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Abstract: From the linear perturbations of Nash–Greene fluctuations of a background metric, we
obtain profiles of Hubble function evolution H(z) and f σ8(z) measurements as compared with
the ΛCDM results at intermediate redshifts 0.1 < z < 1. For parameter estimation, we use joint
data from Planck Cosmic Microwave Background (CMB) likelihoods of CMB temperature and
polarization angular power spectra, Barionic Acoustic Oscillations (BAO) and local measurements of
Hubble constant H0 from the Hubble Space Telescope (HST). We analyze the stability of the effective
Newtonian constant Ge f f and its agreement with Big Bang Nucleosynthesis (BBN) constraints.
We show that our results are highly compatible with the ΛCDM paradigm, rather extending the
perspective for further studies on redshift-space galaxy clustering data. Moreover, we obtain the
CMB TT angular spectra with the Integrated Sachs–Wolfe (ISW) effect, which is weakened on low-l
scales. The resulting linear matter power spectrum P(k) profile is also compatible with ΛCDM results
but somewhat degenerate with an early dark energy (DE) contribution. Finally, posing a dilemma to
the solution of Hubble tension, our results indicate a low Hubble expansion rate suggesting possible
anomalies in Planck data in consonance with the recent South Pole Telescope (SPT-3G) data.

Keywords: dark energy; Nash–Greene theorem; gravitational field

1. Introduction

The ΛCDM model is regarded as the standard cosmological model. It is the most
successful simpler solution to tackle the problem of the accelerated expansion of the
universe [1–11] with agreement with larger events of the data collected to date [1]. On the
other hand, it lacks fundamental theoretical grounds on explaining the unknown nature
of the cosmological constant Λ and the (Cold) Dark Matter (CDM) [12–18]. The fact that
the underlying nature of these components are still unknown, it brought forth a plethora
of competing cosmological models. In this direction, apart from ΛCDM paradigm, in this
paper, based on previous works [19–21], we explore the possibility to add a new curvature
to General Relativity (GR) and to analyze the physical implications of such a mechanism.
In this framework, gravity naturally accesses extra-dimensions that are no longer an ad
hoc proposition. Then, it opens a possible direction for tackling the fundamental problem
of the large difference of the ratio of the Planck masses (MPl) to the electroweak energy
scale MEW in such MPl/MEW ∼ 1016, the so-called problem of unification of fundamental
interactions. The sought-after solution to such a problem spawned a whole arena of mul-
tidimensional models such as Kaluza–Klein or/and string inspired as the works of the
Arkani-Hamed, Dvali and Dimopolous [22], for short, ADD model, the Randall–Sundrum
model [23,24], the Dvali–Gabadadze–Porrati model (DPG) [25] and variants. Differently
from these brane/string inspired models, we adopt the embedding of geometries as a
cornerstone for elaborating a gravitational model, as proposed in several independent
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investigations [19–21,26–39]. In this work, we use the resulting linear cosmological pertur-
bation equations to test our model [40–43] mainly in ref. [44] analyzing Hubble function
evolution H(z) and f σ8(z) measurements and the stability of the effective Newtonian
constant Ge f f that carries a signature of the extrinsic curvature, the key object in our frame-
work. In particular, the quantity f σ8(z) is defined in terms of σ8 parameter that is the RMS
amplitude of matter density at a scale of a radius R ∼ 8h.Mpc−1 within an enclosed mass
of a sphere [45].

The outline of the paper is organized in sections. In Section 1, we revise the embedding
of geometries and how it may be used to construct a physical model. In this context, the
Nash–Greene theorem is discussed. The second and third sections verse on the obtainment
of the Hubble evolution H(z) from the background Friedmann–Lemaître–Robertson–Walker
(FLRW) metric and cosmological scalar perturbation equations in Newtonian gauge, re-
spectively. In the fourth section, we analyze the stability of Ge f f and the evolution of
H(z) and f σ8(z). To constrain the parameters, we use a parameter estimator MontePhy-
ton [46–48] sampler associated with the module classy in the Cosmic Linear Anisotropy
Solving System CLASS [49–51]. We perform a joint data analysis applying the Markov
Chain Monte Carlo (MCMC) sample technique from Planck CMB likelihoods [1] of tem-
perature and polarization angular power spectra (high-l.TT+high-l.plik.TTTEEE + low-l EE
polarization+ low-l TT temperature), BAO data by the public available likelihoods at https:
//doi.org/github.com/brinckmann/montepython_public (accessed on 10 October 2022 ) ex-
tracted from 6dFGS [52], BOSS DR10&11: LOWZ, CMASS [53], SDSS DR7: MGS [54] and
BOSS DR12: BAO LOWZ&CMASS [55], including f σ8 measurements. We also consider local
measurements of H0 from the Hubble Space Telescope (HST) [56]. In addition, we compare our
results with the ΛCDM model in f σ8(z) measurements using the data points of SDSS [57–59],
6dFGS [60], IRAS [61,62], 2MASS [61,63], 2dFGRS [64], GAMA [65], BOSS [66], WiggleZ [67],
Vipers [68], FastSound [69], BOSS Q [70] and additional points from the 2018 SDSS-IV [71–74].
For the background evolution of Hubble function H(z), we use data points from [75,76] and
some “clustering” measurements of H(z) [77]. Moreover, an analysis of the unlensed CMB
TT power spectrum and the linear matter power P(k) is performed. In the final section, we
present our remarks and prospects. We adopt the Landau time-like convention (−−−+) for
the signature of the four-dimensional embedded metric and speed of light c = 1. Concerning
notation, capital Latin indices run from 1 to 5. Small case Latin indices refer only to the one
extra-dimension considered. All Greek indices refer to the embedded space–time counting
from 1 to 4. From here on, we indicate the non-perturbed (background) quantities by the
upper-script symbol “0”.

