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Abstract: Halo models of the large scale structure of the Universe atieatly examined,
focusing on the definition of halos asooth distributions of cold dark matter. This definition
is essentially based on the results of cosmologh\ddody simulations. By a careful analysis
of the standard assumptions of halo models arthody simulations and by taking into
account previous studies of self-similarity of the cosmigbwstructure, we conclude that
N-body cosmological simulations are not fully reliable ire ttange of scales where halos
appear. Therefore, to have a consistent definition of halogcessary either to define them
as entities of arbitrary size with a grainy rather than siadtucture or to define their size
in terms of small-scale baryonic physics.

Keywords: large-scale structure; dark matter hado:body simulation

1. Introduction

Halo models of the large scale structure of matter are now pepular, as simple searches on the
Internet show: for example, a Google search with the threelsvthalo model cosmology” produces
4,680,000 results, and an ArXiv search for “halo model” g&too many hits” and recommends a more
specific search. Naturally, the halos to which halo moddés s@e dark matter halos, initially introduced
to model the invisible matter surrounding galaxies. Howgepeesent halo models are concerned with
the large scale distribution of halos in space as well asthvéldistribution of matter within a single halo.
In this respect, the modern report on halo models by Coordysheth [L] traces the appearance of these
models to 1952, in a paper about the spatial distributionaddxges written by Neyman and Sco#[
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where they argue that it is “useful to think of the galaxy wimsttion as being made up of distinct
clusters with a range of sizes.” Thus, Neyman and Scott m®fuat the statistical theory of the galaxy
distribution is simplified by separating the full distribbut into one part corresponding to the distribution
of galaxies within clusters and another corresponding ¢odiktribution of cluster centers in space. In
particular, they favor “quasi-uniform” distributions olusters and mention the Poisson distribution. Of
course, this hypothesis is not in accord with modern ideasyhich the strong clustering of clusters
plays a fundamental role in the large scale structure ofanatWhen galaxy clusters are replaced with
dark matter halos and we consider the distribution of hatbers in space, we have the basic halo model.
This distribution is indeed assumed to be non-uniform aedstiidy of halo correlation functions is an
important part of halo modeld4].

At any rate, halo models are not sufficiently supported byeolaions of the large scale structure
of matter, inasmuch as dark matter has not been observerlgiesd the indirect observations of it,
through gravity, are strongly model dependent. Actually, knowledge of the dark matter distribution
is mainly due to the results of cosmologidgtbody simulations. As collisionless cold dark matter is
assumed to be the main component of the cosmic fluid and ismdas is very simple to simulate, many
N-body simulations with largéV have been carried out and the type of structure to which theyrgse
is well studied. Halo models seem to adapt well to this typstafcture, since the particles (or bodies)
tend to form smooth distributions on small scales that omeassociate with halos, and these halos are,
on larger scales, clustered in irregular distribution$wdéfinite features, such as filaments. Therefore,
there appear distinct halos with a range of sizes, which mpkée large scale structure of matter.

As the cold dark matter (CDM) dynamics is purely gravitaiiband does not introduce any scale,
one may ask what determines the range of sizes of halos. §bisa of the points we intend to unveil.
In fact, the absence of scales immediately suggests th&bié distribution should be scale invariant,
namely, a fractal distribution. In fact, fractal models dralo models of the large scale structure can
be merged in a model of fractal distributions of hal8k [However, the resulting model is actually a
multifractal model in which halos are characterized by point-like siagties and, if the full matter
distribution is statistically homogeneous, halos consligjrainy rather than smooth mass distributions,
of arbitrary size. Point-like singularities can also beser@ at the centers of smooth halos, but halos of
this type have, in addition, smooth components and defirags sin contrast with multifractal halos, in
which both definite sizes and smoothness are precluded byisgariance and statistical homogeneity.

Of course, multifractal singularities only appear in canbus matter distributions, an-body
simulations amount to a discretization of matter that bsehk scale invariance of CDM dynamics. The
discreteness limitations of cosmologidsitbody simulations have been studied by Splirteal. [4].
Their conclusions are very relevant to our problem and gueortkiced at the end, after examining the
definition of halos in cosmologicaV-body simulations.

