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Abstract: Halo models of the large scale structure of the Universe are critically examined,

focusing on the definition of halos assmooth distributions of cold dark matter. This definition

is essentially based on the results of cosmologicalN-body simulations. By a careful analysis

of the standard assumptions of halo models andN-body simulations and by taking into

account previous studies of self-similarity of the cosmic web structure, we conclude that

N-body cosmological simulations are not fully reliable in the range of scales where halos

appear. Therefore, to have a consistent definition of halos is necessary either to define them

as entities of arbitrary size with a grainy rather than smooth structure or to define their size

in terms of small-scale baryonic physics.
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1. Introduction

Halo models of the large scale structure of matter are now very popular, as simple searches on the

Internet show: for example, a Google search with the three words “halo model cosmology” produces

4,680,000 results, and an ArXiv search for “halo model” yields “too many hits” and recommends a more

specific search. Naturally, the halos to which halo models refer are dark matter halos, initially introduced

to model the invisible matter surrounding galaxies. However, present halo models are concerned with

the large scale distribution of halos in space as well as withthe distribution of matter within a single halo.

In this respect, the modern report on halo models by Cooray and Sheth [1] traces the appearance of these

models to 1952, in a paper about the spatial distribution of galaxies written by Neyman and Scott [2],
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where they argue that it is “useful to think of the galaxy distribution as being made up of distinct

clusters with a range of sizes.” Thus, Neyman and Scott propose that the statistical theory of the galaxy

distribution is simplified by separating the full distribution into one part corresponding to the distribution

of galaxies within clusters and another corresponding to the distribution of cluster centers in space. In

particular, they favor “quasi-uniform” distributions of clusters and mention the Poisson distribution. Of

course, this hypothesis is not in accord with modern ideas, in which the strong clustering of clusters

plays a fundamental role in the large scale structure of matter. When galaxy clusters are replaced with

dark matter halos and we consider the distribution of halo centers in space, we have the basic halo model.

This distribution is indeed assumed to be non-uniform and the study of halo correlation functions is an

important part of halo models [1].

At any rate, halo models are not sufficiently supported by observations of the large scale structure

of matter, inasmuch as dark matter has not been observed directly and the indirect observations of it,

through gravity, are strongly model dependent. Actually, our knowledge of the dark matter distribution

is mainly due to the results of cosmologicalN-body simulations. As collisionless cold dark matter is

assumed to be the main component of the cosmic fluid and its dynamics is very simple to simulate, many

N-body simulations with largeN have been carried out and the type of structure to which they give rise

is well studied. Halo models seem to adapt well to this type ofstructure, since the particles (or bodies)

tend to form smooth distributions on small scales that one can associate with halos, and these halos are,

on larger scales, clustered in irregular distributions with definite features, such as filaments. Therefore,

there appear distinct halos with a range of sizes, which makeup the large scale structure of matter.

As the cold dark matter (CDM) dynamics is purely gravitational and does not introduce any scale,

one may ask what determines the range of sizes of halos. This is one of the points we intend to unveil.

In fact, the absence of scales immediately suggests that theCDM distribution should be scale invariant,

namely, a fractal distribution. In fact, fractal models andhalo models of the large scale structure can

be merged in a model of fractal distributions of halos [3]. However, the resulting model is actually a

multifractal model in which halos are characterized by point-like singularities and, if the full matter

distribution is statistically homogeneous, halos consistof grainy rather than smooth mass distributions,

of arbitrary size. Point-like singularities can also be present at the centers of smooth halos, but halos of

this type have, in addition, smooth components and definite sizes, in contrast with multifractal halos, in

which both definite sizes and smoothness are precluded by scale invariance and statistical homogeneity.

Of course, multifractal singularities only appear in continuous matter distributions, andN-body

simulations amount to a discretization of matter that breaks the scale invariance of CDM dynamics. The

discreteness limitations of cosmologicalN-body simulations have been studied by Splinteret al. [4].

Their conclusions are very relevant to our problem and are reproduced at the end, after examining the

definition of halos in cosmologicalN-body simulations.