2. The Induced Four–Dimensional Equations in an Embedded Space–Time

We define a model endowed with a gravitational action S in the presence of confined
matter fields on a four-dimensional embedded space–time embedded in a five-dimensional
one as

S = − 1
2κ2

5

∫ √
|G|

5
Rd5x−

∫ √
|G|L∗md5x , (1)

where κ2
5 is a fundamental energy scale on the embedded space, 5R denotes the five-

dimensional Ricci scalar of the bulk and L∗m denotes the confined matter content. Such a
Lagrangian contains the matter energy momentum tensor that fulfills a finite hypervolume
with constant radius l along the fifth dimension.

The variation of Einstein–Hilbert action in Equation (1) with respect to the bulk metric
GAB leads to the higher-dimensional Einstein equations

5RAB −
1
2
GAB = α∗TAB , (2)
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where α∗ is the energy scale parameter and TAB is the energy–momentum tensor for
the bulk [19–21,30] and the five-dimensional bulk with constant curvature whose related
Riemann tensor is

5RABCD = K∗(GACGBD − GADGBC), A...D = 1...5 ,

where GAB denotes the bulk metric components in arbitrary coordinates and the constant
curvature K∗ is either zero (flat bulk) or it can have positive (deSitter) or negative (anti-
deSitter) constant curvatures. In accordance with observations of Planck collaboration [1],
they indicate a very small value of the cosmological constant Λ; in this work, we ignore any
contribution of such quantity to cosmic dynamics. As a result, we chose K∗ = 0, although
any other choice of K∗ may be possible.

The bulk geometry is actually defined by the Einstein–Hilbert principle in
Equation (1), which leads to Einstein’s equations, as shown in Equation (2). The confinement
condition [78,79] on these equations implies that K∗ = Λ∗/6 = 0. Thus, the confined com-
ponents of the bulk–energy tensor TAB are proportional to the energy–momentum tensor of
standard General Relativity (GR), i.e., α∗Tµν = 8πGTµν, where G is the gravitational Newto-
nian constant. The confinement implies that we are restricted to the four-dimensionality of
the space–time. This is reinforced by the experimentally consistent Yang–Mills structures of
gauge fields that are valid only in four dimensions [80], even though theoretical extensions
are possible in the context of branes and strings. Hence, only gravity propagates in the bulk
space, and the vector and scalar components of bulk energy tensor are zero, i.e., Tµa = 0
and Tab = 0, respectively.

In this work, the mathematical background of the theoretical embedding structure is
well oriented by the Nash–Greene theorem [81,82]. Such a theorem states that a complete
embedding between pseudo-Riemannian manifolds results from a differentiable mapping
between the functions of the related manifolds to guarantee that the embedded geometry
and its deformations will be differentiable. Moreover, the bulk metric must obey the
Einstein–Hilbert principle. Differently from rigid embedding models, where the perturbed
bulk equations are a must, e.g., [23–25], Nash–Greene mechanism simplifies the evolution
of the perturbed cosmological equations. Once the dynamical embedding is fully set, we do
not need to perturb the bulk geometry since the perturbations on the embedded space–time
were already triggered, and vice-versa. Although embedding can be made in an arbitrary
number of dimensions (see [19–21,29,30,33–36,38,39]), the current alternative models of
gravitation are normally stated in five dimensions at most.

Next, we summarize the embedding process to obtain the induced gravitational
equations from the bulk on the embedded space–time. First, a Riemannian manifold V4 is
endowed with a non-perturbed metric (0)gµν which is locally and isometrically embedded
in a five-dimensional Riemannian manifold V5. Hence, a differentiable and regular map
can be defined as X : V4 → V5, which leads to

X A
,αX B

,βGAB = (0)gαβ , (3)

X A
,α

0ηB
a GAB = 0 , (4)

0ηA
a

0ηB
b GAB = 1 , (5)

where the colons denote ordinary derivatives, X A is the non-perturbed embedding co-
ordinate, GAB is the metric components of V5 in arbitrary coordinates and 0η denotes
the non-perturbed unit vector field orthogonal to V4. The preferred orthogonal direction
for perturbations avoids possible coordinate gauges which may produce false perturba-
tions. Moreover, the set of Equations (3)–(5) represents the isometry, orthogonality and
normalization conditions. Their integration gives the embedding map X .



