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Abstract: Relativistic jets from nearby low-luminosity active-galactic-nuclei (LLAGN) were observed
by Very-Long Baseline Interferometry (VLBI) across many orders of magnitude in space, from
milliparsec to sub-parsec scales, and from the jet base in the vicinity of black holes to the jet collimation
and acceleration regions. With the improved resolution for VLBI observations, resolved VLBI jet
morphologies provide valuable opportunities for testing and constraining black hole jet physics. In
this review, we summarize and discuss the current progress of modeling nearby LLAGN jet images
from horizon scales to large scales, including the construction of jet models and the assumed emission
details. Illustrative examples for jet image modeling are also given to demonstrate how jet image
features may vary with the underlying physics.
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1. Introduction

Very-Long Baseline Interferometry (VLBI) observations have provided a wealth of
information regarding the innermost radio jets of nearby low-luminosity AGN (LLAGN)
systems, from event horizon scale (∼1Rg ≡ GMBH/c2) to∼sub-parsec scale (∼MBH/M�×
1013 Rg) (e.g., [1–12]). For a supermassive black hole with 108−9 M�, parsec scale corre-
sponds to 104−5 Rg, roughly within the Bondi radius (105−6 Rg). Beyond such scale, e.g.,
kiloparsec or even megaparsec, a jet’s interaction with their surroundings is expected,
resulting in lobes, deceleration, recollimation, changing of geometry, etc., and, therefore,
the additional complexity of their modeling should be considered (e.g., [13,14]).

Observed spectra from black hole accretion jet systems include the contribution from
both the accretion and the jet. The spectra of LLAGN are usually featured with a near
millimeter bump (∼102 GHz) [15–18], which is usually referred to as the thermal syn-
chrotron emission contributed by the innermost region of a radiatively inefficient accretion
flow (RIAF), a type of black hole accretion at a low accretion rate ( Ṁ < 0.01ṀEdd, where
ṀEdd ≡ 10LEdd/c2 is the Eddington accretion ratio and LEdd is the Eddington luminos-
ity) (e.g., [18–21]). The radio emission from radio-loud LLAGNs at frequencies below
∼102 GHz is believed to be associated with the non-thermal synchrotron contributed by
their jet. At different observational frequencies, the surface where the jet non-thermal
synchrotron emission transits from optically thin (τ < 1, where τ is the optical depth) to
optically thick (τ > 1) is responsible for the observed “core shift” (e.g., [22,23]); the shift in
positions of the unresolved optically thick core (τ ∼ 1) [24].

The details of jet structure and physics can be constrained by the combination of
the observed spectra and morphologies. The latter requires enough resolution for the
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target source. Recently, with an angular resolution ∼20 µas at 230 GHz, successful VLBI
observations of black hole shadows have been achieved by the Event Horizon Telescope
(EHT) collaboration [11,12,25–36]. Several jet sources have also been observed with such
unprecedented resolution [37,38]. With expected improved VLBI resolutions in the future
(e.g., [39]), an increasing number of black hole candidates will be resolved [40]. To this
end, in this review, we focus on the current progress in modeling radio images of nearby
LLAGN jets at VLBI scales, from .milliparsec scales, where the jet is launched (in the
vicinity of the black hole), to the sub-parsec scales, where the jet is being accelerated and
collimated. Example LLAGN sources are presented in Table 1.

There are two major components for modeling the radio image of a jet: (1) jet model
and (2) radiative transfer. The jet model provides the collective details of the configuration
of large-scale magnetic field lines and how plasma streams along different large-scale
magnetic fields. The radiative transfer modeling is related to the photon path, the energy
shift between the reference frames, and the detailed energy distribution of electrons, while
the last should be constrained or motivated by observed spectra.

Depending on the scales of interest, the above-mentioned components in modeling
LLAGN jets may be simplified by different assumptions. For example, near horizon scales’
general relativistic effects are essential for including the gravity effect as a function of black
hole spin. At scales far away from the central black hole where the gravity effect can be
ignored, only special relativistic effects remain important.

This article is organized as follows. In Section 2, based on previous works of GRMHD
simulations, we introduce the GRMHD paradigm for LLAGN jet formation in black hole
accretion jet systems. In Section 3, the construction of a jet model is reviewed. In Section 4,
important considerations in the procedure of radiative transfer are given. Model jet image
features are demonstrated and discussed with a set of illustrative models. Finally, the
summary and outlook will be given in Section 5.

Table 1. Selected example LLAGN sources with jet emission.

MBH D BH Shadow Size * Accretion Rate
(108M�) (M pc) (µas) (Ṁ/ṀEdd)

M87 65 [11,12] 16.8 [11,12] 38.2 ∼10−5 [28]
IC 1459 11 [41] 29.2 [42] 3.72 ∼10−3 [43] †

Centaurus A 0.55 [44] 3.8 [45] 1.43 ∼10−5 [44]
3C 84 9 [46] 76.9 [46] 1.15 ∼10−2 [47]

Cygnus A 25 [42] 232 [42] 1.06 ∼10−2 [43] †

NGC 1052 1.54 [48] 20.7 [48] 0.73 ∼10−2 [43] †

NGC 6251 5.9 [42] 104.6 [42] 0.56 ∼10−2 [43] †

Notes. * the size of black shadow is estimated by 10 Rg (e.g., [49]). † the accretion rates are estimated by fitting the
spectra of the sources with the RIAF model spectra [43], based on the semi-analytical RIAF model [18].