In summary, our main concern is to find out if halo models of thelarge scale structure are well

justified, specifically, if smooth halos with a range of sizesare well justified by cosmologicalN-body

simulations. Regarding this problem, we have to assess the spherical collapse and virialization model

that is supposed to lead to the formation of halos. The large scale distribution of matter, whether made

up by halos or not, displays definite features, namely, filaments and walls, which constitute the famous

“cosmic web” structure. This structure is reproduced by theadhesion model, which is worth studying
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with regard to the formation of halos. Taking account of the conclusions from our study of the spherical

collapse and adhesion models, the results ofN-body simulations are reconsidered, to establish the role

of the breaking of scale invariance in them and its consequences for halo models. At the end, some

critical conclusions are presented and discussed.

2. The Spherical Collapse Model and Virialization

The spherical collapse model is a simplified model of gravitational collapse that is supposed to give

rise to the simplest type of halo germs. Its main interest is that the spherical collapse, namely, the

collapse of an initial matter distribution that is spherically symmetric, is soluble, in the sense that it

consists of the one-dimensional gravitational dynamics ofspherical shells. In particular, let us consider,

in a spatially flat Friedmann–Lemaitre–Robertson–Walker universe, the collapse of an initial “top-hat”

overdensity, namely, a sphere with constant density slightly larger than the background density. Its

evolution has a straightforward solution in Lagrangian coordinates, and it undergoes several stages:

(i) an initial expansion that follows the Hubble expansion at a slower rate; (ii) as the expansion

decelerates, the “top-hat” overdensity reaches a maximum size and begins to contract; (iii) then, it

collapses and, if it stays spherically symmetric, its size tends to zero, but in practice it is supposed

to virialize and stabilize at some non-zero size.

Thus, the spherical collapse model leads to the formation ofwhat one may call a spherical halo, but the

modelper se does not prescribe its size. It just assumes that a differentprocess, namely, “virialization”,

takes over at the end and produces an object of a definite size.On the other hand, there is no way

to predict this size, so the virialized object issupposed to be a spherical object with a radius that is

preciselyone half of the turn-around radius. This has the advantage of linkingthe sizes of the final

virialized halos to the initial spectrum of linear overdensities. On the other hand, this link may look

suspicious, because virialization embodies the nonlinearandchaotic nature of gravitational dynamics,

and chaos implies erasure of initial conditions. Therefore, it is necessary to look into the meaning of

virialization in some detail.

2.1. Virialization

Naturally, the stage of contraction in the spherical collapse of a uniform sphere produces homologous

spheres of decreasing size and increasing density until reaching zero size and infinite density. This is

as true for CDM as for a gas, assuming that the process is adiabatic, namely, that the entropy does not

increase in it. A point of infinite density is a singularity, but one can predict, under the assumption of

reversibility, that it is followed by a rebound and an expansion, until the sphere’s radius gets back to

the turn-around radius. Therefore, the motion is oscillatory. However, this reversibility is not realistic

and one must expect irreversibility and entropy growth, and, plausibly, the formation of a stable state of

smaller size. This stable, collapsed state must fulfill the (scalar) virial theorem, namely,E = −K+3PV ,

whereE is its total energy,K its (average) kinetic energy,V its (average) volume andP the external

pressure, which vanishes in the “top-hat” collapse model. On the other hand, the reversible oscillatory

motion also fulfills the virial theorem, so “virialization”is actually a misnomer. In fact, there is no

way in which the virial theorem can select a preferred size for the stable state. This stable, collapsed
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state is rather the consequence of the type of processes known as “violent relaxation” (redistribution in

a rapidly varying gravitational potential) or “chaotic mixing” (exponential spreading of trajectories in

phase space). We must consider these processes to unveil howthe collapse proceeds.