In summary, our main concern is to find out if halo models of ldrge scale structure are well
justified, specifically, if smooth halos with a range of siaes well justified by cosmologicaV-body
simulations. Regarding this problem, we have to assesstierisal collapse and virialization model
that is supposed to lead to the formation of halos. The lazgkedistribution of matter, whether made
up by halos or not, displays definite features, namely, filesiand walls, which constitute the famous
“cosmic web” structure. This structure is reproduced byatbesion model, which is worth studying
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with regard to the formation of halos. Taking account of theatusions from our study of the spherical
collapse and adhesion models, the resultd’dfody simulations are reconsidered, to establish the role
of the breaking of scale invariance in them and its conserpgefor halo models. At the end, some
critical conclusions are presented and discussed.

2. The Spherical Collapse Model and Virialization

The spherical collapse model is a simplified model of graéwteal collapse that is supposed to give
rise to the simplest type of halo germs. Its main interesh& the spherical collapse, namely, the
collapse of an initial matter distribution that is sphelic@ymmetric, is soluble, in the sense that it
consists of the one-dimensional gravitational dynamicspbierical shells. In particular, let us consider,
in a spatially flat Friedmann—Lemaitre—Robertson—Walkeverse, the collapse of an initial “top-hat”
overdensity, namely, a sphere with constant density $}igatger than the background density. Its
evolution has a straightforward solution in Lagrangianrdomates, and it undergoes several stages:
() an initial expansion that follows the Hubble expansidnaaslower rate; (ii) as the expansion
decelerates, the “top-hat” overdensity reaches a maximaenand begins to contract; (iii) then, it
collapses and, if it stays spherically symmetric, its sizeds to zero, but in practice it is supposed
to virialize and stabilize at some non-zero size.

Thus, the spherical collapse model leads to the formatiarhat one may call a spherical halo, but the
modelper se does not prescribe its size. It just assumes that a diff@recess, namely, “virialization”,
takes over at the end and produces an object of a definite Slrethe other hand, there is no way
to predict this size, so the virialized objectagpposed to be a spherical object with a radius that is
preciselyone half of the turn-around radius. This has the advantage of linkivegsizes of the final
virialized halos to the initial spectrum of linear overdities. On the other hand, this link may look
suspicious, because virialization embodies the nonlinadichaotic nature of gravitational dynamics,
and chaos implies erasure of initial conditions. Therefdres necessary to look into the meaning of
virialization in some detalil.

2.1. Virialization

Naturally, the stage of contraction in the spherical catapf a uniform sphere produces homologous
spheres of decreasing size and increasing density unthieg zero size and infinite density. This is
as true for CDM as for a gas, assuming that the process isatiabamely, that the entropy does not
increase in it. A point of infinite density is a singularitytone can predict, under the assumption of
reversibility, that it is followed by a rebound and an expansuntil the sphere’s radius gets back to
the turn-around radius. Therefore, the motion is osciliatétlowever, this reversibility is not realistic
and one must expect irreversibility and entropy growth,, saalsibly, the formation of a stable state of
smaller size. This stable, collapsed state must fulfill goalar) virial theorem, namelyy, = — K+3PV,
where F is its total energy /X its (average) kinetic energy; its (average) volume ang the external
pressure, which vanishes in the “top-hat” collapse model.tli@ other hand, the reversible oscillatory
motion also fulfills the virial theorem, so “virialization$ actually a misnomer. In fact, there is no
way in which the virial theorem can select a preferred sizeltie stable state. This stable, collapsed
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state is rather the consequence of the type of processesikamiviolent relaxation” (redistribution in
a rapidly varying gravitational potential) or “chaotic rmg” (exponential spreading of trajectories in
phase space). We must consider these processes to unvelidoollapse proceeds.