Galaxies 2022, 10, 118 4 of 19

In this framework, it marks the appearance of a new curvature element that is the
extrinsic curvature. As commonly defined in traditional textbooks [83], the non-perturbed
extrinsic curvature k(0)µν is given by

k(0)µν = −X A
,µ

0ηB
,νGAB = X A

,µν
0ηBGAB . (6)

which is the projection of the variation of the vector 0η onto the tangent plane. It plays an
essential role in the embedding process and may inflict relevant consequences in terms of
elaboration of a physical model.

Any geometric object Ω̄ can be constructed in the embedded space V4 at any orthogonal
direction 0η by Ω = Ω̄ + δy £0ηΩ̄ that is the Lie transport £0η along the flow at certain small
distances δy. It is worth noting that it is irrelevant if the distances δy are time-like or not,
nor if they are positive or negative. Thus, the Lie transport of the Gaussian coordinates’
vielbein {X A

µ ,0 ηA
a } in V4 leads to a new perturbed vielbein coordinates {ZA

µ ,0 ηA
a } as

ZA
,µ = X A

,µ + δy £0ηX A
,µ
= X A

,µ + δy 0ηA
,µ , (7)

ηA = 0ηA + δy [0η,0 η]A = 0ηA . (8)

From Equation (8), it is straightforward to check that the derivative of 0η is not affected
by perturbations in a sense that η,µ 6= 0η,µ. Likewise, from the non-perturbed case in
Equations (3)–(5), one obtains a set of perturbed coordinates ZA as

ZA
,µZB

,νGAB = gµν, ZA
,µηBGAB = 0, ηAηBGAB = 1 . (9)

Now, the perturbed coordinate Z defines a coordinate chart between the bulk and
the embedded space–time which may evolve dynamically inside the bulk. Replacing
Equations (7) and (8) in Equations (6) and (9), one obtains the set of both perturbed metric
gµν and extrinsic curvature kµν in linear perturbation as

gµν = g(0)µν + δgµν + ... = g(0)µν − 2y k(0)µν + ... , (10)

kµν = k(0)µν + δkµν + ... = k(0)µν − 2y 0gρσk(0)µρ k(0)νσ + ... (11)

As a result, we simply obtain the Nash deformation formula by the derivative of
Equation (10) with respect to the y coordinate given by

k(0)µν = −1
2

∂g(0)µν

∂y
. (12)

In the context of ADM formulation of GR, a suchlike formula was obtained by Choquet-
Bruhat and J. York [84]. Differently from the Choquet-Bruhat–York condition, the concept of
the y parameter is not restricted to be a time component. Moreover, Equation (12) justifies
how the deformation parameter y does not explicitly appear in the line element ds once
the perturbation is virtually triggered in the embedding process. It also holds true for any
perturbations resulting from n-parameter families of embedded submanifolds extended to
a larger set of ya. This notable feature is exclusive of embedding geometries with dynamical
embeddings. Due to the fact that the dynamics of extrinsic curvature is commonly replaced
by additional assumptions, the deformation parameter y is carried out in the metrics of
rigid embedding models [23,24] to guarantee that perturbations can happen.

A final aspect of the Nash–Greene embeddings follows the logic that the evolution
of the bulk induces the dynamics of the embedded space–time and vice-versa. Then, the
comprehension of integrability equations is a sufficient and necessary condition. They are
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given by the non-trivial components of the Riemann tensor of the embedding space–time,
namely Gauss and Codazzi equations, respectively, as

5RABCDZA
,αZB

,βZC
,γZD

,δ = Rαβγδ+ (0kαγ
0kβδ− 0kαδ

0kβγ) , (13)
5RABCDZA

,αZB
,βZC

,γηD = 0kα[β;γ] , (14)

where 5RABCD is the five-dimensional Riemann tensor. The semicolon denotes the covari-
ant derivative with respect to the metric, and the brackets apply the covariant derivatives
to the adjoining indices only. By the relation in Equation (12), Nash proposes a solution for
the long-standing problem of these equations due to their strong non-linearity. As a result,
we can write in embedded vielbein {ZA

,µ , ηA} for the metric of the bulk in the vicinity of V4
simply as

GAB =

(
g(0)µν 0

0 1

)
. (15)

3. Embedded Four-Dimensional FLRW Cosmology

In this section, we summarize some results of previous works [20,30,44] showing the
main relations to obtain the Friedmann equation. The basic familiar line element of the
FLRW four-dimensional metric is given by

ds2 = dt2 − a2
(

dr2 + r2dθ2 + r2 sin2 θdφ2
)

, (16)

where the expansion factor is denoted by a ≡ a(t). The coordinate t denotes the physical
time. In the Newtonian frame, the former equations turns out to be

ds2 = dt2 − a2
(

dx2 + dy2 + dz2
)

. (17)

Using Equations (2), (15) and (17), we can obtain the non-perturbed field equations of
induced field equations from a five-dimensional bulk as

G(0)
µν + Q(0)

µν = 8πGT(0)
µν , (18)

k(0)
µ[ν;ρ] = 0 , (19)

where the energy–momentum tensor of the confined perfect fluid is denoted by T(0)
µν and G

is the gravitational Newtonian constant. Here, G(0)
µν denotes the four-dimensional Einstein

tensor and Q(0)
µν is called deformation tensor.