Of course, relaxation and mixing take place because the initial “top-hat” overdensity cannot be taken

totally uniform and must contain density perturbations inside. The inner overdensities (or underdensities)

evolve and grow just as the total overdensity does. Therefore, the spherical symmetry is lost and the

infalling particles do not converge to a point. Anyway, someeffects of non-uniformity can be studied

within the spherical collapse model, so that solubility in Lagrangian coordinates is maintained until

shell-crossing takes place. Sánchez-Condeet al. [5] undertake this study, after criticizing the standard

assumptions of the spherical collapse model, in particularthe stabilization radius at one half of the

turn-around radius (“the justification . . . is poor and lack asolid theoretical background”). Their results

do not support the common assumptions, namely, the collapsefactor1/2 and the time of “virialization”.

Presumably, the breaking of spherical symmetry makes the common assumptions even less justifiable.

As a matter of principle, the characteristics of a stable state that has undergone a relaxation process

in which the thermodynamical entropy grows cannot be determined by the initial conditions. Actually,

entropy growth is equivalent to loss of information, and themore entropy, the less information about the

process that has led to the stable state. Indeed, as we know from thermodynamics, the most stable state

is the one with the maximum entropy allowed by the boundary conditions. In the gravitational case, the

maximum-entropy spherically-symmetric states are calledisothermal spheres. However, these are only

local maxima of entropy, and there is no global maximum. Thisis a consequence of the “gravothermal

catastrophe”: a sufficient large central density tends to keep growing indefinitely (such an isothermal

sphere has negative specific heat). This shows, on the one hand, that there can be temporary stable states

of various sizes and, on the other hand, that one must inevitably deal with singularities in the end.

At any rate, since the spherical collapse is unstable against non-radial perturbations and, furthermore,

cosmologicalN-body simulations show that gravitational collapse is usually anisotropic and involves

tidal interactions with the surrounding matter, we consider next a more advanced model of structure

formation that includes these aspects.

3. The Zeldovich Approximation and the Adhesion Model

The Zeldovich approximation somewhat resembles the spherical collapse model, insofar as it is

soluble and indeed consists of a very simple dynamics in Lagrangian coordinates, which holds until

(non-spherical) shells cross. However, the Zeldovich approximation, complemented by the adhesion

model, which gives a simple prescription for the dynamics after shell-crossing, constitutes a more

powerful and successful approach to the formation of the large scale structure of the Universe [6].

Interestingly, the Zeldovich approximation implies that “spherical collapse is specifically forbidden” [6],

because its probability vanishes.

The Zeldovich approximation can be understood as the first order perturbative approximation to the

gravitational motion in Lagrangian coordinates [7]; namely, the motion is given byx = x0+D(t) g(x0),

wherex is the comoving coordinate,g the peculiar gravitational field, andD(t) the growth rate of linear

density fluctuations. Redefining time asτ = D(t), the motion is simply uniform linear motion, with a
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constant velocity given by the initial peculiar gravitational field. Naturally, nearby particles have different

velocities, and, as the linear solution is prolonged into the nonlinear regime, trajectories cross atcaustic

surfaces, called “Zeldovich pancakes” in this context [6]. On the other hand, the formation of caustics

is a general feature of irrotational dust models, in Newtonian dynamics or in general relativity, so it is

reasonable to assume that caustics are indeed the first cosmological structures.

After a set of particles merge at a caustic, their subsequentevolution is undefined. If no kinetic energy

is dissipated (adiabatic collapse), the particles cross (or rebound), like in a spherical collapse. Hence,

if there was no dissipation in caustics, there would be no real structure formation. Therefore, the linear

motion in the Zeldovich approximation is supplemented witha viscosity term, resulting in the equation

dũ

dτ
≡

∂ũ

∂τ
+ ũ · ∇ũ = ν∇2ũ (1)

where ũ is the peculiar velocity inτ -time. Let us remark that dissipation and viscosity in CDM

dynamics may not have the same origin as in normal baryonic fluids [8,9]. To Equation (1), it must

be added the no-vorticity (potential flow) condition,∇ × ũ = 0, implied by∇ × g(x0) = 0. Thus,

Equation (1) is the three-dimensional form of the Burgers equation for very compressible (pressureless)

fluids [6]. The limit ν → 0 might seem to recover the caustic-crossing solutions but actually is the high

Reynolds-number limit and gives rise to Burgers turbulence. Whereas incompressible turbulence is

associated with the development of vorticity, Burgers turbulence is associated with the development of

shock fronts, namely, discontinuities of the velocity. These discontinuities arise at caustics and give

rise to matter accumulation by inelastic collision of particles. The viscosityν measures the thickness

of shock fronts, which become true singularities in the limit ν → 0. This is theadhesion model, which

produces, with the appropriate random initial conditions,a characteristic network of sheets, filaments and

nodes, called “the cosmic web” [6]. This distribution of caustics is actuallyself-similar, with multifractal

features [10]. A simulation of the Burgers equation in the limitν → 0 is shown in Figure1.