Of course, relaxation and mixing take place because thaliftibp-hat” overdensity cannot be taken
totally uniform and must contain density perturbationgdasThe inner overdensities (or underdensities)
evolve and grow just as the total overdensity does. Thezetbe spherical symmetry is lost and the
infalling particles do not converge to a point. Anyway, soefiects of non-uniformity can be studied
within the spherical collapse model, so that solubility iagtangian coordinates is maintained until
shell-crossing takes place. Sanchez-Coetda. [5] undertake this study, after criticizing the standard
assumptions of the spherical collapse model, in particidarstabilization radius at one half of the
turn-around radius (“the justification . ..is poor and lackodid theoretical background”). Their results
do not support the common assumptions, namely, the colfapg® 1/2 and the time of “virialization”.
Presumably, the breaking of spherical symmetry makes therem assumptions even less justifiable.

As a matter of principle, the characteristics of a stableedtsat has undergone a relaxation process
in which the thermodynamical entropy grows cannot be datexdhby the initial conditions. Actually,
entropy growth is equivalent to loss of information, andri@e entropy, the less information about the
process that has led to the stable state. Indeed, as we kaowtliermodynamics, the most stable state
is the one with the maximum entropy allowed by the boundandd@ns. In the gravitational case, the
maximum-entropy spherically-symmetric states are caliethermal spheres. However, these are only
local maxima of entropy, and there is no global maximum. T consequence of the “gravothermal
catastrophe”: a sufficient large central density tends &plkgrowing indefinitely (such an isothermal
sphere has negative specific heat). This shows, on the odethanthere can be temporary stable states
of various sizes and, on the other hand, that one must ifdyidieal with singularities in the end.

At any rate, since the spherical collapse is unstable agagmsradial perturbations and, furthermore,
cosmologicalN-body simulations show that gravitational collapse is Uguanisotropic and involves
tidal interactions with the surrounding matter, we considext a more advanced model of structure
formation that includes these aspects.

3. The Zeldovich Approximation and the Adhesion Model

The Zeldovich approximation somewhat resembles the splecbllapse model, insofar as it is
soluble and indeed consists of a very simple dynamics indragian coordinates, which holds until
(non-spherical) shells cross. However, the Zeldovich expration, complemented by the adhesion
model, which gives a simple prescription for the dynamidgraghell-crossing, constitutes a more
powerful and successful approach to the formation of thgelacale structure of the Universg.|
Interestingly, the Zeldovich approximation implies thgpherical collapse is specifically forbiddes] [
because its probability vanishes.

The Zeldovich approximation can be understood as the fiddrquerturbative approximation to the
gravitational motion in Lagrangian coordinat@§ pamely, the motion is given by = x¢+ D(t) g(x,),
wherez is the comoving coordinate, the peculiar gravitational field, and(t) the growth rate of linear
density fluctuations. Redefining time as= D(t), the motion is simply uniform linear motion, with a
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constant velocity given by the initial peculiar gravitatad field. Naturally, nearby particles have different
velocities, and, as the linear solution is prolonged in®ribnlinear regime, trajectories crossastic
surfaces, called “Zeldovich pancakes” in this cont&ft [On the other hand, the formation of caustics
is a general feature of irrotational dust models, in Newdardynamics or in general relativity, so it is
reasonable to assume that caustics are indeed the first lnmgoab structures.

After a set of particles merge at a caustic, their subseagwehttion is undefined. If no kinetic energy
is dissipatedddiabatic collapse), the particles cross (or rebound), like in a dphkcollapse. Hence,
if there was no dissipation in caustics, there would be nbsteacture formation. Therefore, the linear
motion in the Zeldovich approximation is supplemented waitiscosity term, resulting in the equation

Z—?Eg—z+ﬂ'Vﬁ—yv2ﬂ 1)

wherew is the peculiar velocity inr-time. Let us remark that dissipation and viscosity in CDM
dynamics may not have the same origin as in normal baryonidsf|8,9]. To Equation {), it must
be added the no-vorticity (potential flow) conditiovi, x u = 0, implied by V x g(xy) = 0. Thus,
Equation {) is the three-dimensional form of the Burgers equation &y\xcompressible (pressureless)
fluids [6]. The limit v — 0 might seem to recover the caustic-crossing solutions bdugdyg is the high
Reynolds-number limit and gives rise to Burgers turbulen@éhereas incompressible turbulence is
associated with the development of vorticity, Burgers tilghce is associated with the development of
shock fronts, namely, discontinuities of the velocity. These discomties arise at caustics and give
rise to matter accumulation by inelastic collision of paés. The viscosity measures the thickness
of shock fronts, which become true singularities in the fimi— 0. This is theadhesion model, which
produces, with the appropriate random initial conditi@sharacteristic network of sheets, filaments and
nodes, called “the cosmic webB][ This distribution of caustics is actualéglf-similar, with multifractal
features 10]. A simulation of the Burgers equation in the limit— 0 is shown in Figurel.