The non-perturbed extrinsic term Q(0)
µν in Equation (19) is given by

Q(0)
µν = k(0)ρµ k(0)ρν − k(0)µν h− 1

2

(
K2 − h2

)
g(0)µν , (20)

where we denote the mean curvature by h2 = h·h and h = 0gµν 0kµν and the Gaussian

curvature by K2 = kµν(0)k(0)µν . By direct derivation, Equation (20) is conserved as

Q(0)
µν;µ = 0 . (21)

The deformation equation in Equation (19) was firstly introduced in refs. [19–21].
Since the extrinsic curvature is diagonal in FLRW space–time, one finds their compo-

nents using Equation (19), which can be split into spatial and time parts as

k(0)ij,k − Γa
ikk(0)aj = k(0)ik,j − Γa

ijk
(0)
ak . (22)



Galaxies 2022, 10, 118 6 of 19

In the Newtonian frame, the spatial components are also symmetric and, from
Equation (22), one can obtain k(0)11 = k(0)22 = k(0)33 = b ≡ b(t) and

k(0)ij =
b
a2 gij, i, j = 1, 2, 3, k(0)44 =

−1
ȧ

d
dt

b
a

. (23)

The set of the following objects can be found as

k(0)44 = − b
a2

(
B
H
− 1
)

, (24)

K2 =
b2

a4

(
B2

H2 − 2
B
H

+ 4
)

, h =
b
a2

(
B
H

+ 2
)

, (25)

Q(0)
ij =

b2

a4

(
2

B
H
− 1
)

g(0)ij , Q(0)
44 = −3b2

a4 , (26)

Q(0) = −(K2 − h2) =
6b2

a4
B
H

, (27)

where the Hubble parameter is defined as H ≡ H(t) = ȧ
a . The function B = B(t) ≡ ḃ

b
is defined as in analogy with the Hubble parameter. As shown in detail in ref. [44], the
bending function b(t) is given by

b(t) = b0a(t)β0 , (28)

that solves univocally the set of the components of the extrinsic curvature in Equation (23).
The hydrodynamical equations are obtained in a very standard fashion. We start with

a non-perturbed stress–energy tensor in a co-moving fluid that is defined as

T(0)
µν =

(
ρ(0) + p(0)

)
uµuν − p(0)g(0)µν ; uµ = δ4

µ ,

and its immediate conservation T(0)
µν;µ = 0 that leads to the equation

ρ(0) + 3H
(

ρ(0) + p(0)
)
= 0 . (29)

Hence, one obtains the following Friedmann equation as

H2 =
8
3

πGρ(0) +
b2

a4 , (30)

where ρ(0) is the present value of the non-perturbed matter density (ρ(0) ≡ ρ
(0)
m (t)). For a

pressureless fluid, one obtains the matter density in terms of redshift as

ρ
(0)
m (t) = ρ

(0)
m(0)a

−3 = ρ
(0)
m(0)(1 + z)3 .

Likewise, one writes Equation (30) simply as

H2 =
8
3

πGρ
(0)
m(0)(1 + z)3 + b2

0(1 + z)4−2β0 . (31)

Using the standard definition of the cosmological parameter Ωi = 8πG
3H2

0
ρ
(0)
i(0), one

obtains (
H
H0

)2
= Ωm(0)(1 + z)3 + (1−Ωm(0))(1 + z)4−2β0 , (32)

where Ωm(0) is the current cosmological parameter for the matter content and for a flat
universe Ωext(0) = 1−Ωm(0), and H0 is the current value of Hubble constant in units of
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km.s−1 Mpc−1. It is worth noting that Equation (32) with the β0-parameter nearly resembles
the wCDM model in terms of comparison with their Friedmann equations at background
level, where w is a dimensionless parameter of the fluid equation of state w = p

ρ [85]. It
allows us to propose an effective “extrinsic fluid parameter” wext with a fluid analogy by
an effective Equation of State (EoS) as

wext = −1 +
1
3
(4− 2β0) . (33)

From the dimensionless parameter β0 with the dark energy fluid parameter w, we
have β0 = 2− 3

2 (1 + w), or equivalently, w = −1− 1
3 (2β0 − 4). Thus, one obtains wext = w.

Hence, the dimensionless Hubble parameter E(z) is given by

E2(z) = Ωm(0)(1 + z)3 +
(

1−Ωm(0)

)
(1 + z)3(1+w) . (34)

which mimics a wCDM behavior at background level for w 6= −1. On the other hand, at
perturbation level, differently from the ΛCDM and wCDM models, our model provides an
effective Newtonian constant Ge f f [44].

