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Abstract: Oral anticoagulants are required for both treatment and prophylaxis in many different
diseases. Clinicians and patients now have a choice of oral anticoagulants, including the vitamin K
antagonists (of which warfarin is the most widely used and is used as the exemplar in this paper), and
direct oral anticoagulants (DOACs: dabigatran, apixaban, rivaroxaban, and edoxaban). This paper
explores the recent advances and controversies in oral anticoagulation. While some commentators
may favour a complete switchover to DOACs, this paper argues that warfarin still has a place in
therapy, and a stratified approach that enables the correct choice of both drug and dose would
improve both patient outcomes and affordability.

Keywords: warfarin; vitamin K antagonists; direct oral anticoagulants; dabigatran; rivaroxaban;
apixaban; edoxaban; pharmacogenomics; personalized medicine; therapeutic drug monitoring

1. Introduction

Warfarin is more than 60 years old. With the advent of direct oral anticoagulants (DOACs), some
commentators have suggested that the end for warfarin is nigh [1]. However, it may be premature to
write an obituary for warfarin, given its widespread use worldwide and the inability to use warfarin
in some patient groups, such as in children, in patients with renal impairment, and in patients with
heart valves. Furthermore, given the cost of DOACs, there may still be a place in clinical practice
for a stratified approach to anticoagulation. This article examines the history of warfarin use, and in
particular, the role of pharmacogenetics, and looking into the future, what still needs to be done to
improve the benefit–risk ratio for all oral anticoagulants.

2. Warfarin Pharmacology and Pharmacogenetics

Warfarin is a vitamin K antagonist; it inhibits vitamin K epoxide reductase complex I (VKORC1),
preventing the formation of activated vitamin K-dependent coagulation factors II, VII, IX, and X [2].
The gene VKORC1 is polymorphically expressed, which leads to variable expression and activity of the
enzyme; for example, the −1639A variant at rs9923231 leads to reduced mRNA levels [3]. Warfarin is
administered as a racemate, with the more potent enantiomer S-wafarin being metabolised by the
P450 isoform CYP2C9 [2]. CYP2C9 genetic variants show reduced activity; for example, CYP2C9*3
is associated with a 90% reduction in catalytic activity of the enzyme [4]. It is interesting to note that
the frequencies of both VKORC1 and CYP2C9 genetic polymorphisms vary with ethnicity, which has
an impact on dose requirement worldwide [5,6]. It is widely acknowledged that African patients
generally require higher doses than Caucasians, while Chinese patients require lower doses.

There is no doubt that warfarin is an effective drug for the treatment of venous thromboembolism
and for prophylaxis against strokes in patients with atrial fibrillation [7]. However, warfarin is also
associated with bleeding, estimated to be about 7.2 events per 100 patient years [8]. Indeed, warfarin
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is amongst the top three drugs responsible for adverse drug reaction related hospital admissions [9].
The major issue with warfarin is the inability to predict inter-individual variability in daily dose
requirements. Some patients require 0.5 mg per day to maintain therapeutic anticoagulation, for
example—an International Normalised Ratio (INR) between 2 and 3 in the treatment of atrial
fibrillation—while others may require 20 mg per day—a variability of more than 40-fold. We have
known for many decades that this variability is partly dependent on clinical factors, such as age,
body-mass index (BMI), drug–drug interactions, and concomitant diseases [2]. However, apart from
age, none of these clinical predictors have routinely been utilised in dosing regimens.

In order to improve the predictability of daily warfarin dose requirements, many groups
worldwide have evaluated the role of genetic and clinical factors. These studies have consistently
shown that genetic polymorphisms in CYP2C9 and VKORC1 account for a greater degree of variance
in daily dose requirement compared with clinical factors, such as age, BMI, and interactions with
drugs such as amiodarone [10,11]. Indeed, the association of warfarin dose requirement with genetic
factors is one of the most highly replicated genotype–phenotype associations. Another genetic factor
associated with the warfarin dose requirement is the CYP4F2 genetic variant at rs2108622 (V433M) [12],
the effect being due to differential vitamin K hydroxylation [13]. However, the overall effect size of
CYP4F2 is much lower than that of CYP2C9 and VKORC1, accounting for about 1% of the variability in
the warfarin dose requirement [14].