Figure 1. Cosmic web produced by the Burgers equation with randonaimionditions.
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One might think of identifying the nodes of the cosmic webhatlos, but the nodes produced by
the adhesion model are just Dirac-delta singularities ofslang size. Ifv is not zero, nodes have a size
proportional tov. This size will be negligible i~ is identified with molecular (baryon) viscosity, but it
may be the right size if “viscosity” is due to the mechanismopmsed by Buchert and Domingué. [

At any rate, nodes are just one of the three types of singigiapredicted by the adhesion model, and
the other types, namely, filaments and sheets, cannot befideénvith halos.

4. N-Body Simulations

N-body simulations of gravitational dynamickl] have been very helpful in the study of large scale
structure formation and, in a way, have been complementagbservations, since observations are
biased towards the baryonic matter, whifebody simulations take full account of the dark matter, in
particular, of non-baryonic matter. Collisionless nomylmaic CDM is only subjected to gravitational
forces, so itis fairly simple to simulate its dynamics. Mavrer, due to the advances in both hardware and
software, now it is possible to simulate the combined dyiaraf CDM and baryon gas with relatively
good resolution. At any rate, the large scale dynamics idrbly the dominant component, namely,
CDM. We employ the data from a large simulation of CDM and gasied out by the Mare Nostrum
supercomputer in Barcelonad]. This simulation containg024?® dark matter particles and the same
number of gas particles in a comoving cube of 500 Mpc edges. Later, we also employ, for a
comparison, the CDM-only Virgo Consortium GIF2 simulatiovith 400 particles in a 11G:~! Mpc
cube, as described by Gabal. [13]. Both simulations have already been the object of multitth
analyses, by means of counts-in-celld,[L5], and we can take advantage of the methods and results of
these analyses.

Naturally, we use the zero-redshift (present time) snagssbibeither simulation. A representative
image of the matter distribution is given by the distribuatio a slice, see Figur2 This slice is prepared
as follows. First of all, we focus on the dominant CDM compunef the Mare Nostrum simulation.
Since the number of particles is very large, it is useful tarse-grain the particle distribution to obtain a
density representatiorif,15]. The coarse-graining is carried out by using a mesh of cubislength
such that the average density is one particle per clibg $o the mesh-cube’s edgelig1024 of the
simulation cube’s edge. Furthermore, given that the homeitye scale is about 3% of the simulation
cube’s edgel5], a quarter of a full slice is adequate to perceive the festaf the matter distribution
(the lower left quarter is taken). In summary, our slice @s3f512 x 512 mesh-cubes, and the density
Is given by the number of particles in each one. To each mebk-corresponds a pixel in the image,
with an intensity proportional to the density in the mesheuln addition, in the slice represented in
Figure2, the density field has been cut offat= 4 (0 = 1 is the average density), so that the contrast
does not render invisible the pixels corresponding to l@msity cubes and one can appreciate the full
cosmic-web structure. Indeed, Fig2eshows a self-similar structure that looks like the struetimr
Figurel.
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Figure 2. Dark matter slice of Mare Nostrumv-body simulation (cut off ap = 4).

Nevertheless, one can wonder what is the appearance ofltleefsity, namely, including > 4.
To see this, let us raise the cutoff to= 256, a value that is only exceeded by a few mesh-cubes
and that, at the same time, preserves some contrast in thegridAmazingly, this change makes the
cosmic-web structure of Figurzvanish and the new image, FiguBeresembles what one can see in
a starry night, namely, distinct bright spots with a (smedhge of sizes. Naturally, these bright spots
must be identified with dark matter halos rather than withsst®o understand the transformation from

a cosmic web structure to a distribution of halos of similaeswe must spell out the various scales that
play a role in cosmologicaV-body simulations.