2. GRMHD Paradigm of Jet Formation for LLAGN

The accretion flows around LLAGNs are believed to be of the RIAF type. For a
RIAF, the ion temperature (Ti ∼ 1012 K) is much higher than electron temperatures (Te ∼
1010−11 K) due to the inefficient Coulomb interaction between the ions and electrons at low
accretion rates (e.g., [21,50,51]). In turn, the heat stored in the accretion flow results in a
puffed-up, thick geometry of the flow.

With the rapid progress of GRMHD simulations since ∼2000 (e.g., [52–67]), details of
a geometrically thick, negligible radiation feedback flow environment (such as LLAGN)
have been revealed. An example GRMHD simulation result is shown in Figure 1. While
large-scale magnetic field lines threaded onto the accretion flow are absent [53], large-scale
magnetic field threaded onto the black hole event horizon is naturally developed in the
funnel region along with the black hole’s rotational axis. In such a funnel region, GRMHD
extraction of black hole rotational energy along the large-scale magnetic fields can take
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place, and the jet is launched at the expense of black hole energy. In fact, relativistic jets
powered by the rotation of a black hole via a large-scale magnetic field attached to the event
horizon are common scenes in GRMHD simulations (e.g., [68,69]).

Figure 1. Examples of magnetic field configuration from a 2D GRMHD simulation for accretion flow
with negligible radiation feedback, with small (left panel) and large (right panel) fields of view. The
black hole rotational axis is aligned with that of the accretion flow. Black hole-threaded, ordered,
large-scale magnetic fields (indicated as white lines) are developed along the black hole rotational
axis, enclosed by the contours of σ ≡ B2/ρc2 = 1 (purple lines). Magnetic field configurations in
the region where σ < 1 are not shown. The contours for ur = 0 (a radial component of the fluid’s
four velocities) are shown as cyan lines. Relativistic jets are launched from the funnel region at the
expense of the rotational energy of black holes. The color shows the density on a logarithmic scale,
with blue and red representing small and large densities, respectively.

The stationary GRMHD extraction process under ideal MHD conditions [70] can be
viewed as an extension of the electromagnetic extraction process under force-free conditions,
known as the Blandford–Znajek process [71]. The electromagnetic part is responsible for
extracting the rotational energy from the rotating black hole. Therefore, efficient extraction
is performed by a Poynting-dominated GRMHD flow (see also Section 3.1 for a discussion
of the fluid and electromagnetic part of the GRMHD flow).

An important feature of the above-mentioned GRMHD paradigm for jet formation is
the existence of the boundary for GRMHD flows streaming inward or outward along the
same field line as the result of the competition of magneto-centrifugal force and gravity force
acting on the plasma [70]. Such a boundary, usually called the stagnation surface or separation
surface is shown as the cyan lines in Figure 1. In the inflow region, the GRMHD extraction
process mentioned above takes place; in the outflow region, the flow is accelerated as a
result of the conversion from electromagnetic energy to fluid energy of the GRMHD flow
(e.g., [58,72]). The maximum possible jet velocity is obtained when all the electromagnetic
energy converts to the fluid’s kinetic energy (e.g., [73]). For both the inflow and outflow
regions, starting from negligible poloidal velocities, the accelerated GRMHD flow will
pass several characteristic surfaces where the poloidal fluid velocities equal the slow-
magnetosonic, Alfvén, and fast-magnetosonic speed [58,70,74–76].

The launching at the expense of black hole energy implies the relationship between
jet power and the efficiency of extraction, which depends on black hole spin and mag-
netic field strength. GRMHD simulation has demonstrated that the jet power can be
larger than the accretion power with strong enough magnetic fields [66]. As the magnetic
field is supported by the accretion flow environment, there exists an upper limit for pos-
sible magnetic field strength, over which the magnetic field cannot be confined by the
accretion flow. Accretion flow close to such limit is conventionally referred to as MAD
(Magnetically Arrested Disk) [77–80] and otherwise referred to as SANE (Standard And
Normal Evolution) (e.g., [81,82]). Detailed GRMHD simulation and image modelings have
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been extensively studied for the two target sources of EHT observation, M87 and Sgr A∗

(e.g., [28,30,35,83–91]). In our following discussions, we do not further distinguish the jet
emission features between SANE and MAD because the emission features are related to
both the jet structure and assumed emission details, as will be discussed later.

3. Constructing Jet Model

In this section, we present an overview of constructing global jet structures and
dynamics and a collection of flow properties along different large-scale magnetic field lines.
As large-scale magnetic field lines are developed only in the funnel (see Figure 1), here we
consider only large-scale magnetic field lines threaded onto the event horizon as the field
configuration of the jet. A schematic magnetic configuration of a jet model is shown in
Figure 2.

