed comparison with experimental data is presented. Also,
an interesting analogy between HL gravity for z = 0 and Modified Newtonian Dynamics theories has
been described in [14].

In Section 2 we review the static and spherically symmetric solutions of covariant HL gravity, and in
Section 3 we show how galaxy rotation curves can be described by the covariant extension of HL gravity.
Although the curves we use were derived from Dark Matter models, we use them as experimental data
fits. It is interesting to note that we obtain exact solutions for the auxiliary fieldA. Another exact solution
in the Lifshitz context has been derived in [15], where the exact effective potential for a Liouville scalar
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theory, renormalizable in 3 + 1 dimensions with anisotropic scaling z = 3, proves to be an exponential,
as in the usual 1 + 1 dimensional relativistic Liouville theory. Finally, we conclude by discussing the
possiblity to describe the solar system with our solution.

2. Static and Spherically Symmetric Solutions of Covariant HL Gravity

The static and spherically symmetric solutions of covariant HL gravity were derived in [25,26], and
we review here the aspects relevant to our present study.

2.1. Action

The ADM metric we consider is:

ds2 = −c2N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(1)

where N and N i are the lapse and shift functions respectively, and gij is the three-dimensional space
metric. We consider the anisotropic scaling with z = 3, for which the different operators, allowed for
the model to be power-counting renormalizable, have the mass dimension of 6, at most. We note that in
this case the mass dimension of the speed of light is [c] = z − 1 = 2, and we will keep c in the different
expression for the sake of clarity.

The covariant Hořava-Lifshitz action, in the absence of cosmological constant, is:

S =

∫
dtd3x

√
g
(
N
[
KijK

ij −K2 − V + νΘij(2Kij +∇i∇jν)
]
− AR(3)

)
(2)

where g is the determinant of the three-dimensional metric gij , with curvature scalar R(3). A is an
auxiliary field (without kinetic term) of mass dimension z + 1 = 4 and ν is an auxiliary field of mass
dimension z − 2 = 1. In the above expression, the extrinsic curvature is:

Kij =
1

2N
{ġij −∇iNj −∇jNi} , i, j = 1, 2, 3 (3)

where a dot denotes a time derivative, and,

Θij = R(3)ij − 1

2
R(3)gij (4)

where where R(3)ij is the Ricci tensor corresponding to the three-dimensional space metric gij . Note that
a more general kinetic term KijK

ij − λK2 can be considered, with λ a generic parameter. The latter
should be equal to 1 if one wishes to recover GR in the infrared, but in the framework of HL gravity, no
symmetry imposes this parameter to be equal to 1. Constraints on λ resulting from observations of Type
Ia Supernovae, Baryon Acoustic Oscillations, CMB and the requirement of Big Bang Nucleosynthesis
all point towards a value near the GR parameter λ = 1 [16], while it has also been shown that covariant
HL gravity with λ 6= 1 leads to inconsistencies, if one compares the predictions of the model with solar
system tests [17]. We therefore focus here on the situation where λ = 1 only. Independently of these
tests, the mathematical consistency of covariant HL gravity for λ 6= 1 has been studied in [18], and
the corresponding Hamiltonian structure in [19]. We stress again here that the purpose of this covariant
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extension of HL gravity is to eliminate the unwanted additional scalar graviton from the spectrum. As
shown in [8], no singularity arises in the limit λ → 1, and the strong coupling of the scalar graviton
does not exist anymore, as it is the case for the original HL gravity. Besides [6,7], one can find detailed
analysis of the strong coupling problem in [20–22], and also related discussions in [23] on a extension
of the original HL gravity [24].

The potential term V contains up to six spatial derivatives of the metric gij:

V = −c2R(3) − α1(R(3))2 − α2R
(3)ijR

(3)
ij − β1(R(3))3 − β2R

(3)R(3)ijR
(3)
ij

−β3R
(3)i
j R

(3)j
k R

(3)k
i − β4R

(3)∇2R(3) − β5∇iR
(3)
jk ∇iR

(3)jk (5)

where the mass dimensions of the different couplings are:

[α1] = [α2] = z − 1 = 2, [β1] = [β2] = [β3] = [β4] = [β5] = z − 3 = 0 (6)

We consider the most general, static, spherically symmetric metric, of the form:

ds2 = −c2N2dt2 +
1

f(r)
(dr + n(r)dt)2 + r2(dθ2 + sin2 θdφ2) (7)

where n(r) = N r(r) is the radial component of shift function, and Nr = n(r)/f(r) since grr = 1/f(r).
Note that n has mass dimension z − 1 = 2.