Figure 3. The same slice of Figur2but cut off ato = 256. Notice the halos.

Of course, the first scale is the simulation cube’s edge, lsutan refer the remaining scales to it
and, hence, assign it the value of unity. The next scale islidwetization lengthiv—/3, namely, the
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length of the edge of the mesh cube such that there is onelpgser cube on average. Naturally, the
mesh of these cubes is used for the counts-in-cells\and® = 1/1024 is the coarse-graining length (in
physical units).5 h~! Mpc, in the Mare Nostrum simulation). There is another sadle gravity cutoff

or softening length, which is necessary to avoid numericablems when two particles get close and
the force between them gets too large. The softening lesgifthe order of some Kpc, in particular,
itis 15 h~! Kpc in the Mare Nostrum simulation. (In the GIF2 simulatitime discretization length is
0.25 h~! Mpc and the softening length is 7 = Kpc, so their ratio is almost the same.) Besides, there
are other scales in the initial conditions, but we are onlyoeoned with the scales in the dynamics. In
summary, while CDM dynamics is scale free, we see Mditody simulations of it introduce two scales.
Therefore, the appearance of halos in Figdineust be due to the presence of these scales, which prevent
the formation of a truly self-similar cosmic web. Indeedalscinvariance can certainly be measured
for scales between the homogeneity scale and the disdretizrale 14,15]. In addition, the halos in
Figure3 have sizes of the order of the discretization length, whédihe larger of the two scales.

While Figure2 or Figure3 show the matter distribution between the homogeneity saatethe
discretization scale, they do not show the distribution malter scales, that is, they do not show what
one might call the mass distribution inside halos. The moptifated mesh-cube is located at the position
(380/512,159/512) in the slice and contain®i66 particles (to be compared with one per mesh-cube,
on average). Nearby cubes are overpopulated as well, sofine dee heaviest halo as the one formed
by all of them together. To be precise, we chodse 4 adjacent cubes of the slice and we display the
(projected) particle positions in them in FiguteOther halos in the slice have a similar aspect. Patently,
the matter distribution on these small scales is very difiefrom the cosmic-web distribution between
the homogeneity scale and the discretization scale: noweseejve a nearly smooth distribution (this
also happens for the GIF2 simulation, naturally). The stmoess of the distribution inside halos is
presumably due to the gravity softening. However, the siteleseems to mark the transition from an
irregular cosmic-web distribution to a smooth distribatie the discretization scale. The transition over
this scale has an even more definite and sharp effect on tististaof halo masses, as we show next.

Figure 4. Zooming in on the largest hald: x 4 pixels at position(0.74,0.31) in Figure3.
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4.1. Halo Mass Satistics

Since we have seen that the halo sized/Hbody simulations are about the discretization scale, it is
appropriate to define halos so that they have preciselyitesfer the sake of simplification. Then, one
can easily measure by counts-in-cells the mass functioaloshnamely, the number of halos of a given
mass. The halo mass functions of the Mare Nostrum or GIF2msztshift snapshots follow very definite
power laws precisely when the halos have the size of theatization scale]4,15]. This is shown in
Figure5, where the respective constant size halo mass functionsf@ble size are displayed: power
laws for sizeN~'/3 are fulfilled by all halos except the most massive ones. Adtie size increases,
the straight line bends, becoming convex from above, asotggeén a multifractal distribution1f4,15].

On the contrary, as the halo size decreases, the straighbéicomes concave from above, because the
number of mesh-cubes with few particles must then increldsgice that the sizes chosen in the GIF2
simulation are not exact multiples &f~'/3, in consonance with the characteristics of this simulation
and our numerical methods: the GIF2 simulation contait8 dark matter particles and we use powers
of 2 [14].