One of the most important developments in warfarin pharmacogenetics was the formation of
the International Warfarin Pharmacogenetics Consortium (IWPC) that brought together 21 research
groups from nine countries and four continents, with analysable data from about 5000 patients [15].
The IWPC developed clinical and genetic warfarin dosing algorithms. The genetic dosing algorithm
was superior to the clinical dosing algorithm, with the greatest benefit being observed in about half of
the patients who required either less than 21 mg of warfarin per week or more than 49 mg per week.

An important next step in the demonstration of the utility of genotype-guided dosing for
warfarin was to demonstrate whether the genetic algorithm was superior to either standard care
or a clinical algorithm. A number of clinical trials had already been conducted in this area with
variable designs and disparate sample sizes, with inconclusive findings [16]. Because of this, two
larger randomized controlled trials (RCTs) were undertaken, one in the United States (Clarification
of Optimal Anticoagulation through Genetics; COAG) [17] and another in the European Union (EU
Pharmacogenetics of Anticoagulant Therapy; EU-PACT) [18]. There were numerous differences in the
design of the two trials [16], with COAG comparing a clinical algorithm to a genetic algorithm, while
EU-PACT compared standard care in two European countries (the United Kingdom (UK) and Sweden)
to the genetic algorithm. Unfortunately, but perhaps not surprisingly, given the differences in trial
design, the results of the two trials were starkly different, with EU-PACT showing the superiority of
the genetic algorithm over the comparator arm [19], while in COAG there was no difference between
the test and control arms [20]. This led to confusion and criticisms of both trials and the conclusion that
pharmacogenetic dosing of warfarin was not clinically useful [21,22]. Perhaps, this is consistent with
the recent paper in Science, which highlighted that negative stories are more likely to get traction when
compared with positive news [23]. Interestingly, following the publication of the trials, it was also
suggested that dosing should be based on a clinical algorithm, rather than the standard dosing currently
used in clinical care, despite the fact that there has been no RCT that has compared a clinical algorithm
to standard of care. This is perhaps another example of genetic exceptionalism, where a lower burden
of proof is considered acceptable for non-genetic interventions when compared with genetic testing.
In retrospect, it would have been better to conduct three-armed trials, where genotype-guided dosing
was compared simultaneously with both a clinical algorithm and standard dosing.

The reasons for the different outcomes in the two trials have been widely debated and included
differences in algorithms, differences in the comparator arms, and greater ethnic heterogeneity in
COAG compared with EU-PACT [16]. The design of any algorithm is, of course, crucial, and it
must take into account ethnic heterogeneity (including the relevant ethnic-specific single nucleotide
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polymorphisms (SNPs)) and the known pharmacology of warfarin, including its long half-life. It is
also fair to state that no algorithm is perfect, because not all factors that determine warfarin dosing
have been identified [10]. The algorithms also predict extreme doses less efficiently (i.e., low or high
daily warfarin doses) [15,24]. Algorithms designed for African-American, Indian, and Chinese patients
have been developed but have not been tested in clinical trials [25–27].

More recently, the Genetics Informatics Trial (GIFT) has been published [28], conducted in
1650 randomised patients. This used a composite primary outcome measure comprising major
bleeding, INR of four or greater, venous thromboembolism, or death. The trial found that 10.8% of the
genotype-guided group met at least one of the endpoints compared with 14.7% in the clinically guided
warfarin group, a 27% improvement in favour of genotype-guided dosing. The results are consistent
with EU-PACT [19], but GIFT has the advantage of having included clinical outcomes as part of the
primary endpoint. Indeed, EU-PACT and COAG were both criticised for having used percentage time
in therapeutic range (%TTR), a surrogate measure, as the primary outcome measure [22]. Of course,
a trial that used only clinical events (thromboembolic or bleeding) as the primary outcome would
be preferable but would have required a sample size close to 20,000 patients. It is also important
to note that an improvement in %TTR greater than 10% can lead to a 20% improvement in clinical
outcomes [29].