4. Scalar Perturbations in Newtonian Gauge

In longitudinal conformal Newtonian gauge, we use the standard element line as

ds2 = a2[(1 + 2Φ)dη2 − ((1− 2Ψ)δijdxidxj] , (35)

where Φ = Φ(~x, η), and Ψ = Ψ(~x, η) denotes the Newtonian potential and the Newtonian
curvature. As shown in detail in ref. [44], the resulting perturbed gravitational equations
are written as

δGµ
ν = 8πGδTµ

ν − δQµ
ν , (36)

δkµν;ρ = δkµρ;ν . (37)

Using the Nash–Greene theorem, we notice that Codazzi equations from Equation (37)
do not propagate perturbations. It can be shown by calculating the linear perturbations
generating a new geometry g̃µν = g(0)µν + δgµν by Nash’s fluctuations. Then, the perturbed
geometry is given by

g̃µν = g(0)µν − 2δyk(0)µν , (38)

and the related perturbed extrinsic curvature is

k̃µν = k(0)µν − 2δy (0)gσρk(0)µσ k(0)νρ , (39)

where we can identify δkµν = (0)gσρk(0)µσ k(0)νρ and, using the Nash relation δgµν = −2k(0)µν δy,
we obtain

δkµν = (0)gσρk(0)µσ δgνρ . (40)

Applying Equation (40) to Equation (37), one obtains the same background equation
in Equation (19). On the other hand, the perturbation of the deformation tensor Qµν is
straightforward obtained as

δQµν = −3
2
(K2 − h2)δgµν . (41)
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Consequently, the set of perturbed equations for a perturbed fluid with pressure p and
density ρ in Fourier space (with subscript “k”) is given by

k2Ψk + 3H
(

Ψ
′
k + ΦkH

)
= −4πGa2δρk + χ(a)Φk, (42)

Ψ
′
k +HΦk = −4πGa2(ρ0 + p0)θ , (43)

Dk −
1
2

k̂i · k̂i(Ψk −Φk) = 4πGa2δp + 9γ0k2a2β0 Ψk , (44)

where θ = ikjδu‖j denotes the divergence of fluid velocity in k-space, and, in the last

previous equation, Dk denotes Dk = Ψ
′′
k +H(2Ψk + Φk)

′ + (H2 + 2H′)Φk +
1
2 k2(Ψk −Φk).

Moreover, neglecting neither anisotropic stresses nor any fluid pressure, one obtains

k2Φk + 3H
(

Φ
′
k + ΦkH

)
= −4πGa2δρk + 9γ0k2a2β0 Φk , (45)

where the closure condition Ψ = Φ applies. In the subhorizon approximation with k2 � H2

or k2 � a2H2 as Φ′′k ,HΦ′k ∼ 0, the “contrast” matter density δm ≡ δρ
ρ0

is related to the
potential Φk by means of

k2Φk = −4πGe f f a2ρ0δm , (46)

where Ge f f is the effective Newtonian constant that is given by

Ge f f (a) =
G

1− 9γ0a1−3w . (47)

The present form of Equation (47) results in a “flat” Ge f f once Ge f f is k-scale-independent,
like that of f (T) models [86,87]. Hereon, the present model is denoted as β-model only to
facilitate the referencing. The parameter γ0 is given by γ0 = β0b2

0. Moreover, the extrinsic
cosmological parameter Ωext(0) is written using a fluid analogy such as

Ωext(0) =
8πG
3H2

0
ρ
(0)
ext(0) ≡

b2
0

aβ0
0

. (48)

and γ0 is defined as

γ0 =
1
2

γs(1− 3w)(1−Ωm(0)) . (49)

In ref. [44], it was shown that the introduction of a dimensionless parameter γs is
important to keep the reproducibility of the GR/ΛCDM limit (i.e., when γs → 0) intact
and to stabilize the evolution of Ge f f . The positivity of Ge f f > 0 is guaranteed with the
constraint on γs

γs <
0.111

(1− 3w)(1−Ωm(0))
. (50)

The fixed gauge γs ≤ 1× 10−3 will suffice for all cases/datasets.

5. On Evolution of H(z) and f σ8

In this section, we focus on the analysis of Ge f f and on the evolution of H(z) and f σ8 .
We compare our results with the minimal flat ΛCDM. For the numerical implementation,
we use MontePhyton [46–48] sampler and the module classy to include the cosmological
theory code CLASS [49–51]. We use joint data from the family of Planck CMB likelihoods [1]
(hereon, we refer to Planck data as P18) considering CMB temperature and polarization
angular power spectra (high-l.TT + high-l.plik.TTTEEE + low-l EE polarization + low-l TT
temperature) . The baseline BAO datasets are incorporated by using the public available
likelihoods at https://doi.org/github.com/brinckmann/montepython_public (accessed
on 10 October 2022) and in MontePhyton code is referred as bao_boss with 6dFGS [52],

https://doi.org/github.com/brinckmann/montepython_public
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BOSS DR10&11: LOWZ, CMASS [53], SDSS DR7: MGS [54] and bao_fs_boss_dr12 BOSS
DR12: BAO LOWZ& CMASS [55] that include fσ8 measurements. We also include local
measurements of H0 from HST [56] that provide H0 = 73.24± 1.74 km.s−1. Mpc−1 .