2.2. Constraints and Equations of Motion

The variation of the action (Equation (2)) with respect to the different degrees of freedom leads to
the following constraints, or equations of motion, where a prime denotes a derivative with respect to the
radial coordinate r.

• The variation with respect to A gives R(3) = 0, or equivalently:

rf ′ + f − 1 = 0 (8)

which imposes the function f(r) in the metric (7) to be:

f(r) = 1− 2B

r
(9)

where B is a constant of integration.

• The variation with respect to ν gives:

Θij∇i∇jν + ΘijKij = 0 (10)

In what follows we will assume the Gauge fixing of ν = 0, then the above constraint gives
ΘijKij = 0, which is satisfied for spherically symmetric solutions.

• The variation with respect to N gives the Hamiltonian constraint:∫ ∞
0

dr
r2√
f(r)

(KijK
ij −K2 + V ) = 0 (11)

which is an space-integral equation since N depends on time only.
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• The variation with respect to n gives:

f ′(r)n(r) = 0 (12)

such that either f is a constant (B = 0) or n = 0.

• The variation with respect to f gives:

A′ +
A

2r

(
1− 1

f

)
+ 4

fn (
√
rn)

′

√
r

=

{
r

4f
−
√
f

2r

3∑
n=0

(−1)n
dn

drn

(
r2

√
f

∂

∂f (n)

)}
V (13)

where the time has been rescaled such that N = 1.

2.3. Solutions

The different solutions of the previous set of equations were derived in [25,26], and here we shortly
review the different cases.

• n = 0: the solution of the differential Equation (13) gives short-distance corrections to the
Schwarzschild solution, details of which can be found in [25,26];

• n 6= 0 and A = 0: leads to the Schwarzschild solution in the Painleve-Gullstrand coordinates
(n ∝ r−1/2), and the Hamiltonian constraint is automatically satisfied;

• n 6= 0 and A 6= 0: corresponds to the situation with multiple solutions for A and n, on which this
article focuses. Since B = 0, we have f = 1 and V = 0, such that the Equations (11) and (13)
give respectively: ∫ ∞

0

dr(rn2)′ = 0

rA′ + 2(rn2)′ = 0 (14)

with solutions:
n2(r) =

C

r
− 1

2
A(r) +

1

2r

∫ r

0

dρ A(ρ) (15)

where C is a constant of integration and the auxiliary field A satisfies:∫ ∞
0

drrA′(r) = 0 (16)

The flexibility in the choice of solution forAwill help describe galaxy rotation curves, as explained
in the next section.

3. Galaxy Rotation Curves

In what follows, we consider each star in the spiral arms of the galaxy as a test particle, moving
on a circular trajectory under the influence of the potential φ(r), generated by the centre of the galaxy,
which is assumed to be static and spherically symmetric. Our approach is to start from a stellar velocity
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distribution and derive the corresponding expression for the auxiliary field A, in the above situation with
n 6= 0 and A 6= 0 , where multiple solutions for A are allowed. We note the following few points:

(1) We consider vacuum solutions of covariant HL gravity, for which one cannot in principle describe
the region in the centre of the galaxy. Nevertheless, as we will see in case of the following velocity
profiles, a consistent solution for A can be found for 0 ≤ r ≤ R, where R is a typical radial length
describing the galaxy. To be consistent with the usual studies of galaxy rotations, we will choose here
R = r200, corresponding to the virial radius of the galaxy. The latter is defined as the distance from the
centre of the galaxy, where the density ρ200 is 200 times the critical density ρc of the Universe:

ρ200 = 200ρc = 200
3H2

8πG
(17)

where H is the Hubble constant;
(2) For r > r200, we assume the solution A = 0, which leads to the usual Schwarzschild solution

outside the galaxy. Indeed, far from the galaxy, one expects to see the Newtonian potential. This solution
implies that the Hamiltonian constraint is expressed in terms of an integral over the finite range [0, r200]

of radial coordinate r, which we can impose to vanish by fixing the constants of integration;
(3) For r ≤ r200, since the shift A → A+ constant does not have a physical implication, one can

expect to find a consistent solution for A which is continuous at r = r200, i.e., A(r200) = 0. On the other
hand, one cannot expect the auxiliary field to be differentiable at r = r200, but this is not necessary for
the consistency of covariant HL gravity: the second derivative of A does not appear in any equation of
motion or constraint, so the first derivative can be discontinuous.