From the EU-PACT trial data, it has been shown that genotyping prior to warfarin prescription
would be cost effective in both the UK and Sweden [30]. Data on cost-effectiveness from other
healthcare systems is awaited [31]. The 2017 Clinical Pharmacology Implementation Consortium
(CPIC) guideline on warfarin provides detailed guidance on dosing in patients with variant alleles,
including race-specific recommendations [32]. The Dutch Pharmacogenetic Working Group has also
developed guidelines for the dosing of vitamin K antagonists, and there is a high overall rate of
concordance between the guidelines produced by the Dutch Group and the CPIC [33].

3. Direct Oral Anticoagulants

Oral anticoagulants acting via the vitamin K-dependent pathway were the only choices available for
clinicians until recently. The introduction of direct acting oral anticoagulants (DOACs) has provided greater
choice for both clinicians and patients. These drugs act by inhibiting either thrombin (dabigatran) or factor
Xa (apixaban, rivaroxaban, edoxaban). Large RCTs in atrial fibrillation and venous thromboembolism
have shown that DOACs are either non-inferior or superior to warfarin, with a reduced risk of intracranial
haemorrhage but with a possibly increased risk of gastro-intestinal bleeding [34].

DOACs have been marketed on the basis that “one-dose-fits-all” and that no monitoring is
required. There has been rapid uptake of these drugs particularly in western countries, while the use
of warfarin has declined [1]. This may well herald the beginning of the end for warfarin, but I feel this
is premature for several reasons.

First, although the new DOACs have been shown to be cost-effective [35], there are concerns
about the cost outlay given the large population that needs to be treated. It has been estimated
that there are 8.8 million people with atrial fibrillation in the European Union, and this will double
to 17 million in 2060 [36]. In the UK, it has been estimated that expenditure on DOACs may top
£1 billion per year by 2020, about 5% of the overall spend on drugs in the National Health Services
(NHS) [37]. One possible method to improve affordability and ensure that all patients have access to
oral anticoagulation would be to stratify treatment according to genotypes for CYP2C9 and VKORC1.
The evidence for this comes from analyses of the warfarin arm in the edoxaban ENGAGE AF-TIMI
48 trial [38]. This showed that warfarin increased the risk of bleeding in those patients who carried
variant alleles for CYP2C9 and/or VKORC1, classified as sensitive or highly sensitive responders,
when compared with normal responders, who represented 62% of the population. A more recent
analysis of the Hokusai-venous thromboembolism trial [39] has replicated this finding, showing that
sensitive and highly sensitive responders spent more time over-anticoagulated with warfarin and had
a higher bleeding risk compared with normal responders (who represented 63% of the population).



J. Pers. Med. 2018, 8, 22 4 of 9

Thus, it may be possible to personalise the use of oral anticoagulants in the future so that patients
with the low-risk genotypes (i.e., normal responders, at least 60%) would get warfarin, while those
classified as sensitive or highly sensitive would get DOACs. This would lead to significant savings in
expenditure [37] without any compromise in clinical outcomes.