Figure 1. Cosmic web produced by the Burgers equation with random initial conditions.
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One might think of identifying the nodes of the cosmic web with halos, but the nodes produced by

the adhesion model are just Dirac-delta singularities of vanishing size. Ifν is not zero, nodes have a size

proportional toν. This size will be negligible ifν is identified with molecular (baryon) viscosity, but it

may be the right size if “viscosity” is due to the mechanism proposed by Buchert and Domı́nguez [9].

At any rate, nodes are just one of the three types of singularities predicted by the adhesion model, and

the other types, namely, filaments and sheets, cannot be identified with halos.

4.N-Body Simulations

N-body simulations of gravitational dynamics [11] have been very helpful in the study of large scale

structure formation and, in a way, have been complementary to observations, since observations are

biased towards the baryonic matter, whileN-body simulations take full account of the dark matter, in

particular, of non-baryonic matter. Collisionless non-baryonic CDM is only subjected to gravitational

forces, so it is fairly simple to simulate its dynamics. Moreover, due to the advances in both hardware and

software, now it is possible to simulate the combined dynamics of CDM and baryon gas with relatively

good resolution. At any rate, the large scale dynamics is ruled by the dominant component, namely,

CDM. We employ the data from a large simulation of CDM and gas carried out by the Mare Nostrum

supercomputer in Barcelona [12]. This simulation contains10243 dark matter particles and the same

number of gas particles in a comoving cube of 500h−1 Mpc edges. Later, we also employ, for a

comparison, the CDM-only Virgo Consortium GIF2 simulation, with 4003 particles in a 110h−1 Mpc

cube, as described by Gaoet al. [13]. Both simulations have already been the object of multifractal

analyses, by means of counts-in-cells [14,15], and we can take advantage of the methods and results of

these analyses.

Naturally, we use the zero-redshift (present time) snapshots of either simulation. A representative

image of the matter distribution is given by the distribution in a slice, see Figure2. This slice is prepared

as follows. First of all, we focus on the dominant CDM component of the Mare Nostrum simulation.

Since the number of particles is very large, it is useful to coarse-grain the particle distribution to obtain a

density representation [14,15]. The coarse-graining is carried out by using a mesh of cubeswith length

such that the average density is one particle per cube [15], so the mesh-cube’s edge is1/1024 of the

simulation cube’s edge. Furthermore, given that the homogeneity scale is about 3% of the simulation

cube’s edge [15], a quarter of a full slice is adequate to perceive the features of the matter distribution

(the lower left quarter is taken). In summary, our slice consists of512×512 mesh-cubes, and the density

is given by the number of particles in each one. To each mesh-cube corresponds a pixel in the image,

with an intensity proportional to the density in the mesh-cube. In addition, in the slice represented in

Figure2, the density field has been cut off at̺ = 4 (̺ = 1 is the average density), so that the contrast

does not render invisible the pixels corresponding to low-density cubes and one can appreciate the full

cosmic-web structure. Indeed, Figure2 shows a self-similar structure that looks like the structure in

Figure1.
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Figure 2. Dark matter slice of Mare NostrumN-body simulation (cut off at̺ = 4).

Nevertheless, one can wonder what is the appearance of the full density, namely, including̺ > 4.