3.1. Gravitational Potential

On a circular trajectory, the relation between the speed v of a star and the Newtonian potential φ is:

v2

r
=
dφ

dr
(18)

where φ is obtained from the g00 component of the low energy effective theory:

− c2 + n2 = −c2(1 + 2φ) (19)

and is thus given by:

φ(r) = −n
2(r)

2c2
(20)

We note here that, in the situation where the second auxiliary field ν does not vanish, the Newtonian
potential is instead given by:

φ(r) = −(n(r)−∇rν(r))2

2c2
(21)

and φ is independent of the UΣ(1) gauge choice for ν andA. Also, φ is dimensionless, so that the speed v
we use in this article is also dimensionless, which corresponds to a usual definition of speed, for isotropic
space-time. The corresponding “Lifshitz velocity” is cv, with mass dimension z − 1 = 2.

From the relations (15) and (18), the speed v and the auxiliary field A are then related by:

rA′(r)

4c2
=

d

dr

(
r

∫ r

dρ
v2(ρ)

ρ

)
= v2(r) +

∫ r

dρ
v2(ρ)

ρ
(22)
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and we have to check that the Hamiltonian constraint (16) is satisfied, in order to show the consistency
of the approach.

We also note from Equations (15) and (18) that the solution A = 0 gives,

v(r) =

√
C

2c2r
(23)

which is expected from Newtonian mechanics outside the galaxy, for r > r200. If one fixes the constant
of integration C to the value:

C = 2c2r200v
2
200 (24)

where v200 = v(r200), one obtains a continuous speed at r = r200. Finally a different choice of the
auxiliary field ν would modify the field A in such a way that physical results would not be changed.

3.2. Navarro, Frenk and White Profile

This profile originates from Cold Dark Matter halo models and is characterised by the “cusp” shape
of the density distribution. Its validity has been tested on variety of observational results, including Low
Surface Brightness galaxies in [27] and spherical galaxies and clusters in [28]. For our purposes, we use
the circular velocity profile derived from the mass density profile in [29], based on the assumption of a
Dark Matter halo and ignoring the contribution of baryons,

v(r) = v0

√
r200

r
ln

(
1 +

ar

r200

)
− a

1 + ar/r200

(25)

where a is the concentration parameter and:

v0 =
v200√

ln (1 + a)− a/(1 + a)
(26)

where v200, the virial velocity, is the circular velocity at the virial radius. Some typical values [30] are in
Table 1:

Table 1. Parameters for the Navarro, Frenk and White profile.

Galaxy a v200 (km/s) r200 (kpc)
NGC 2403 10.9± 0.6 106.1± 1.9 88.4± 2.6

NGC 3198 11.2± 0.43 104.0± 0.7 86.6± 1.6

NGC 3521 14.0± 12.6 122.5± 20.4 102.0± 18

With the profile (Equation (25)), Equation (22) leads to:

rA′(r)

4c2v2
0

= φ1 −
a

1 + ar/r200

(27)

where φ1 is a constant of integration, and therefore:

A(r)

4c2v2
0

= (φ1 − a) ln

(
r

r200

)
+ a ln

(
1 + a

r

r200

)
+ A1 (28)
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where A1 is a constant of integration. Since we consider the solution A(r) = 0 for r > r200 and impose
A(r) to be continuous at r = r200, then A1 = −a ln(1 + a) and:

A(r)

4c2v2
0

= (φ1 − a) ln

(
r

r200

)
+ a ln

(
1 + ar/r200

1 + a

)
if 0 ≤ r ≤ r200 (29)

A(r) = 0 if r > r200

Finally, the Hamiltonian constraint:

0 =

∫ ∞
0

dr rA′(r) = 4c2v2
0

∫ r200

0

dr

(
φ1 −

a

1 + ar/r200

)
(30)

is satisfied if:
φ1 = ln(1 + a) (31)

We note that the solution (Equation (29)) is consistent for any relevant values of the parameters
a, v0, r200 and therefore allows the description of a whole range of galaxies.

3.3. Pseudoisothermal Profile

The pseudoisothermal mass density profile assumes an existence of a “cored” dark matter halo
component in the galaxy [31] , with mass density of an approximately constant value in the central region
of the galaxy, for r ≤ Rc. Empirically motivated, the model is often contrasted with the aforementioned
Navarro, Frenk and White (NFW) “cuspy” profile, while evidence shows that it provides better fit of the
galaxy rotation velocities [27]. The velocity profile is:

v(r) = v0

√
1− RC

r
arctan

(
r

RC

)
(32)

where v0 is given by:

v0 =
√

4πGρ0R2
C (33)

and ρ0, the central density, is the density within RC . Typical values [30] are in Table 2:

Table 2. Parameters for the Pseudoisothermal profile.