Figure 2. Schematic magnetic configuration of a jet model. Along the black hole rotational axis, the
region above (or below) the equatorial plane is referred to as z > 0 (or z < 0). Cases for different
viewing angles with respect to the rotational axis are shown (from left to right: 45◦, 70◦, and 90◦).

3.1. Semi-Analytical Jet Models

Semi-analytical jet models are usually assumed to be axisymmetric and stationary.
MHD flow streaming in a magnetosphere consists of an ordered, large-scale magnetic
field; it is convenient to decompose the equation of motion for MHD flow along the trans-
field direction and parallel-field direction, which results in the so-called Grad–Shafranov
equation (GSE) and wind equation (or the Bernoulli equation) (e.g., [92]). The solution to
GSE corresponds to the magnetic field configuration, and the solution to the wind equation
corresponds to the flow acceleration along the field.

While solving the GSE is a challenging task (e.g., [93–95]), a common working proposal
to describe the global magnetic field geometry of a black hole jet is simple: applying the
approximated solution for a force-free magnetic field [61,65]

Ψ = rν(1− cos θ) , (1)

where 0 ≤ ν ≤ 1.25 controls the geometry (ν = 0: split-monopole-like configuration; ν = 1:
parabolic field line). With such a stream function, different poloidal magnetic field lines
are determined by the contours of Ψ = constant. Even for an MHD jet, we can expect that
the configuration described by the force-free solution, such as Equation (1), remains good
given that the flow is Poynting dominated. By measuring the jet width, the observed jet
collimation for M87 is consistent with ν = 0.75 [96–98].

Before we move onto the MHD jet models, it is illustrative to estimate the jet dynamics
with the drift velocity under the force-free assumption (see [99] for the details of the
model , and also [61,100] for the detailed analysis of the acceleration properties). Without
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consideration of the plasma effect, the velocity is determined solely by the assumed angular
velocity of the field and the field configuration. In addition, with a prescribed poloidal
magnetic field, the toroidal component of the magnetic field can be estimated under force-
free assumption far from the jet [99]:

Bφ =
−2ΨΩF

R
(2)

where R is the cylindrical radius and ΩF(Ψ) (a conserved quantity along the field line Ψ) is
the angular velocity of the magnetic field. An overview of the magnetic configuration and
velocity of the force-free jet model is given in Table 2. Note that Br and Bφ change signs
above and below the equatorial plane, while Bθ retains the same sign (also see Figure 2).
Along the field line, the continuity equation requires the number density n as follows

n
B2 = constant , (3)

where B is the strength of the magnetic field [99].

Table 2. Overview of the structure of a force-free jet model †.

z > 0 z < 0

Br >0 <0
Bθ <0 <0
Bφ <0 >0

vr ∝ −BrBφ >0 >0
vθ ∝ −Bθ Bφ <0 >0
vφ ∝ (B2

r + B2
θ) >0 >0

Notes. † region z > 0 and z > 0 can be referred to in Figure 2.

As the gravity effect is ignored, the velocity in the force-free jet model is always
outward. The near horizon features suggested by the GRMHD framework (such as the
existence of the stagnation surface and the inflow region) are, therefore, absent. Neverthe-
less, by applying a distance floor under which the emission near the horizon is excluded,
the covariant form of the force-free jet model provides helpful insights on horizon-scale
emission features (e.g., [99,101–103]). It is worth noting that the predicted velocity of a
force-free jet seems too large compared to the observed values (e.g., [10,98]). By reducing
the toroidal magnetic component (to mimic the effect due to mass loading of magnetic
fields), further modification of the force-free jet with a reasonable terminal Lorentz factor
is considered in [101]. For practical applications to scales much larger than black hole size,
the vector form of the force-free jet model can be applied [104,105].

Under the ideal MHD condition, there are four conserved quantities for an axisym-
metric, stationary, cold (i.e., the pressure of the flow is ignored) GRMHD flow: the angular
velocity of the magnetic field ΩF, the mass loading (particle number flux per unit electro-
magnetic flux ; see also Equation (6)), the total energy E, and the angular momentum L of
the flow. The flow velocity can be obtained by solving the wind equation (along a field line
Ψ), which has the form

u2
p + 1 = (

E
µ
)2U (r, θ; Ψ) , (4)

where u2
p = urur + uθuθ , µ is the relativistic enthalpy, and U is related to the conserved

quantities and the assumed background spacetime [70,106–111].
As an interesting feature of the solution to the wind equation, only the correct combina-

tion of the four conserved quantities can provide physical flow, which can successfully pass
the fast magnetosonic point and reach infinity [70,72,112]). In addition, the toroidal field
can not be prescribed as a prior but need to be obtained from the solution of the wind equa-
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tion. Furthermore, for Poynting-flux-dominated flow, the plasma loading onto a large-scale
force-free magnetic field line can perturb the field configuration during its MHD accelera-
tion (e.g., [113,114]. All these have made the construction of a semi-analytical GRMHD jet
model challenging. By analysis of the wind equation, sophisticated relationships between
the covariant components of toroidal and poloidal magnetic field [74,115]

Bφ

Bp
= B(r; Ψ) (5)

have been found to guarantee physical, trans-fast magnetosonic MHD outflow solutions.
An increase in the ratio can lead to a lower terminal velocity [74,75]. Based on the rela-
tionships, a semi-analytical GRMHD jet model for collective flow properties have been
recently constructed [75,116]. Further away from the central black hole (where gravitational
effect is not essential), GRMHD jet solutions are in good agreement with relativistic MHD
solutions [75].