An important issue to consider for taking forward the stratification approach is whether
it is possible to implement warfarin genotyping in a clinical setting. Following the EU-PACT
trial [19], and despite the conflicting results with COAG [20], we have undertaken an implementation
study. The premise behind the study was to determine whether staff running anticoagulant clinics
(predominantly qualified nurses) could modify the current clinical pathway so that genotyping, and
subsequent genotype-guided dosing, could be incorporated. This required an improvement in the
point-of-care genotyping assay. In EU-PACT, the point-of-care genotyping platform was able to provide
results on three alleles (CYP2C9*2, CYP2C9*3, and VKORC1) in 2 h [19]. For the implementation study,
the platform was modified to provide results within 45 min. The results of the implementation
study (unpublished) were equivalent to those of the EU-PACT RCT, demonstrating that long and
well-established clinical pathways could be modified using new technologies.

Second, an unintended consequence of the “no or minimal monitoring” strategy adopted for
DOACs may be poor adherence. Our recent data suggest that adherence to DOACs was significantly
worse when compared with warfarin [37]. Although INR monitoring is disliked by both patients
and clinicians, it does act as a positive reinforcement for patients to continue taking warfarin. It is
important to note that there has also been criticism of the “one-dose-fits all” strategy for DOACs,
with some patients having been shown to be under-dosed, while others may be over-dosed [40].
Pharmacogenomic studies have identified some associations with plasma concentrations of these drugs,
but none of the genetic variants are likely to be useful in improving the clinical use of these drugs [41,42].
Instead, it has been argued that plasma therapeutic drug monitoring should be utilised [43], especially
in high-risk patients to individualise dose. High-risk groups could include patients at high risk of
bleeding, those on drugs likely to interact with DOACs, and patients with borderline renal impairment,
to name a few. Clearly, this would lead to a loss of the marketing advantage for DOACs, increase cost
and inconvenience for patients, and may thus face an uphill battle for implementation.

Third, there are some patients where DOACs are not used because of contraindications, no
marketing authorization, or unaffordability. In these situations (outlined below), warfarin remains the
only alternative.

(a) Patients with renal impairment: all the drug labels for DOACs have criteria, which either
recommend a dose reduction or absolutely contraindicate the use of the DOAC [44]. While it may
be relatively easy to avoid the use of DOACs in patients with severe forms of renal impairment, a
group that may be at particular risk are patients with incipient renal impairment, where there
may be asymptomatic and slow decline in renal function with age or an acute decline in an
elderly patient because of a concomitant urinary tract infection. This is compounded by the fact
that monitoring of renal function in patients on DOACs is poorly performed.

(b) Patients on interacting drugs: Although DOACs are less likely to be involved in drug–drug
interactions than warfarin, they are not immune from them. For patients on certain
medications—for example, itraconazole—the use of apixaban is not recommended. A recent
database study from Taiwan showed that concomitant use of drugs, such as amiodarone,
fluconazole, rifampicin, and phenytoin, increased the risk of major bleeding when compared
with the use of DOACs alone [45]. There is no simple biomarker that can be used to individualise
dosing with DOACs, unlike warfarin, where INR monitoring provides the opportunity to change
dosage to maintain the INR within a therapeutic range.

(c) Use in children: DOACs are currently not licensed for use in children, but there are paediatric
investigation plans in place [46]. Thus, for the time being, warfarin (or other vitamin K antagonists)
remain the only alternatives. There have been numerous studies in children investigating the effects of
genetic polymorphisms on warfarin dosing [47–50], but no algorithm has been tested in clinical trials.
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(d) Mechanical heart valves: DOACs are currently contraindicated in patients with mechanical heart
valves. In the RE-ALIGN trial, after enrolment of 252 patients, an increased risk of bleeding
and thrombosis was seen in patients on dabigatran, compared with warfarin, which resulted in
premature discontinuation of the trial [51].