Figure 5. Constant size halo mass functions for variable siZer the Mare Nostrum, above,
and GIF2, below; = 0 snapshots. Abscissas: halo mass; ordinates: number & halo

A=N"13 A=2N"13 A=4N"13
108 . 10 oo
e 1080 10°
10° 10t
10 10 100¢
10C
10C 10C 10
10 10C 100C 10 100 100C 1 10 10C 100C 10*
A=0.78N"Y/3 A=156N"13 A=3.12N"Y3
k 10*
10¢ 10* 100C
10¢ 10C 10C
.10
10 100 100C ‘ 10 10C 100C ‘ 10 10C 100C

The power-law mass function of halos at the discretizaticalesis found in every cosmological
N-body simulation that we have analyzed, besides the Maré¢rivuosand GIF2 simulations, but we
have no simple explanation of it. It can be connected withRhess—Schechter theory of structure
formation by spherical collapse of overdensities in a Gansgistribution, but the power-law exponent
is just beyond the allowed rang&4,15]. In contrast, the parabola like shape (in a log-log plogrsen
larger scales is explained by a lognormal like model thattiin, corresponds to a multifractal model of
the matter distribution on those scales. This model has described in detail before (se®415] and
references therein), so we now restrict ourselves to ptiegdhat are relevant with regard to halos.
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5. Scale Invariance and Halos

Let us review very briefly the multifractal model of the largeale structure in cosmological-body
simulations, focusing on the CDM component of the Mare Nostsimulation. In the multifractal
model, the coarse-grained densitfe, ) (defined by counts-in-cells or any suitable method), at the
pointz and for coarse-graining length fulfills o(x, ) ~ r*®)=3 wherea > 0 (see [L6] for a precise
definition). Consequently, the point density, ., o(x, r) is finite and non-vanishing only t = 3,
while it is infinite for o < 3, and zero foxx > 3. Therefore, it is natural to associate poimtsuch that
0 < a(x) < 3, namely, density singularities, with halos and points sthet«(x) > 3 with cosmic
voids. At any rate, multifractality is ensured by the powaes behavior of the density with respect to
the coarse-graining length or, equivalently, by the polaerbehavior of the statistical moments, (r)
of the distribution 16]. A multifractal can be characterized by its multifractgestrum, namely, the
fractal dimensionf(«) of the set of pointse with exponento. Notice that the multifractal spectrum
can be defined for any distribution with singularities, nagtjfor self-similar distributions. However,
multifractal spectra of self-similar distributions haypical parabola like shape$§,17).

One proof of multifractality consists in computing the camultifractal spectrum for several
coarse-graining lengthsand showing that it does not dependrorWe reproduce in Figuréthe coarse
multifractal spectrum of the dark matter in the Mare Nostsimulation forr = {1,2,4,8} x N~/3,
which cover most of the scaling rang&5]. The extent of the scaling range and the transition to
homogeneity are better perceived in the scaling of moménts:) [15. The scaling range, which
goes from the discretization length (or somewhat belowhttiomogeneity scale, extends over two
decades, at the most.

Figure 6. Multifractal spectra of the dark matter in the Mare Nostruimdation, for
r=1{1,2,4,8} x N~'/3 (blue, red, brown and green, respectively).

f(@)
3,

Unfortunately, the scaling range in three-dimensiaNabody simulations cannot be very large, for
the time being. In contrast, one-dimensional cosmologiddody simulations with moderat® can
reach truly compelling scaling ranges: the simulations dfaviet al. [18], with N < 28 ~ 2.6 x 10°,
and of Joyce and Sicard ], with N = 10°, reach almost 4 decades! Moreover, the analysis by Joyce
and Sicard of the “halos” formed in their simulation has ledr to state, regarding three-dimensional
halos, that CDM halos are “not well modeled as smooth objects that “the supposed ‘universality’ of
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[halo] profiles is, like apparent smoothness, an artifagiaafr numerical resolution”. These conclusions
agree with the conclusions from our own analyses in threeedgions 8,14,15]: if we are to preserve
the concept of CDM halos, they are to be defined as grainytstesin a self-similar distribution rather
than smooth structures with a range of sizes.