The resulting MCMC chains are analyzed by using GetDist [88] to produce the con-
tour plots. The posterior distributions of the MCMC chains were sampled by means of
Metropolis–Hastings algorithm [89,90] in the MontePython runs. The parallel runs were
stopped by applying the Gelman–Rubin convergence criterion [91] R− 1 ∼ 0.02 and the
first 30% of chains were discarded as burn-in. We adopt baseline Gaussian priors, as shown
in Table 1: the baryon density is given by ωb10−2, ωcdm represents CDM density, τreio is
the reonization optical depth, the scalar spectral index is denoted by ns, the amplitude of
primordial fluctuations is ln(1010 As) and the angular size of the first CMB acoustic peak is
represented by 100θMC. In the case of ΛCDM, the dark fluid parameter is fixed as w = −1.
Hence, we summarize our results of MCMC analyses in Table 2 with the mean marginalized
posterior values for the parameters. The resulting contour plots are shown in Figure 1.

Table 1. Flat Gaussian priors on the cosmological parameters used in MCMC numerical analysis.

Parameter Priors

ωb10−2 [0.01, 3]
ωcdm [0.01, 0.3]
τreio [0.01, 0.8]
ns [0.8, 1.2]

ln(1010 As) [1.61, 3.91]
100θMC [0.5, 10]

Table 2. Marginalized constrains on the cosmological parameters (mean values) from GetDist at
68% limits of MCMC chains of each model. The χ2

tot denotes the total mean χ2 of the combined joint
datasets.

Parameters P18+BAO+HST
ΛCDM β-Model

ωb10−2 2.171± 0.011 2.164+0.022
−0.021

ωcdm 0.10253± 0.00067 0.1024± 0.0014
τreio 0.0571+0.0068

−0.0080 0.058+0.016
−0.014

ns 0.9320± 0.0029 0.9331+0.0056
−0.0059

ln1010 As 2.998+0.015
−0.016 2.998+0.030

−0.029
100θMC 1.04477± 0.00023 1.04484+0.00045

−0.00044
H0 62.30± 0.32 62.33± 0.66
σ8 0.7727± 0.0063 0.775± 0.012
S8 0.798± 0.0087 0.799± 0.017

Ωm 0.3202± 0.0047 0.319+0.010
−0.0099

w −1 −0.7435+0.016
−0.011

χ2
tot 1818.286 1814.268
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Figure 1. The one-dimensional marginalized posterior distributions and two-dimensional contour
plots with 68.4% and 95.7% C.L. Blue and red colors indicate the β-model and ΛCDM, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

In Figure 2, the plane (S8−Ωm) shows the growth amplitude factor S8 = σ8(Ωm0/0.3)0.5

that presents lower values S8 < 0.8 for both models, i.e., β-model and ΛCDM, in contrast with
Planck 2018 plik .TTTEEE + low EE + low TT baseline chains. It is important to point out that
the values of β-model for both σ8/S8 are lower than the ones of ΛCDM within error margins.
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Figure 2. Comparison between the models in the plane (S8 −Ωm) showing contour plots at 68.4%
and 95.7% C.L. Blue and red colors indicate the β-model and ΛCDM, respectively, in contrast, in
gray, with Planck 2018 plik.TTTEEE + low EE + low TT baseline chains. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article).

In order to check the modification of the value of the gravitational constant during
Big Bang nucleosynthesis (BBN) epoch as zBBN ∼ 109, we calculate the BBN speed-up
factor [92,93]. At the BBN epoch, the bound is about | ∆H2

H2
ΛCDM

| < 10%. From the values of

MCMC chains, we obtain the BBN speed-up factor between ΛCDM, and the β-model is
roughly 0.2% from the joint datasets P18+BAO+HST, which largely satisfies the bounds on
BBN speed-up factor. Concerning the stability of Ge f f , we need to check if it obeys BBN
constraints. To do so, we rewrote Equation (47) with its right-shifted parent function as

Ge f f (a) =
G

1− 9γ0(a− 1)1−3w . (51)

with γ0 given by Equation (49). It is worth noting that such a parent function only changes
Ge f f from the growth pattern of the original function in Equation (47) to a decaying behavior.
It is worth noting that Equation (51) was implemented in CLASS code by modification of the
perturbation module in order to make a correct use of MontePhyton via Python wrapper.

The form of Equation (51) attends the constraint
Ge f f

G ca=0 = 1,
Ge f f

G ca=1 = 1, expected for

both BBN and solar scales for any w < 0. We obtain
Ge f f

G ca=0 ∼ 0.9995 and
Ge f f

G ca=1 = 1 ,
which obeys BBN constraints |Ge f f /G− 1| ≤ 0.2 [94]. Regardless of the value of γ0, we

obtain
dGe f f

da /Gca=1 = 0, which obeys the constraint
dGe f f

da /Gca=1 ' 0 [95]. For early times,

BBN constraints are not so stringent [96], and we have
dGe f f

da /Gca=0 > 0.
For the adopted joint data P18+BAO+HST, we find a proximity between the contours

in parameter estimation. It calls attention to the fact that we obtain a low value of H0
in both models but they are compatible within error margins for the estimated value of
H0 = 65.1+3.0

−5.4 km.s−1. Mpc−1 at 68% C.L. extracted from combining the unreconstructed
BOSS DR12 galaxy power spectra, a weak Gaussian prior on the amplitude of the scalar As
and Ωm prior from Pantheon supernovae data [97]. Another estimation was made with
uncalibrated BAO (6dFGS, MGS and eBOSS DR14 Lyman-α data), obtaining the value of
H0 = 65.6+3.4