Galaxy Rc (kpc) ρ0 (10−3M�pc−3) r200 (kpc)
NGC 2403 2.51± 0.32 59.1± 14.3 88.4± 2.6

NGC 2841 1.36± 0.75 674.8± 736.4 159.0± 3.7

NGC 3621 5.88± 0.32 13.0± 1.1 106.6± 4.0

We note that in the case of NCG 2403, both the NFW and the present profile can be shown to produce
fits of comparably good quality.

With the profile (Equation (32)), Equation (22) leads to:

rA′(r)

4c2v2
0

= φ2 +
1

2
ln

(
1 +

r2

R2
c

)
(34)
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where φ2 is a constant of integration. The same steps as those describe for the previous profile lead to
the solution:

A(r)

4c2v2
0

= φ2 ln

(
r

r200

)
+

1

2

∫ r/Rc

0

dt

t
ln(1 + t2) + A2 if 0 ≤ r ≤ r200 (35)

A(r) = 0 if r > r200

where the constants of integration are:

A2 = −1

2

∫ r200/Rc

0

dt

t
ln(1 + t2) (36)

for the continuity of A(r) at r = r200, and:

φ2 = −1

2
ln

(
1 +

r2
200

R2
c

)
+ 1− Rc

r200

arctan

(
r200

Rc

)
(37)

for the Hamiltonian constraint to be satisfied.

3.4. Vacuum Energy Contribution of the Auxiliary Field

Since the present model does not require Dark Matter to explain galaxy rotation curves, the resulting
mass content of the Universe might therefore be reduced. But the static configuration of A actually
results in an effective vacuum energy. This can be seen from the original action (Equation (2)), after
integrating by parts the term −√gAR(3), which involve second-order space derivatives of the metric.
This leads to the following contribution to the Hamiltonian:

M ∝ 1

c

∫
d3x
√
ggij∇i∇jA =

4π

c

∫ r200

0

r2dr ∂2
rA (38)

where the factor 1/c arises from the absence of integration over time, and restores the correct dimension.
In the case of the Navarro, Frenk and White profile, the energy (Equation (38)) reads:

M1 = 16πcv2
0r200

[
ln(1 + a)− a

1 + a

]
(39)

which is always positive, for any value of the parameter a ≥ 0.
For the Pseudoisothermal case, we obtain from Equation (38):

M2 = 16πcv2
0r200

[
1− Rc

r200

arctan

(
r200

Rc

)]
(40)

which is also always positive, for any value of the ratio r200/Rc.
The auxilliary field A has therefore a cosmological role, by contributing to the vacuum energy of the

Universe, consistently with its observed acceleration.
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4. Conclusions

The multiplicity of solutions in covariant HL gravity has been used to describe galaxy rotation curves,
without the need for Dark Matter. This multiplicity is a consequence of the breaking of 4-dimensional
diffeomorphism, in the projectable case, where the lapse function is imposed to depend on time only.
We considered two specific velocity profiles and showed in each case that a corresponding consistent
solution can be derived for the auxiliary field A. Clearly, similar results can be expected with other
profiles. A more detailed analysis would consist in taking into account the finite star density at the centre
of the galaxy, as well as its rotation.

One should note that the solutions found, for the auxilliary fieldA, depend on parameters wich cannot
appear in the Lagrangian in a universal way. These parameters arise as constant of integrations, as a
result of the integral form of the Hamiltonian constraint, and they have to be fitted to each galaxy which
is studied. This is a bit similar to the Schwazschild metric in General Relativity, involving a mass which
is a constant of integration and depends on the star/black hole under consideration.

It is interesting to note that the solutions (Equations (29) and (35)) actually do not only describe
galaxy rotations curves, but also the usual Schwarzschild solutions for the Solar System, by taking the
limit r200 → 0 such that A = 0 for all r. In this sense these solutions provide an effective unified
description of gravitational effects, from the solar system scale to the galaxy scale, where local Lorentz
violation appears gradually, as the observational length increases from the the size of the solar system to
the size of the galaxy.

We finally note that, although HL gravity was initially developed to modify ultraviolet behaviour of
gravity, our present work uses another consequence of local Lorentz symmetry violation, which is the
existence of a non-unique solution to the Hamiltonian constraint. Since it has been shown that canonical
Hořava-Lifshitz gravity provides a description of Cosmology which is consistent with constraints from
observational data [32], it would be interesting to see if the non-unique time-dependent solutions of the
covariant version of the theory could also allow for an effective description of Cosmology, including an
alternative to Dark Energy.
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