To see this, let us raise the cutoff to̺= 256, a value that is only exceeded by a few mesh-cubes

and that, at the same time, preserves some contrast in the picture. Amazingly, this change makes the

cosmic-web structure of Figure2 vanish and the new image, Figure3, resembles what one can see in

a starry night, namely, distinct bright spots with a (small)range of sizes. Naturally, these bright spots

must be identified with dark matter halos rather than with stars. To understand the transformation from

a cosmic web structure to a distribution of halos of similar size, we must spell out the various scales that

play a role in cosmologicalN-body simulations.

Figure 3. The same slice of Figure2 but cut off at̺ = 256. Notice the halos.

Of course, the first scale is the simulation cube’s edge, but we can refer the remaining scales to it

and, hence, assign it the value of unity. The next scale is thediscretization lengthN−1/3, namely, the
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length of the edge of the mesh cube such that there is one particle per cube on average. Naturally, the

mesh of these cubes is used for the counts-in-cells andN−1/3 = 1/1024 is the coarse-graining length (in

physical units,0.5 h−1 Mpc, in the Mare Nostrum simulation). There is another scale: the gravity cutoff

or softening length, which is necessary to avoid numerical problems when two particles get close and

the force between them gets too large. The softening length is of the order of some Kpc, in particular,

it is 15 h−1 Kpc in the Mare Nostrum simulation. (In the GIF2 simulation,the discretization length is

0.25 h−1 Mpc and the softening length is= 7 h−1 Kpc, so their ratio is almost the same.) Besides, there

are other scales in the initial conditions, but we are only concerned with the scales in the dynamics. In

summary, while CDM dynamics is scale free, we see thatN-body simulations of it introduce two scales.

Therefore, the appearance of halos in Figure3 must be due to the presence of these scales, which prevent

the formation of a truly self-similar cosmic web. Indeed, scale invariance can certainly be measured

for scales between the homogeneity scale and the discretization scale [14,15]. In addition, the halos in

Figure3 have sizes of the order of the discretization length, which is the larger of the two scales.

While Figure2 or Figure3 show the matter distribution between the homogeneity scaleand the

discretization scale, they do not show the distribution on smaller scales, that is, they do not show what

one might call the mass distribution inside halos. The most populated mesh-cube is located at the position

(380/512, 159/512) in the slice and contains2466 particles (to be compared with one per mesh-cube,

on average). Nearby cubes are overpopulated as well, so we define the heaviest halo as the one formed

by all of them together. To be precise, we choose4 × 4 adjacent cubes of the slice and we display the

(projected) particle positions in them in Figure4. Other halos in the slice have a similar aspect. Patently,

the matter distribution on these small scales is very different from the cosmic-web distribution between

the homogeneity scale and the discretization scale: now we perceive a nearly smooth distribution (this

also happens for the GIF2 simulation, naturally). The smoothness of the distribution inside halos is

presumably due to the gravity softening. However, the scalethat seems to mark the transition from an

irregular cosmic-web distribution to a smooth distribution is the discretization scale. The transition over

this scale has an even more definite and sharp effect on the statistics of halo masses, as we show next.

Figure 4. Zooming in on the largest halo:4× 4 pixels at position(0.74, 0.31) in Figure3.
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4.1. Halo Mass Statistics

Since we have seen that the halo sizes inN-body simulations are about the discretization scale, it is

appropriate to define halos so that they have precisely this size, for the sake of simplification. Then, one

can easily measure by counts-in-cells the mass function of halos, namely, the number of halos of a given

mass. The halo mass functions of the Mare Nostrum or GIF2 zero-redshift snapshots follow very definite

power laws precisely when the halos have the size of the discretization scale [14,15]. This is shown in

Figure5, where the respective constant size halo mass functions forvariable size are displayed: power

laws for sizeN−1/3 are fulfilled by all halos except the most massive ones. As thehalo size increases,

the straight line bends, becoming convex from above, as expected in a multifractal distribution [14,15].

On the contrary, as the halo size decreases, the straight line becomes concave from above, because the

number of mesh-cubes with few particles must then increase.Notice that the sizes chosen in the GIF2

simulation are not exact multiples ofN−1/3, in consonance with the characteristics of this simulation

and our numerical methods: the GIF2 simulation contains4003 dark matter particles and we use powers

of 2 [14].

