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Abstract: Microneedles (MNs) have been extensively explored in the literature as a means to
deliver drugs in the skin, surpassing the stratum corneum permeability barrier. MNs are potentially
easy to produce and may allow the self-administration of drugs without causing pain or bleeding.
More recently, MNs have been investigated to collect/assess the interstitial fluid in order to monitor or
detect specific biomarkers. The integration of these two concepts in closed-loop devices holds
the promise of automated and minimally invasive disease detection/monitoring and therapy.
These assure low invasiveness and, importantly, open a window of opportunity for the application of
population-specific and personalised therapies.
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Microneedles (MNs) are micrometre-scale structures with sharp tips that can perforate the upper
layers of the skin, overcoming the stratum corneum barrier. MNs have been primarily explored in the
literature as a means to deliver drugs through the skin layers [1,2], to detect and monitor specific
molecules in the interstitial fluid [3,4] and to monitor cells in vitro [5]. Table 1 shows a comparison
of different drug delivery techniques, including MN-based drug delivery. MNs are potentially easy
to produce and allow self-administration and high patient compliance, as they cause no pain or
bleeding [1,2,4,5]. Along with developments in MN research, the field of transdermal patches has
grown. Although the transdermal administration of drugs has been considered very attractive and
convenient, it has been limited by skin permeability to molecules with very specific characteristics,
namely, those of small molecular weight and balanced hydrophobicity. With the application of MN
arrays, the transdermal route becomes accessible to many other molecules. Some such examples are
already in clinical trials [6]. The administration of vaccines, namely, influenza [7] and polio [8], already
have published results from clinical tests. Other molecules such as zolmitriptan, a selective serotonin
receptor agonist used for the treatment of migraine, and abaloparatide, a parathyroid hormone-related
protein analog used to treat osteoporosis, are currently in phase III clinical trials (see [6]).

Although its primary target is the skin, MNs are also being investigated as a mean to overcome
other biological barriers, releasing drugs in the eye [9], the oral mucosa [10], the vaginal mucosa [11],
vascular tissue [12] and so forth. Alternatively, MN patches have evolved to collect interstitial fluid
painlessly, providing monitoring or detection of specific biomarkers [13]. This field is growing and holds
the promise of allowing minimally invasive disease monitoring, ultimately integrating closed-loop
devices in which detection and therapy are achieved in a minimally invasive way. Taking into
consideration its specificities and irrefutable advantages, the field of MN research is currently evolving
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towards personalised medicine, developing treatments for specific populations, such as the elderly
and children.

Table 1. Comparison table of different drug delivery technologies.

Advantages Disadvantages

-Painful
-Tissue damage
-Nonautonomous administration

-Direct access to the circulatory

Hypodermic needles system (intravenous)

-Rapid absorption (sublingual)
Needless drug delivery -Economical, high dose possible
(oral)

-Small dose limit
-Jet may be painful

. -Difficult to regulate the exact
-Bypasses liver

Inhalation Laree surface of absorption amount of dosage
& p -Difficult to verify in infants
-Pain-free administration
-Easy to use -Local inflammation
Microneedles (MNs) -Continuous and controlled release .
. -Skin irritation
-Safer handling

-Self-administration

The use of MN patches brings particular advantages that may have a huge impact on the field
of paediatrics. These include painless and safe drug administration; minimising the risk of bleeding,
infections and injuries; and favouring therapy acceptance among children and also parents [14].
Moreover, MNs have been considered particularly promising for the administration of vaccines, taking
advantage of the role of the skin in the immune system. The skin is not only a physical barrier but also
a complex and active immune site, highly rich in antigen-presenting cells, including macrophages,
Langerhans cells and dendritic cells. These cells play a significant role in adaptive immune responses,
converting the skin into a favourable place for immunisation [15]. Therefore, theoretically, the use of
MN patches provides important advantages compared with intramuscular or subcutaneous vaccine
administration. Different studies using animal models demonstrated increased immunogenicity of
vaccines when administered via MN patches compared with conventional administration [16,17].
However, this has not yet been confirmed in clinical trials [7].

Most vaccines, such as polio, diphtheria, tetanus or pertussis, are administered in the first year after
birth and during childhood. Vaccination using a conventional needle system often poses challenges
for both parents and medical staff due to needle phobia and pain. The dosage and time window vary
according to the country vaccination program, but MNs can have a major positive impact on childhood
vaccination (Figure 1B), as already demonstrated by the positive perception from parents, children and
medical staff [18].