An overview of the GRMHD flow properties for both inflow (ur < 0, the radial
component of the four-velocity of the flow) and outflow (ur > 0) regions is presented in
Table 3. As shown in the table, in the inflow region (ur < 0, the radial component of the four-
velocity of the flow), a successful extraction and positive outward energy flux E r = Eur > 0
is possible only when E < 0, and, therefore, only for Poynting-flux-dominated GRMHD
inflow (EEM � EFL, the subscripts EM and FL correspond to the electromagnetic part and
the fluid part of the GRMHD flow). A continuous propagation of the positive outward
energy flux can be applied to match the inflow and outflow solutions [72]. Required by the
continuity equation, written in a way similar to Equation (3), the number density n follows

nup

Bp = constant, (6)

where superscript p represents the poloidal component.

3.2. GRMHD Simulation Models

The definition of the jet for GRMHD simulations varies with different studies and
motivations. The boundary between the jet and the accretion flow may be defined by the
ratio between magnetic energy and fluid rest energy (σ = B2/ρc2, where B is the field
strength and ρ is the density), the Bernoulli parameter (Be = −hut, where h is the relativistic
enthalpy and ut is the t-component of the four velocities of the fluid), or even the angle
(see [117] for comparisons of some of these definitions). Among the above possible choices,
here we refer to the σ ≥ 1 region as the jet region in GRMHD numerical simulations
because the large-scale field lines are enclosed within the region σ > 1 (see also Figure 1).
Note that the σ = 1 contours attach to the event horizon. In comparison, in the region
where σ < 1, the magnetic field contours reveals chaotic magnetic configurations in the
accretion flow, as a result of magneoto-rotational instability (MRI) [118].

Complementarily to the semi-analytical approach, the numerical simulation may
suffer from the numerical dissipate process. To prevent the density from being too low
in the computational domain (usually within the domain r < 10 Rg and σ > 1) and from
crashing the numerical simulation, an artificial density threshold is applied (e.g., [58,119]).
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Table 3. Poynting-flux-dominated GRMHD flow properties along large-scale magnetic field threading
black hole†. The table is modified from [72].

z > 0 z < 0
Inflow Outflow Inflow Outflow

ur <0 >0 <0 >0
uθ >0 <0 <0 >0
uφ >0 >0 >0 >0
ut >0 >0 >0 >0

E = EFL + EEM <0 >0 <0 >0
EFL >0 >0 >0 >0
EEM <0 >0 <0 >0

L = LFL + LEM <0 >0 <0 >0
LFL >0 >0 >0 >0
LEM <0 >0 <0 >0

E r = E r
FL + E r

EM >0 >0 >0 >0
E r

FL <0 >0 <0 >0
E r

EM >0 >0 >0 >0

Notes. † In the table, all subscript FL and EMs correspond to the fluid part and the electromagnetic part of the
GRMHD flow, respectively. For a Poynting-flux-dominated flow, EEM > EFL. Region z > 0 and z > 0 can be
referred to in Figure 2.

In principle, GRMHD simulations can provide sophisticated modeling, including both
jet and the circum-jet environment, as well as their dynamical features. Large-scale simu-
lations with a computation domain, e.g., &104 Rg, can be relatively expensive (especially
for 3D simulations) as a longer computational time is required to reach a stationary and
meaningful physical state of the system.

3.3. General Features

For GRMHD flow along large-scale fields, there are two light surfaces respectively in
the inflow and outflow region. Here we are interested in the light surface for the outflow,
which provides an important reference for the structure and dynamics of the jet. In flat
spacetime, the outer light surface has a cylinder profile (if ΩF is constant across field
lines), with the cylindrical radius RL = c/ΩF. Beyond the light cylinder, the poloidal flow
velocity must be larger than the toroidal velocity, as shown in Figure 3. For a Poynting-
flux-dominated MHD flow, the Alfvén surface almost coincides with the light cylinder,
implying that the toroidal magnetic field becomes larger than the poloidal field outside the
light cylinder.