A different but very interesting demonstration of, on theedrand, scale invariance and of, on the
other hand, the discreteness limitations of cosmologiddody simulations is provided by the work
of Gottloberet al. [20]. The purpose of their work is to assess the problem of thetieegs of cosmic
voids by means ofV-body simulations. To do this, Gottlobet al. [20] performed a low resolution
simulation and then resimulate voids with high resolutioamely, with the resolution corresponding
to replacing each particle with 512 particles. Naturalhgyt find that the voids are no longer empty
and, furthermore, the high-resolution dark matter distign inside large voids is such that “haloes are
arranged in a pattern, which looks like a miniature univénseother words, Gottlobeet al. find that a
higher resolution brings out in a void the invisible struetbelow the discretization scale, demonstrating
self-similarity of the full structure. One can infer thatesimulation of halos with higher resolution must
bring out as well their grainy, self-similar structure.

6. Discussion and Conclusions

It seems inevitable to conclude that the presence of amsitriscale in cosmologicaV-body
simulations, namely, the discreteness sdsité/?, severely affects the type of mass distribution that
is produced below that scale, to the extent that the smodds kéth a range of sizes about that scale
that are commonly seen in these simulations are probablytiéacaof insufficient resolution.

The problems of cosmologic&¥-body simulations below the discreteness scale have giieaeh
noticed by Splinteet al. [4]: their comparison of results of various-body simulations reveals that
“codes never agree well below the mean comoving interpareparation” (which is another name
for the discreteness scale). Therefore, one might thinkttitea smoothness of halos that is seen on
these small scales should have been questioned beforealfyothis has not occurred (or has had no
consequences) because of the popularity of the spheritapse model. However, now it appears that
this model does not necessarily prediciooth spherical halos and, in addition, its range of application
is far more restricted than usually assumed.

In fact, the adhesion model is more adequate than the sphedltapse model to provide a general
description of large scale structure, namely, to produeetypical cosmic web structure perceived in
both CDM simulations and observations of the galaxy digtidmn. The cosmic web is self-similar, so
the adhesion model suggests that the size of halos or, inagernlee size of cosmic-web structures
is determined by small-scale processes that can be lumpedam effective viscosity that breaks
the scale invariance. The question is, of course, how suchll-scale processes determine the
scale at which scale invariance is broken and how this scatepares with the discreteness scale
N-13 > 0.2h~' Mpc (generally).

First of all, let us remark that the real CDM is probably deter Indeed, current models of
CDM favor a WIMP composition. Neutralinos, for example, nfasgve a mass< 1 TeV. Therefore,
comparing with the mass resolution of cosmologi¥abody simulations (e.g8.24 x 10° h~! M, in the
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Mare Nostrum simulation), there is such a huge facto6f(in the Mare Nostrum simulation) that the
CDM distribution on astrophysical scales is continuougyrarctice, and, hencé/-body simulations can
in no way reproduce the real CDM dynamics on small scales.

We could also consider that the scale invariance of CDM dyosium broken on small scales by an
aspect of it that is not taken into account bybody simulations: the collapse of CDM overdensities
eventually produces densities and velocities that maketdi@an physics invalid and require relativistic
physics. In general relativity, a mass has an associatgdhestale, namely, its Schwarschild radius.
Consequently, in the “top-hat” collapse model, for examitiere is an intrinsic scale, which, in contrast
with the usually assumed scale, is not arbitrary and, funtloee, is independent of the initial conditions.
Naturally, this new scale arises in connection with supesiva black hole formation and, arguably, the
size of these black holes is not relevant on cosmologicésca

In conclusion, the CDM dynamics does not seem to generatsraajl scale that is cosmologically
relevant. Thus, it seems natural to either define a sort & sozariant halos3,14,15] or to turn to the
baryon physics. However, it is not easy to think of a defindale in the baryonic physics that marks
the end of scale invariance. As a matter of fact, the gas irvtee Nostrum simulation follows the
same scaling laws as the CDM does, despite the presencesofd[ab]. At any rate, the modeling of
baryonic physics in cosmological-body simulations is still in its infancyll]. What seems clear is that
the standard conclusions about smooth halos with a rangeesf drawn from state-of-the-ait-body
simulations, especially, CDM-only simulations, must bessessed.
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