The different characteristics of child/infant skin compared with adult skin may represent an
extra challenge for researchers to implement the MN-based system. The needle specifications need to
be tailored considering the skin cross section and mechanical properties of the paediatric skin [19].
Children’s skin is thinner (Figure 1A) compared with adult skin and may require new and deeper
studies on the pharmacodynamics of transdermal drug dissolution and diffusion. However, some
studies have reported no differences in skin thickness depending on age, gender or body mass index
in children below 5 years old; and although they found variable thicknesses in different areas of the
body, these were found to have no clinical relevance. Even so, Duarah et al. [19] pointed to the fact that
the skin represents 3% of the body weight in adults and is 13% in a preterm infant. Thus, the area of
application of a transdermal patch may have relevant consequences regarding safety among these
groups. In terms of mechanical stability, it is considered that children’s top layer of skin (Figure 1A) can
be disrupted with a needle height of around 300 um and a diameter of less than 100 pm [19]. In terms
of dosage, a lower dosage requirement in paediatrics is expected, which may make it easier to achieve
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therapeutic doses through MN patches. These parameters have to be addressed by designing suitable
microneedle architectures to target children of different age groups (infants, children and adolescents).

(A) Typical skin cross section Faster rate of water loss

Slower rate of water loss
More NMFs (Natural Moisturising Factor) l Loess NMFs (Natural Moisturizing Factor)
e Set P'g g ( Loss meolanin pigments
Larger corncocytos :
:.; Smaller corneocytes
oy ———— > @ — :
Thicker stratum & e Emm—a> <X 5 N
corneum 9 —_—— - L— L - b
L D e i B — By e —g S8 | Thinner stratum
e Co === (=== =0 ) -—= ar==1 |, corneum
Thicker. P = KN & 5 & = (== = 3\
cpidermis . . 1 ~ — v .
L T R
. O 5 o
] . ° . & s
L 2 . ° ¢ 2 O —
Adult skin Infant skin
(B) Microneedle application in paediatrics (C) Microneedle-based diagnostic

Working Electrode Electrical Connection

Ceramic Substrate
Counter Electrode

i . Reference Electrode
Fluidic Connectu{

S

Polycarbonate
Housing

\ Adhesive Layers
Glucose Oxidase Chemistry
Microneedle Array
Sensor Chamber filled

with Phosphate Buffered Lumen
Saline

Figure 1. (A) Typical cross section of adult skin and infant skin [19]. (B) Proposal for the potential
microneedle application in paediatrics. (C) Microneedle-based diagnostics to monitor the required
analyte; microneedles are used to sample the interstitial fluid in a painless manner [13].

The use of MN patches holds the promise of finding applications other than vaccine therapeutics
for children, namely, in high-incidence-rate diseases and diseases that can benefit from administration
through the skin, such as immune-related diseases. Psoriasis is a chronic autoimmune disease in which
the life cycle of skin cells is accelerated, producing “extra” skin. This forms scales and red patches that
are itchy and sometimes painful. In children, the incidence rate is increasing, reaching 2% in some
populations [20]. One of the main challenges posed by chronic diseases is ensuring patient adherence to
therapy. In diseases that start in early childhood, this becomes a considerable issue. Administration of
these therapies through MNs is expected to increase patient compliance [21] and, consequently, provide
significant improvements in treatment effectiveness. One such example is growth hormone deficiency,
a genetic disease that requires life-long growth hormone administration. The administration of the
hormone via MN patches is considered very promising, providing similar bioavailability compared to
subcutaneous injection and a patient-friendly alternative [22]. Paediatric asthma is the most common
serious chronic disease in infants and children. This noncommunicable disease affects 11.1%-11.6% of
children worldwide [23]. It is an inflammatory disease of the airways in the lungs, marked by attacks
of spasm in the bronchi, causing difficulty in breathing. MN patches can improve the therapeutics of
asthma [24]. It is also expected that microneedle devices can provide a new solution for the treatment
of diabetes. Diabetes also has a high incidence rate in childhood. In the United States, it is estimated
that about 193,000 people have diagnosed diabetes under age 20, and more than 20% have type 11
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diabetes [25]. MN-based devices not only have the potential to provide the administration of insulin to
diabetic patients [26] but also to monitor the disease by assessing glucose [27,28], hopefully in a fully
integrated and automatic system [29,30], as represented in Figure 2B.