Noting that the location of the light cylinder is related to ΩF, the jet properties as a
function of black hole spin can be understood by how ΩF = αΩH is associated with the
black hole angular velocity ΩH, where α . 0.5 is usually considered (e.g., [58,71]). The
horizon scale properties, such as the black hole spin, are then related to the large-scale jet
properties through the jet boundary and the angular velocity of the large-scale magnetic
field lines. For semi-analytical models, the jet boundary can be defined by the last large-
scale magnetic field line that is attached to the event horizon at the equatorial plane. For
GRMHD simulation models, the jet boundary can instead be defined by the σ = 1 contour
(see Figure 1).
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Figure 3. Ratio between the toroidal velocity vφ = uφ/ut and radial velocity vr = ur/ut of a force-free
jet, as computed semi-analytically from the 4-velocity uα of the covariant force-free jet model with
black hole spin a = 0.9. The field line geometry is ν = 1 (Equation (1)), and the angular velocity of
all the field lines is half of the angular velocity of the hole. Located within the light cylinders (whose
distance to the black hole rotational axis can be approximated by the location where RL = c/ΩF, as
shown by the white vertical dashed lines), the toroidal velocity-dominated regions (vφ/vr > 1) are
shown in red. Representative field lines are shown with black lines. The boundary of the jet region is
defined by the last field line, which is attached to the event horizon at the equatorial plane. Note that
the radial velocity is positive in all regions as the gravity effect is not included in the model.

4. Modeling Jet Emission

Synchrotron radiation is responsible for the observed radio emission from relativis-
tic jets. The unpolarized and polarized emissivity and absorption coefficients of syn-
chrotron radiation from different electron energy distribution have been extensively studied
(e.g., [120–122]). The coefficients, in general, depend on the electron number density, the
local magnetic field strength, and parameters that characterize the energy distribution.
For example, for an ensemble of electrons, relativistic Maxwellian energy distribution is
associated with the electron temperate, and power-law energy distribution is associated
with the power-law index and minimum and maximum particle electrons. A hybrid distri-
bution (thermal plus power-law) is of interest to reflect a more realistic energy distribution.
In a hybrid case, the source function Sν for the radiative transfer is constructed by the
sum of the contributed emissivity coefficients jν and absorption coefficients αν (e.g., [123]):
Sν = (∑

i
jiν)/(∑

i
αi

ν). Recently, the kappa distribution, which smoothly connects the thermal

core to a power-law tail, has also been considered (e.g., [88–90,124]).
Due to the relativistic speed of the jet and the strong gravity in the vicinity of the

black hole, the energy shift between the comoving frame and the observer’s frame requires
additional care in the radiative transfer computation. The covariant form for the energy
shift (e.g., [125,126]) is

ν∞

νlocal
=

(gαβ pαuβ)|∞
(gαβ pαuβ)|local

, (7)

where gαβ is the background spacetime metric, pα is the four-momentum of the photon,
and uα is the four-velocity of the fluid, uα|local, or the distant observer, uα|∞ = (1, 0, 0, 0).
The background spacetime would affect the gαβ term in the above equation and also the
geodesics. A number of general relativistic radiative transfer (GRRT) tools (e.g., see [127]
and the references therein) have been developed to take care of the radiative transfer
computation in curved spacetime by solving its Lorentz invariant form (e.g., [126]). When
the scattering effect is not crucial, the observed flux of the received ray can be integrated
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along the geodesics backward in time. In flat spacetime (gαβ = ηµν, the Minkowski metric),
the photon geodesic is simply a straight line, and Equation (7) reduces to the familiar
relativistic Doppler effect characterized by the Doppler factor D (e.g., [24]):

ν∞

νlocal
= D = Γ−1(1− βcosθ)−1 , (8)

where Γ is the Lorentz factor of the jet, β = v/c, and θ is the angle between the jet and
the observer.

The origin of non-thermal electrons responsible for the jet emission remains a subject
of considerable debate. There are different approaches to model the jet emission, with
different assumptions of electron energy distribution and spatial distribution. In fact, the
injection of non-thermal electrons can rely on the microscope process and is outside the
scope of the simulated parameters themselves. If it is the case, we may treat the non-
thermal electron as a free parameter. Following such a philosophy, the electron number
density does not need to satisfy the relationship derived from the continuity equation,
Equations (3) and (6). A possible approach is to link the internal energy of the non-thermal
electrons to the magnetic field energy with a fraction η and a possible modification function
F [117,128] (see also [129] for further considerations)

unth = η
B2

8π
F . (9)

Interestingly, if the brightness temperature of the observed source is comparable to
or smaller than the theoretical possible electron temperature, thermal synchrotron is also
capable of being responsible for the observed emission (e.g., [28,35]). From a modeling
point of view, thermal synchrotron emissions may originate from regions outside the funnel
where large-scale magnetic field configuration appears. A funnel wall can be defined by the
region between the funnel and the corona of the flow [59]. In one-fluid GRMHD simulations,
only the species (i.e., ions) that dominate the dynamics are simulated. Therefore, the ratio
R between Ti and Te can be treated as a free parameter:

Ti
Te

= R ≥ 1 . (10)

While R is related to microscopic electron thermodynamics, the phenomenological
relationship ofR can be constructed with σ and plasma beta βP = Pgas/Pmag, defined by
the ratio between the gas pressure and magnetic pressure. The electron thermodynamics
are included in more sophisticated GRMHD simulations (see Section 5).