Figure 5. Constant size halo mass functions for variable sizeλ, for the Mare Nostrum, above,

and GIF2, below,z = 0 snapshots. Abscissas: halo mass; ordinates: number of halos.
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The power-law mass function of halos at the discretization scale is found in every cosmological

N-body simulation that we have analyzed, besides the Mare Nostrum and GIF2 simulations, but we

have no simple explanation of it. It can be connected with thePress–Schechter theory of structure

formation by spherical collapse of overdensities in a Gaussian distribution, but the power-law exponent

is just beyond the allowed range [14,15]. In contrast, the parabola like shape (in a log-log plot) seen on

larger scales is explained by a lognormal like model that, inturn, corresponds to a multifractal model of

the matter distribution on those scales. This model has beendescribed in detail before (see [14,15] and

references therein), so we now restrict ourselves to properties that are relevant with regard to halos.
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5. Scale Invariance and Halos

Let us review very briefly the multifractal model of the large-scale structure in cosmologicalN-body

simulations, focusing on the CDM component of the Mare Nostrum simulation. In the multifractal

model, the coarse-grained density̺(x, r) (defined by counts-in-cells or any suitable method), at the

pointx and for coarse-graining lengthr, fulfills ̺(x, r) ∼ rα(x)−3, whereα ≥ 0 (see [16] for a precise

definition). Consequently, the point densitylimr→0 ̺(x, r) is finite and non-vanishing only ifα = 3,

while it is infinite forα < 3, and zero forα > 3. Therefore, it is natural to associate pointsx such that

0 ≤ α(x) < 3, namely, density singularities, with halos and points suchthatα(x) > 3 with cosmic

voids. At any rate, multifractality is ensured by the power-law behavior of the density with respect to

the coarse-graining length or, equivalently, by the power-law behavior of the statistical momentsMq(r)

of the distribution [16]. A multifractal can be characterized by its multifractal spectrum, namely, the

fractal dimensionf(α) of the set of pointsx with exponentα. Notice that the multifractal spectrum

can be defined for any distribution with singularities, not just for self-similar distributions. However,

multifractal spectra of self-similar distributions have typical parabola like shapes [16,17].

One proof of multifractality consists in computing the coarse multifractal spectrum for several

coarse-graining lengthsr and showing that it does not depend onr. We reproduce in Figure6 the coarse

multifractal spectrum of the dark matter in the Mare Nostrumsimulation forr = {1, 2, 4, 8} × N−1/3,

which cover most of the scaling range [15]. The extent of the scaling range and the transition to

homogeneity are better perceived in the scaling of momentsMq(r) [15]. The scaling range, which

goes from the discretization length (or somewhat below) to the homogeneity scale, extends over two

decades, at the most.

Figure 6. Multifractal spectra of the dark matter in the Mare Nostrum simulation, for

r = {1, 2, 4, 8} ×N−1/3 (blue, red, brown and green, respectively).

1 2 3 4
Α

1

2

3
f HΑL

Unfortunately, the scaling range in three-dimensionalN-body simulations cannot be very large, for

the time being. In contrast, one-dimensional cosmologicalN-body simulations with moderateN can

reach truly compelling scaling ranges: the simulations of Miller et al. [18], with N ≤ 218 ≃ 2.6 × 105,

and of Joyce and Sicard [19], with N = 105, reach almost 4 decades! Moreover, the analysis by Joyce

and Sicard of the “halos” formed in their simulation has led them to state, regarding three-dimensional

halos, that CDM halos are “not well modeled as smooth objects” and that “the supposed ‘universality’ of
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[halo] profiles is, like apparent smoothness, an artifact ofpoor numerical resolution”. These conclusions

agree with the conclusions from our own analyses in three dimensions [3,14,15]: if we are to preserve

the concept of CDM halos, they are to be defined as grainy structures in a self-similar distribution rather

than smooth structures with a range of sizes.