−5.5 km.s−1. Mpc−1 at 68% C.L. [97]. In terms of tensions, while the S8 tension
is solved with S8 < 0.8, the Hubble tension worsens at > 4.4σ. We find that the adopted
dataset prefers a low value of expansion of the Hubble rate, even when compared with the
Planck baseline data H0 ∼ 68 km.s−1. Mpc−1 . If the analysis is relaxed, we obtain that our
result is closer to the one with the recent South Pole Telescope measurements (SPT-3G) [98]
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combined with WMAP 9-year observations data with H0 ∼ 65.2± 7.2 km.s−1. Mpc−1,
as shown in ref. [99], posing a critical scenario. Interestingly, the lower value of Hubble
expansion suggests to reveal symptoms of the Planck data anomalies by the combination
of the adopted dataset.

Concerning model selection prognosis, we adopt data as Gaussian to perform the
Akaike criterion (AIC) [100] classifier to estimate the strength of tension between the
data fitting and particular models using maximum likelihood estimation. Thus, for small
samples sizes [101,102], we follow the definition

AIC = χ2
tot + 2k

2k(k + 1)
N − k− 1

, (52)

where χ2
tot is the total mean χ2 of the model, k represents the number of the uncorrelated

(free) parameters and N is the number of the data points in a dataset. The difference
|∆AIC| = AICmodel (2) − AICmodel (1) represents the Jeffreys’ scale [103] that proposes a
classification to the level of statistical tension between two competing models. From Table 2,
we have χ2

tot for both models, and we obtain |∆AIC| ∼ 2, which means that in Jeffreys’
scale, the models present a weak tension between them, and they are statistically equivalent.
According to Jeffreys’ scale, higher values for the difference |∆AIC| indicate more tension
between the models.

We also check the background evolution of Hubble function H(z) and the fσ8. The
results are presented in Figure 3. For the H(z) function, we used data points from [75,76]
and some “clustering” measurements of H(z) [77]. The quantity fσ8 allows us a bias-free
analysis by defining

f σ8(a) ≡ f (a).σ8(a) . (53)

where f (a) = ln δ
ln a is the growth rate and the growth factor δ(a). In the χ2-statistics, one

must consider the observed growth parameter f (aobs) in minimization due to the Alcock–
Paczynski effect to take into account redshift-space distortions (RSD). We use the “extended
Gold-2018” compilation to the Planck 2018 (TT, TE, EE+lowE) best-fit parameters, as shown
in Table 3, on the data points of SDSS [57–59], 6dFGS [60], IRAS [61,62], 2MASS [61,63],
2dFGRS [64], GAMA [65], BOSS [66], WiggleZ [67], Vipers [68], FastSound [69], BOSS Q [70]
and additional points from the 2018 SDSS-IV [71–74]. These last additional datapoints
provide a growth rate at relatively higher redshifts. Moreover, as pointed out in refs. [71,96],
to compatibilize the data dependence from the fiducial cosmology and other cosmological
surveys, it is necessary to rescale the growth-rate data by the ratio r(z) of the Hubble
parameter H(z) and the angular distance DA(z) by

r(z) =
H(z)DA(z)

H f (z)D f A(z)
, (54)

where the subscript “f ” corresponds to a quantity of fiducial cosmology. Similarly, the
compatibilization of the related χ2-statistics is also necessary. It can be performed using the
expression

χ2(Ω0m, w, σ8) = ViC−1
ij Vj , (55)

where Vi ≡ f σ8,i − r(zi) f σ8(zi, Ω0m, w, σ8) denotes a set of vectors that go up to ith-data
points at redshift zi for each i = 1 . . . N. N is the total number of data points of a related
collection of a data. The set of f σ8,i data points come from theoretical predictions [96]. The
set of C−1

ij denotes the inverse covariance matrix. A final important correction concerns the
necessity to disentangle the data points related to the WiggleZ dark energy survey which
are correlated. Then, the covariant matrix Cij [67] is given by

Cwigglez
ij = 10−3

6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 (56)
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and the resulting total matrix Ctot
ij

Ctot
ij = 10−3

σ2
1 0 0 . . .

0 Cwigglez
ij 0 . . .

0 0 . . . σ2
N

 (57)

where the set of σ2’s denote the N-variances.

Table 3. Data points of the “extended Gold-2018” compilation to the Planck 2018 (TT, TE and
EE+lowE) best-fit parameters [96] with additional points from BOSS Q [70] and SDSS-IV [71–74].