In the following, we consider four illustrative models. The models are constructed by
combining the above considerations, and their properties are summarized in Table 4. As
the synchrotron radiation becomes more optically thin at higher frequencies, low frequency
observations are capable of observing the downstream, extended jet emission. We first
demonstrate the modeling of sub-parsec scale jet emissions at relatively lower frequencies
(43 and 86 GHz), then milliparsec jet emissions at a higher frequency (230 GHz), assuming
that the mass of the central black hole is 5× 109M� and the distance to the black hole is
10 Mpc (1 Rg ∼ 4.9 µas for reference). With a black hole spin of a = 0.9, the viewing angle
to the jet axis is assumed to be 135◦, and, therefore, the black hole spin vector is pointing
away from the observer. The black hole mass, distance, and viewing angle are similar to
the parameters for M87.

For the semi-analytical model, the covariant force-free jet model is applied. To mimic
the funnel shape of the GMRHD jet model, the jet geometry ν = 1 is applied in Figure 3.
The dynamics of the force-free model can be referred to in Figure 3. For GRMHD jet models,
the numerical simulation data are from a 2D GRMHD simulation (as shown in Figure 1)
performed by the public GRMHD code HARM [130,131], with initial and boundary conditions
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similar to the setup in [98] but with a larger magnetic flux reservoir. The post-processing
for radiative transfer is performed by the public GRRT code Odyssey [132].

Table 4. Overview of Illustrative Models *.

Jet Model Emission

Thermal Non-Thermal ? Applying
Synchrotron Synchrotron Floor

semi-analytical force-free jet model (with floor) X X
GRMHD simulation jet model A ‡X

GRMHD simulation jet model A (with floor) ‡ X X
GRMHD simulation jet model B †X

Notes. ∗ MBH = 5× 109 M�, a = 0.9, D = 10 Mpc (1 Rg∼ 4.9 µas), and viewing angle i = 135◦. ? ignore all
emissions from jet regions below the distance floor z = r sin θ < 10Rg. ‡ only from region σ = b2/ρc2 > 1 in the
simulation data. † only from region σ < 1 in the simulation data.

4.1. Modeling Black Hole Jets at Sub-Parsec Scales

The 43 and 86 GHz model images for the GRMHD jet model A (non-thermal syn-
chrotron from the region σ > 1) and model B (thermal synchrotron from the region σ < 1)
are shown in Figure 4 on a logarithmic scale. The projected black hole spin axis is pointing
to the left, and the forward jet is pointing to the right. For both of the models, the electron
number density is normalized so that the total flux in the same field of view (500Rg× 500Rg)
is ∼0.4 Jy at 43 GHz.

For all jet model images, the imprints of jet dynamics are shown: the forward jet is
brighter than the counter jet, and the incoming (bottom) side of the jet is brighter than
the receding (top) side. For each model, the 86 GHz image is less extended compared to
the 43 GHz image, as the jet becomes more transparent. Such a feature is associated with
the observed shift in the position of the unresolved VLBI core (i.e., core shift) of jetted
radio sources.

With those common features, the resulting jet model images are related to the emission
details considered in the radiative transfer. Non-thermal synchrotron emissions from the
funnel region (σ > 1) are computed for GRMHD jet model A. Adopting η = 0.1 and F = 1
in Equation (9) (same assumption in [117]), the number density of non-thermal electrons
can be determined by [117]:

nnth = η
B2

8π

p− 2
p− 1

(mec2γmin)
−1 (11)

where p = 3.5 is the power law index of the electron energy distribution between the
low-energy cutoff (γmin = 50) and the high-energy cutoff. Under the assumption, the
electron number density is solely determined by the magnetic field strength B of the jet
(and independent of the number density given from the simulation data).

GRMHD jet model B shows thermal synchrotron emission outside the jet funnel
(regions where σ < 1). The number density of thermal electrons is considered by scaling
its numerical value to fit the total target flux (∼ 0.4 Jy at 43 GHz), with the ratio R in
Equation (10) following the physically motivated relationship with βP [133],

R = Rhigh(
β2

P
1 + β2

P
) +Rlow(

1
1 + β2

P
) , (12)

with R ∼ Rhigh = 80 at high βP regions (preferentially in the main flow body near the
equatorial plane) and with R ∼ Rlow = 1 at low βP regions (preferentially near the jet
funnel region). The limb-brightening feature observed for M87 (e.g., [9] can be reproduced
with this approach by enhancing theRhigh value [133]. Other post-processing options for
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thermal synchrotron jet emissions have been applied in previous studies. For example, one
can assume a constant Te (isothermal jet) [83,84], or constantR (constant ratio jet) [84] in
the region where βP < βcut ∼ 0.2, with or without an excised σ < σcut region. Applying
constant R for all (both jet and accretion) regions has also been considered in [62,85]. In
addition, hybrid synchrotron emissions with a kappa distribution (kappa jet) are also
possible considerations [88–90,124].