Fourth, because of the cost of DOACs, their uptake in developing countries has been low, and
thus, warfarin (or other vitamin K antagonists) remains the main choice. Unfortunately, the genetic
and clinical factors affecting warfarin dose variation have been poorly studied in developing countries,
and, even in developed countries, in minority groups compared with Caucasian populations [6].
The frequencies of genetic variants in CYP2C9 and VKORC1 vary with ethnicity. Thus, in Chinese
patents, CYP2C9*2 is less important than in Caucasians [52]. In African-Americans, both CYP2C9*2
and CYP2C9*3 have a low prevalence, with other variant alleles (*8, *11) being more important [6].
The importance of this was highlighted by the COAG trial [20], where genotype-guided dosing
actually fared worse than clinical dosing in African-American patients. In Africa, where access
to medicines and services is limited, warfarin remains the obvious choice for oral anticoagulation.
However, dosing regimens are largely empirical and not evidence-based, which—coupled with the
lack of infrastructure—leads to poor quality of anticoagulation. For example, in South Africa, a
recent study showed that only 28% of patients achieved a therapeutic INR [53]. The importance
of achieving better anticoagulation control in developing countries is shown by a study in South
Africa, which demonstrated that haemorrhage was the fourth most common cause of hospital
admission, with warfarin accounting for 68% of the bleeds [54]. We have recently embarked on
a large programme of work in Uganda and South Africa (War-PATH: WARfarin anticoagulation in
PATients in Sub-SaHaran Africa; http://warpath.info/), the aim of which is to identify the clinical and
genetic factors determining variation in daily warfarin dose requirements and thereby, develop better
clinical and genetic dosing algorithms to improve anticoagulation quality.

4. Conclusions

It has been estimated that the global anticoagulants market will be worth close to $30 billion by
2021 (https://www.businesswire.com/news/home/20170301005087/en/Increase-Lifestyle-Diseases-
Boost-Global-Anticoagulant-Market). For both clinicians and patients, it is important to have a
choice of drugs to use for either treatment or prophylaxis, and the availability of DOACs has
certainly provided that choice. However, that does not mean that older drugs have no place in
the therapeutic armamentarium, as I have pointed out in the case of warfarin. Undoubtedly, we
can continue to improve the benefit–risk ratio of all oral anticoagulants that are available, and a
stratified approach to the choice of drug, and the precise dose of that drug (Figure 1), may be an option
that not only maximises the positive clinical outcomes but also improves affordability and access.
Whether this would be a cost-effective approach would need further study; however, it is clear that the
cost-effectiveness of DOACs is reduced or nullified when the quality of anticoagulation with warfarin
improves [55], which is likely to be the consequence of a stratified approach.

http://warpath.info/
https://www.businesswire.com/news/home/20170301005087/en/Increase-Lifestyle-Diseases-Boost-Global-Anticoagulant-Market
https://www.businesswire.com/news/home/20170301005087/en/Increase-Lifestyle-Diseases-Boost-Global-Anticoagulant-Market
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Figure 1. Clinical pathways for stratification in the use of oral anticoagulants. Use of either warfarin 
or a direct oral anticoagulant (DOAC) would require individualisation of the dose to improve time in 
therapeutic range and optimisation of anticoagulation, resulting in improved clinical outcomes. This 
would also result in improved affordability. 

Funding: The research on warfarin has been funded from a number of funding agencies, including the UK 
Department of Health, the UK Medical Research Council (MRC), the National Institute of Health Research 
(NIHR), and the EU Commission. 

Acknowledgments: The author acknowledges the support of the MRC Centre for Drug Safety Science, the NIHR 
Collaboration for Leadership in Applied Health Research and Care (CLAHRC) North West Coast, and the 
Innovation Agency and the EU FP7 Framework funding programme. 

References 

1. Sotiriou, A.; Patel, H.C.; Tyebally, S.; Raza, S.; Qudah, T.; Malik, K.; Patel, K.; Bhattacharyya, S.; Chow, A.; 
Hayward, C. Is this the beginning of the end for warfarin? EP Eur. 2017, 19, i28. 

2. Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: Current status and future challenges. 
Pharmacogenomics J. 2007, 7, 99–111. 