A different but very interesting demonstration of, on the one hand, scale invariance and of, on the

other hand, the discreteness limitations of cosmologicalN-body simulations is provided by the work

of Gottlöberet al. [20]. The purpose of their work is to assess the problem of the emptiness of cosmic

voids by means ofN-body simulations. To do this, Gottlöberet al. [20] performed a low resolution

simulation and then resimulate voids with high resolution,namely, with the resolution corresponding

to replacing each particle with 512 particles. Naturally, they find that the voids are no longer empty

and, furthermore, the high-resolution dark matter distribution inside large voids is such that “haloes are

arranged in a pattern, which looks like a miniature universe.” In other words, Gottlöberet al. find that a

higher resolution brings out in a void the invisible structure below the discretization scale, demonstrating

self-similarity of the full structure. One can infer that a resimulation of halos with higher resolution must

bring out as well their grainy, self-similar structure.

6. Discussion and Conclusions

It seems inevitable to conclude that the presence of an intrinsic scale in cosmologicalN-body

simulations, namely, the discreteness scaleN−1/3, severely affects the type of mass distribution that

is produced below that scale, to the extent that the smooth halos with a range of sizes about that scale

that are commonly seen in these simulations are probably an artifact of insufficient resolution.

The problems of cosmologicalN-body simulations below the discreteness scale have already been

noticed by Splinteret al. [4]: their comparison of results of variousN-body simulations reveals that

“codes never agree well below the mean comoving interparticle separation” (which is another name

for the discreteness scale). Therefore, one might think that the smoothness of halos that is seen on

these small scales should have been questioned before. Probably, this has not occurred (or has had no

consequences) because of the popularity of the spherical collapse model. However, now it appears that

this model does not necessarily predictsmooth spherical halos and, in addition, its range of application

is far more restricted than usually assumed.

In fact, the adhesion model is more adequate than the spherical collapse model to provide a general

description of large scale structure, namely, to produce the typical cosmic web structure perceived in

both CDM simulations and observations of the galaxy distribution. The cosmic web is self-similar, so

the adhesion model suggests that the size of halos or, in general, the size of cosmic-web structures

is determined by small-scale processes that can be lumped into an effective viscosity that breaks

the scale invariance. The question is, of course, how such small-scale processes determine the

scale at which scale invariance is broken and how this scale compares with the discreteness scale

N−1/3 > 0.2 h−1 Mpc (generally).

First of all, let us remark that the real CDM is probably discrete. Indeed, current models of

CDM favor a WIMP composition. Neutralinos, for example, mayhave a mass< 1 TeV. Therefore,

comparing with the mass resolution of cosmologicalN-body simulations (e.g.,8.24×109 h−1 M⊙ in the
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Mare Nostrum simulation), there is such a huge factor (1064 in the Mare Nostrum simulation) that the

CDM distribution on astrophysical scales is continuous, inpractice, and, hence,N-body simulations can

in no way reproduce the real CDM dynamics on small scales.

We could also consider that the scale invariance of CDM dynamics is broken on small scales by an

aspect of it that is not taken into account byN-body simulations: the collapse of CDM overdensities

eventually produces densities and velocities that make Newtonian physics invalid and require relativistic

physics. In general relativity, a mass has an associated length scale, namely, its Schwarschild radius.

Consequently, in the “top-hat” collapse model, for example, there is an intrinsic scale, which, in contrast

with the usually assumed scale, is not arbitrary and, furthermore, is independent of the initial conditions.

Naturally, this new scale arises in connection with supermassive black hole formation and, arguably, the

size of these black holes is not relevant on cosmological scales.

In conclusion, the CDM dynamics does not seem to generate anysmall scale that is cosmologically

relevant. Thus, it seems natural to either define a sort of scale invariant halos [3,14,15] or to turn to the

baryon physics. However, it is not easy to think of a definite scale in the baryonic physics that marks

the end of scale invariance. As a matter of fact, the gas in theMare Nostrum simulation follows the

same scaling laws as the CDM does, despite the presence of biasing [15]. At any rate, the modeling of

baryonic physics in cosmologicalN-body simulations is still in its infancy [11]. What seems clear is that

the standard conclusions about smooth halos with a range of sizes drawn from state-of-the-artN-body

simulations, especially, CDM-only simulations, must be reassessed.
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