Figure 4. Model synchrotron images at 43 and 86 GHz for GRMHD jet models A and B. The projected
black hole axis is pointing to the right. The images are shown on a logarithmic scale. For reference,
the size of the black hole shadow is indicated by the white circle near the jet base. The color bar
indicates Jy/pixel.
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As all the emissions within σ < 1 are included in GRMHD jet model B, the image mor-
phology near the jet base (the regions near the white circles in the plots) has a much larger
size compared to that of GRMHD jet model A. These emissions are mainly contributed
by the accretion flow. Another striking jet feature between GRMHD jet models shown in
Figure 4 is the relatively brighter stripe near the jet “spine” in the GRMHD jet model A
images. Such a feature is also shown in the model images of the semi-analytical force-free
jet model, as discussed below.

In Figures 5 and 6, a floor condition is applied to both GRMHD jet model A and the
force-free jet model. The emission below a certain floor height z = 10 Rg to the black
hole is excluded. The purpose is twofold. First, to avoid the emission feature from the
unphysical flow dynamics in the force-free jet model. Second, to mimic the case if non-
thermal electrons are injected at a certain height. The non-thermal electron number density
of the force-free model (with the floor) is assigned to fit the total flux of GRMHD jet model
A (with the floor) at 43 GHz. In Figures 5 and 6, the relatively brighter stripe near the
“spine” in the jet is shown in both models. This is due to the jet dynamics: across the jet
(vertical direction of the figures), from the jet spine to the jet boundary, the flow velocity
transits from toroidal-dominated to poloidal-dominated (see also Figure 3). In between, the
flow direction would be swept through the observer’s line of sight, resulting in a strong
relativistic Doppler beaming effect (θ ∼ 0 in Equation (8)). A similar feature has also been
found in [105].

Figure 5. Model synchrotron images at 43 GHz for GRMHD jet model A (with floor) and force-free
jet model (with floor). Emissions below floor height z = 10 Rg of the black hole are excluded.
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Figure 6. Same as Figure 5, but for 86 GHz.

4.2. Modeling Black Hole Jets Close to the Jet Base

The 230 GHz model images for GRMHD jet models A and B are shown in Figure 7,
with the same parameters applied to Figure 4. For our setup, at 230 GHz, the black hole
shadow can be observed. As can be seen in the images, the horizon scale image is sensitive
to the ratio between the contribution of accretion flow and jet.

For GRMHD jet model A, the black hole shadow (the dashed circle in the plot) is
enclosed by the jet emission. Surrounding the black hole shadow, the ring-like structure
with a brighter side at the bottom is actually mainly contributed by the emission of the
counter jet (see also [117]). For GRMHD jet model B, in comparison, the horizon scale
image further reveals the motion and emission of the accretion flow, resulting in a larger
size of the emission region. For GRMHD jet model B, the black hole shadow is partially
blocked by the accretion flow. The imprint of the funnel wall jet can also be seen outside
the bright accretion flow emission (near the middle, at the bottom of the figure).

The models with floors are shown in Figure 8. The image morphology is similar
for GRMHD jet model A with a floor and for the force-free jet model. As the injection
location moves further away from the black hole, the black hole shadow image becomes
less obvious. There appears a compact emission region at the incoming side of the jets,
with its emission centroid being well outside the location of the black hole shadow. Such
features have also been shown in [101].

As demonstrated, the horizon scale images can be largely affected by the uncertainties
of emission regions and types of synchrotron radiation. Nevertheless, the background
knowledge of jet dynamics and radiative transfer details can help to interpret the environ-
ment around the jet base.
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Figure 7. Model synchrotron images at 230 GHz for GRMHD jet models A and B. The images are
shown on a linear scale. For reference, the size of the black hole shadow is indicated by the dashed
white circle.

Figure 8. Model synchrotron images at 230 GHz for GRMHD jet model A (with the floor) and the
force-free jet model (with the floor). The images are shown on a linear scale. For reference, the size of
the black hole shadow is indicated by the dashed white circle.
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5. Discussion and Outlook

The aim of the review is to summarize and discuss the current progress in modeling
the rich features of LLAGN jets at VLBI scales. The modeling of jet images can be performed
with jet models and emission details. Jet models can be constructed by semi-analytical
approaches or from numerical simulations. The latter is a powerful tool for modeling the
black hole accretion jet system, including its time-dependent features. The simulations
with a large enough computational domain (& 103Rg) can provide enough information
to model jet properties across different spatial scales and frequencies and compare them
with observations, e.g., spectra and core shift measurements (e.g., [76,89]), directly. The
former, alternatively, provides a flexible and heuristic way of exploring jet physics and
properties, given that the key physics can be properly included in the model. The emission
details add different complications to the energy distribution of electrons and the emission
region from the black hole accretion jet system. To explore the combined effects of the
above considerations on the resulting images, jet image features at different frequencies,
and different spatial scales are demonstrated with illustrative models.