3. Rieder, M.J.; Reiner, A.P.; Gage, B.F.; Nickerson, D.A.; Eby, C.S.; McLeod, H.L.; Blough, D.K.; Thummel, 
K.E.; Veenstra, D.L.; Rettie, A.E. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin 
dose. N. Engl. J. Med. 2005, 352, 2285–2293. 

4. Rettie, A.E.; Wienkers, L.C.; Gonzalez, F.J.; Trager, W.F.; Korzekwa, K.R. Impaired (S)-warfarin metabolism 
catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994, 4, 39–42. 

5. Limdi, N.A.; Wadelius, M.; Cavallari, L.; Eriksson, N.; Crawford, D.C.; Lee, M.T.; Chen, C.H.; Motsinger-
Reif, A.; Sagreiya, H.; Liu, N.; et al. Warfarin pharmacogenetics: A single VKORC1 polymorphism is 
predictive of dose across 3 racial groups. Blood 2010, 115, 3827–3834. 

6. Cavallari, L.H.; Perera, M.A. The future of warfarin pharmacogenetics in under-represented minority 
groups. Future Cardiol. 2012, 8, 563–576. 

7. Aguilar, M.I.; Hart, R.; Pearce, L.A. Oral anticoagulants versus antiplatelet therapy for preventing stroke 
in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. 
Cochrane Database Syst. Rev. 2007, CD006186, doi:10.1002/14651858.CD006186.pub2. 

8. Linkins, L.A.; Choi, P.T.; Douketis, J.D. Clinical impact of bleeding in patients taking oral anticoagulant 
therapy for venous thromboembolism: A meta-analysis. Ann. Int. Med. 2003, 139, 893–900. 

Figure 1. Clinical pathways for stratification in the use of oral anticoagulants. Use of either warfarin
or a direct oral anticoagulant (DOAC) would require individualisation of the dose to improve time
in therapeutic range and optimisation of anticoagulation, resulting in improved clinical outcomes.
This would also result in improved affordability.

Funding: The research on warfarin has been funded from a number of funding agencies, including the UK
Department of Health, the UK Medical Research Council (MRC), the National Institute of Health Research (NIHR),
and the EU Commission.

Acknowledgments: The author acknowledges the support of the MRC Centre for Drug Safety Science, the
NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) North West Coast, and the
Innovation Agency and the EU FP7 Framework funding programme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sotiriou, A.; Patel, H.C.; Tyebally, S.; Raza, S.; Qudah, T.; Malik, K.; Patel, K.; Bhattacharyya, S.; Chow, A.;
Hayward, C. Is this the beginning of the end for warfarin? EP Eur. 2017, 19, i28. [CrossRef]

2. Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: Current status and future challenges.
Pharmacogenomics J. 2007, 7, 99–111. [CrossRef] [PubMed]

3. Rieder, M.J.; Reiner, A.P.; Gage, B.F.; Nickerson, D.A.; Eby, C.S.; McLeod, H.L.; Blough, D.K.; Thummel, K.E.;
Veenstra, D.L.; Rettie, A.E. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.
N. Engl. J. Med. 2005, 352, 2285–2293. [CrossRef] [PubMed]

4. Rettie, A.E.; Wienkers, L.C.; Gonzalez, F.J.; Trager, W.F.; Korzekwa, K.R. Impaired (S)-warfarin metabolism
catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994, 4, 39–42. [CrossRef] [PubMed]

5. Limdi, N.A.; Wadelius, M.; Cavallari, L.; Eriksson, N.; Crawford, D.C.; Lee, M.T.; Chen, C.H.;
Motsinger-Reif, A.; Sagreiya, H.; Liu, N.; et al. Warfarin pharmacogenetics: A single VKORC1 polymorphism
is predictive of dose across 3 racial groups. Blood 2010, 115, 3827–3834. [CrossRef] [PubMed]

6. Cavallari, L.H.; Perera, M.A. The future of warfarin pharmacogenetics in under-represented minority groups.
Future Cardiol. 2012, 8, 563–576. [CrossRef] [PubMed]