Dataset Redshift fσ8(z) Ωm

6dFGS+SnIa 0.02 0.428± 0.0465 0.3
SnIa+IRAS 0.02 0.398± 0.065 0.3

2MASS 0.02 0.314± 0.048 0.266
SDSS-veloc 0.10 0.370± 0.130 0.3
SDSS-MGS 0.15 0.490± 0.145 0.31

2dFGRS 0.17 0.510± 0.060 0.3
GAMMA 0.18 0.360± 0.090 0.27
GAMMA 0.38 0.440± 0.090 0.27

SDSS-LRG-200 0.25 0.3512± 0.0583 0.25
SDSS-LRG-200 0.37 0.4602± 0.0378 0.25
BOSS-LOWZ 0.32 0.384± 0.095 0.274
SDSS-CMASS 0.59 0.488± 0.060 0.30711

WiggleZ 0.44 0.413± 0.080 0.27
WiggleZ 0.60 0.390± 0.063 0.27
WiggleZ 0.73 0.437± 0.072 0.27

Vipers PDR-2 0.60 0.550± 0.120 0.3
Vipers PDR-2 0.86 0.400± 0.110 0.3

FastSound 1.40 0.482± 0.116 0.270
BOSS-Q 1.52 0.426± 0.077 0.31
SDSS-IV 1.52 0.420± 0.076 0.26479
SDSS-IV 1.52 0.396± 0.079 0.31
SDSS-IV 0.978 0.379± 0.176 0.31
SDSS-IV 1.23 0.385± 0.099 0.31
SDSS-IV 1.526 0.342± 0.070 0.31
SDSS-IV 1.944 0.364± 0.106 0.31

In Figure 3, we have interesting profiles to compare. In the case of evolution of H(z),
the blue dashed curve of β-model is slightly higher than ΛCDM for earlier redshift, but
they practically converge for today z = 0. Then, it is expected that the f σ8 profile for
β-model should be altered, which is ratified in Figure 3. The β-model presents a slightly
lower f σ8 at redshift 0.1 < z < 1 as compared with the ΛCDM profile exactly in the range
that the universe speeds up. Our results indicates a slightly more accelerating universe
than ΛCDM predictions with a fluid parameter w ∼ −0.75.
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Figure 3. In the left panel, the Hubble function is presented with its evolution in terms of redshift. In
the right panel, curves of the f σ8 evolution show a comparison with the ΛCDM model (black thick
dashed). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

In Figure 4, we obtain in the unlensed CMB TT power spectrum (left panel) and the
linear matter power spectrum (right panel) in the pivot scale k∗ = 0.05 Mpc−1 with a
comparison between the models. As a result, it is shown that the late-time ISW effect is
slightly suppressed at lower multipoles in the β-model (orange line) as compared with
flat-based ΛCDM (blue line). For higher multipoles, no effective discrepancies are observed
in the acoustic peaks and the damping tail, and the unlensed CMB TT power spectrum
follows the ΛCDM profile, as expected. It is possible that some slight differences might
appear if more BAO data are added from the differences of the SDSS measurements and
CMB Planck 2018 probe due to Ωm and Ne f f parameters, which will be a topic of further
research. In the right panel, the matter power spectrum P(k) is presented. In contrast with
ΛCDM results, the central peak is slightly shifted in the β-model, which suggests being
somewhat degenerate with an early DE contribution [104,105].
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Figure 4. The left panel shows the unlensed CMB TT power spectrum for the flat ΛCDM (blue line)
as compared with the β-model (orange line). In the right panel, the matter power spectrum Pk is
presented. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

6. Remarks

From the linear Nash–Greene perturbations of metric, we have shown how to trans-
pose the initial process in the background metric of the embedding of geometries to trigger
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the geometrical perturbations. The resulting model possesses perturbed field equations
hampered by linear Nash’s fluctuations. In a Newtonian gauge, we have obtained H(z)
and the f σ8(z) growth descriptor. Marginalizing the parameters of the model by means of
MontePython sampler from joint data P18+BAO+HST, we have obtained the related con-
tours for the β-model in contrast with the ΛCDM model. We have summarized our results
from the numerical analysis in Table 2, In Figure 1, we have presented the triangular plots
with contours of the parameters. The analysis on AIC classifiers have led us to |∆AIC| ∼ 2,
indicating a statistical equivalence between the models with a weak tension according to
Jeffreys’ scale. We have also shown the determination of effective Newtonian constant
Ge f f that matches the Big Bang nucleosynthesis (BBN) constraints, as well as a consistent
behavior of Hubble function H(z) and the f σ8. Our model also presents a “promising” per-
formance with a suppressed late-time ISW effect at lower multipoles in the β-model context
as compared with ΛCDM in the unlensed CMB TT power spectrum. Moreover, a possible
degeneracy with an early DE contribution was identified in the matter power spectrum
P(k) and merits further investigation. Concerning tensions on H0 and S8/σ8 parameters,
we have obtained a curious scenario. For the adopted baseline data on P18+BAO+HST,
it prefers a lower expansion rate with H0 ∼ 62.33± 0.66 km.s−1. Mpc−1 at 68% C.L. The
previous value of H0 for the β-model is compatible within error margin with ref. [97] by
combining the unreconstructed BOSS DR12 galaxy power spectra, with S8/σ8 < 0.80. This
suggests that while keeping S8/σ8 < 0.8 solving the tension, higher values on H0 should
be obtained with inclusion of more local data, such as Type Ia supernovae (SNe Ia) [75],
KiDS [106–109], DES [110,111] and CFHTLenS [112–114]. On the other hand, lower values
of expansion of the Hubble rate are compatible with SPT-3G measurements and they seem
to reveal the Planck anomalies as the main cause of such issue reinforcing the dilemma of
H0 tension that might be solved in future CMB data and LSS observations.
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