As demonstrated by our illustrative models, exploring jet images down to the in-
nermost region of the jet is important for several reasons. First, the jet image is jointly
determined by the jet dynamics and mass loading. As the jet dynamics are associated with
the central engine, the jet image is a possible diagnostic for the property of the central black
hole and the required origin of energetic electrons [99,104,105]. Second, the ratio of the con-
tributions between the jet and accretion flow near the sub-mm bump of LLAGN cannot be
solely determined by the spectra (see, e.g., [117]) for examples). Based on the background
knowledge of the emission features of jet and accretion, the observed morphology of the
jetted LLAGN can provide valuable constraints to their relative importance [99,117].

Among the uncertainties in VLBI jet image modeling, electron heating microphysics
or injection of non-thermal electrons are important directions to be explored [134]. In-
terestingly, these may link to possible correlations with other observational frequencies,
e.g., X-rays [135]. Is the injection process stationary or intermittent? After injection, what
are the effecd of the subsequent cooling process? Does the stagnation surface play any
special role in the injection [90,136–138]? All these details are expected to leave observable
imprints on the resulting jet image. More advanced, state-of-the-art simulations, including
electron thermodynamics, radiation, or beyond one-fluid approaches, have brought more
sophisticated investigations into (part of) the above questions [86,87,91,139–143]. It is also
possible to construct dynamical features onto the stationary semi-analytical jet model [103].

Although not discussed in the paper, within the VLBI scales of our interest, there are
also several important topics for jet modeling. For example, the jet polarization due to
circum-jet materials [128], the jets from tilted disks [144–148], jet composition [149–151],
and the possible mass-loading due to mixing between the jet and surroundings [76]. More
discussion of GRMHD simulation modeling of jet formation can be seen in [152]. The
magnetic configuration (Figure 2) may also be revealed by polarization observations at
horizon scales [153].
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Abbreviations
The following abbreviations are used in this manuscript:

VLBI Very-Long Baseline Interferometry
MHD Magnetohydrodynamics
GRMHD General Relativistic Magnetohydrodynamics
GRRT General Relativistic Radiative Transfer
MAD Magnetically Arrested Disk
SANE Standard And Normal Evolution
EHT Event Horizon Telescope
GSE Grad–Shafranov Equation
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Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astron. 2021, 5, 1017–1028.
[CrossRef]

45. Harris, G.L.H.; Rejkuba, M.; Harris, W.E. The Distance to NGC 5128 (Centaurus A). Publ. Astron. Soc. Aust. 2010, 27, 457–462.
[CrossRef]

46. Paraschos, G.F.; Kim, J.Y.; Krichbaum, T.P.; Zensus, J.A. Pinpointing the jet apex of 3C 84. Astron. Astrophys. 2021, 650, L18.
[CrossRef]

47. Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y.Y.;
et al. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii. Nature Astron. 2018, 2, 472–477.
[CrossRef]

48. Brenneman, L.W.; Weaver, K.A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus, A.; Kovalev, Y.Y.; Aller, M.; Aller, H.; et al.
Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku. Astrophys. J. 2009, 698, 528–540. [CrossRef]

49. Falcke, H.; Melia, F.; Agol, E. Viewing the Shadow of the Black Hole at the Galactic Center. Astrophys. J. Lett. 2000, 528, L13–L16.
[CrossRef] [PubMed]

50. Manmoto, T. Advection-dominated Accretion Flow around a Kerr Black Hole. Astrophys. J. 2000, 534, 734–746. [CrossRef]
51. Yuan, F.; Quataert, E.; Narayan, R. Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*.

Astrophys. J. 2003, 598, 301–312. [CrossRef]
52. De Villiers, J.P.; Hawley, J.F.; Krolik, J.H. Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure.

Astrophys. J. 2003, 599, 1238–1253. [CrossRef]
53. Hirose, S.; Krolik, J.H.; De Villiers, J.P.; Hawley, J.F. Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the

Magnetic Field. Astrophys. J. 2004, 606, 1083–1097. [CrossRef]
54. De Villiers, J.P.; Hawley, J.F.; Krolik, J.H.; Hirose, S. Magnetically Driven Accretion in the Kerr Metric. III. Unbound Outflows.

Astrophys. J. 2005, 620, 878–888. [CrossRef]
55. Krolik, J.H.; Hawley, J.F.; Hirose, S. Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the

Inner Disk. Astrophys. J. 2005, 622, 1008–1023. [CrossRef]
56. Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively

Inefficient Accretion Flows. Astrophys. J. 2003, 592, 1042–1059. [CrossRef]
57. McKinney, J.C.; Gammie, C.F. A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole. Astrophys. J. 2004,

611, 977–995. [CrossRef]
58. McKinney, J.C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from

black hole accretion systems. Mon. Not. R. Astron. Soc. 2006, 368, 1561–1582. [CrossRef]
59. Hawley, J.F.; Krolik, J.H. Magnetically Driven Jets in the Kerr Metric. Astrophys. J. 2006, 641, 103–116. [CrossRef]
60. Noble, S.C.; Leung, P.K.; Gammie, C.F.; Book, L.G. Simulating the emission and outflows from accretion discs. Class. Quantum

Gravity 2007, 24, S259–S274. [CrossRef]
61. Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst

engines. Mon. Not. R. Astron. Soc. 2008, 388, 551–572. [CrossRef]
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