As previously mentioned, in light of applications among the paediatric population, MN patches
should highly control the release of specific drugs. Different MN designs and materials have
been applied to different applications, providing different drug release kinetics. Administration of
fast-acting drugs can be achieved by the use of coated MNs, in which the drug molecule is adsorbed
on the MN surface. Upon insertion, the coated drug on the outer wall will diffuse through the
skin layers. Some studies have applied polymers along with the drug molecule to be delivered in
order to protect it during skin penetration [31,32]. Alternative methods to circumvent the shear
force effect in coated microneedles have been previously proposed using pocketed MNs, grooved
MNs and cup-shaped MNs [31,33,34]. Similarly, in the field of polymeric MNs, fast-dissolving
polymers, such as polyvinylpyrrolidone and sugars, have been used along with drugs for rapid
dissolution/diffusion [35,36]. Recently, polymeric MNs were applied in the area of controlled long-term
release applications. This has been explored using polymers with low water solubility or low
degradation rates [37]. Precise control over the drug release can be obtained using triggered drug
release methods. An example was described by Lee et al., who applied an electroresistive heater
connected to MNss containing a specific drug and coated with thermosensitive polymers. In this study,
detection of high glucose levels triggered the activation of the heater. Consequently, the polymer
dissolved and the antidiabetic drug was released [29]. Alternatively, pH-triggered release has also
been explored [16]. Nanotopography on MN patches has been used as a means of increasing
transdermal delivery of high-molecular-weight drugs. The nanotopography affects the delivery via an
integrin-dependent mechanism, altering how cells interact with the MNs and increasing paracellular
permeability [38].

The development of effective MNs for paediatric applications will have a broad range of uses
in the field of disease monitoring, in which MNs can be applied to collect interstitial fluid painlessly.
The sampled interstitial fluid can subsequently be analysed by lab-on-a-chip devices or wearable
diagnostics to measure different analytes (Figure 1C). Situations such as type 1 diabetes and hepatitis B
require the frequent collection of blood/interstitial fluid samples for the quantification of glucose or
viral antigens, respectively. The application of wearable devices that can detect and monitor these
molecules can be enabled by the use of MNs. An elegant approach explores the use of polymeric
hydrogel-forming MNs that soak the interstitial fluid (Figure 2A) [39]. The fluid is subsequently
collected for the detection of glucose and cholesterol. Comparable quantification of these molecules
has been demonstrated in the interstitial fluid and blood [40].
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Figure 2. (A) Different microneedle architectures used to deliver drugs and to sample interstitial fluid.
Scanning electron microscopy micrographs of (1) cup-shaped MNs [33], (2) groove-shaped MNs [34],
(3) pocketed MNs [31] and (4) hollow MNs [41]. Fluorescence microscopy images of (5) polymer
MNs [42] and (6) fast-dissolving polymeric MNs [43]. (7) Optical coherence tomography images
of hydrogel MN following insertion into excised neonatal porcine skin [18]. (B) Schematic shows
the microneedle-based approach towards continuous monitoring and drug delivery as a potential
closed-loop device.

Looking forward, there is a potential market for MN-based closed-loop drug delivery systems.
As shown in Figure 2B, we envisage integrated closed-loop systems in which one MN patch is used to
draw the interstitial fluid and another to deliver the required drug in a minimally invasive manner.
The drawn interstitial fluid through the MN patch is driven towards a biochemical sensor to analyse a
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specific biomarker. The development of biochemical sensors has been a highly acclaimed research
area over the last two decades and a variety of biosensing strategies have been reported to detect
biomarkers from the blood, interstitial fluid, sweat, tears and so forth. [44,45]. For continuous and
controlled drug delivery, along with MNs, micropumps have gained particular attention. In our
previous work, we demonstrated the integration of a peristaltic micropump with a hollow MN array
to deliver insulin [46,47]. Although promising, these systems still need further improvements, namely,
in the miniaturisation of the drug delivery pump [48,49]. These pumps need to ensure two specific
characteristics: (1) the pump should work with a constant flow rate against the blood pressure and
during power failures, and (2) the pump should provide a closed path between the drug reservoir
and the bloodstream. In a closed-loop approach, continuous monitoring of biochemical markers and
continuous drug delivery will be achieved by integrating hollow MN arrays with biochemical sensors
and miniaturised micropumps [21]. Although solid microneedles (polymeric/soluble/coated) can
accommodate clinically relevant amounts of a specific drug, for long-term applications, devices based
on hollow MNs and micropumping systems will be required.

The field of microneedles is now crossing borders between disciplines towards fully integrated
medical devices. This is a promising way towards creating new solutions in healthcare, which we
envisage to have a huge impact on procedures for assessing and treating paediatric patients.
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