7. Aguilar, M.I.; Hart, R.; Pearce, L.A. Oral anticoagulants versus antiplatelet therapy for preventing stroke
in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks.
Cochrane Database Syst. Rev. 2007, CD006186. [CrossRef] [PubMed]

8. Linkins, L.A.; Choi, P.T.; Douketis, J.D. Clinical impact of bleeding in patients taking oral anticoagulant
therapy for venous thromboembolism: A meta-analysis. Ann. Int. Med. 2003, 139, 893–900. [CrossRef]
[PubMed]

http://dx.doi.org/10.1093/europace/eux283.055
http://dx.doi.org/10.1038/sj.tpj.6500417
http://www.ncbi.nlm.nih.gov/pubmed/16983400
http://dx.doi.org/10.1056/NEJMoa044503
http://www.ncbi.nlm.nih.gov/pubmed/15930419
http://dx.doi.org/10.1097/00008571-199402000-00005
http://www.ncbi.nlm.nih.gov/pubmed/8004131
http://dx.doi.org/10.1182/blood-2009-12-255992
http://www.ncbi.nlm.nih.gov/pubmed/20203262
http://dx.doi.org/10.2217/fca.12.31
http://www.ncbi.nlm.nih.gov/pubmed/22871196
http://dx.doi.org/10.1002/14651858.CD006186.pub2
http://www.ncbi.nlm.nih.gov/pubmed/17636831
http://dx.doi.org/10.7326/0003-4819-139-11-200312020-00007
http://www.ncbi.nlm.nih.gov/pubmed/14644891


J. Pers. Med. 2018, 8, 22 7 of 9

9. Pirmohamed, M.; James, S.; Meakin, S.; Green, C.; Scott, A.K.; Walley, T.J.; Farrar, K.; Park, B.K.;
Breckenridge, A.M. Adverse drug reactions as cause of admission to hospital: Prospective analysis of
18,820 patients. BMJ 2004, 329, 15–19. [CrossRef] [PubMed]

10. Bourgeois, S.; Jorgensen, A.; Zhang, E.J.; Hanson, A.; Gillman, M.S.; Bumpstead, S.; Toh, C.H.; Williamson, P.;
Daly, A.K.; Kamali, F.; et al. A multi-factorial analysis of response to warfarin in a UK prospective cohort.
Genome Med. 2016, 8, 2. [CrossRef] [PubMed]

11. Wadelius, M.; Chen, L.Y.; Lindh, J.D.; Eriksson, N.; Ghori, M.J.; Bumpstead, S.; Holm, L.; McGinnis, R.;
Rane, A.; Deloukas, P. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood
2009, 113, 784–792. [CrossRef] [PubMed]

12. Caldwell, M.D.; Awad, T.; Johnson, J.A.; Gage, B.F.; Falkowski, M.; Gardina, P.; Hubbard, J.; Turpaz, Y.;
Langaee, T.Y.; Eby, C.; et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008, 111, 4106–4112.
[CrossRef] [PubMed]

13. Edson, K.Z.; Prasad, B.; Unadkat, J.D.; Suhara, Y.; Okano, T.; Guengerich, F.P.; Rettie, A.E.
Cytochrome P450-dependent catabolism of vitamin K: ω-hydroxylation catalyzed by human CYP4F2
and CYP4F11. Biochemistry 2013, 52, 8276–8285. [CrossRef] [PubMed]

14. Danese, E.; Montagnana, M.; Johnson, J.A.; Rettie, A.E.; Zambon, C.F.; Lubitz, S.A.; Suarez-Kurtz, G.;
Cavallari, L.H.; Zhao, L.; Huang, M.; et al. Impact of the CYP4F2 p.V433m polymorphism on coumarin
dose requirement: Systematic review and meta-analysis. Clin. Pharmacol. Ther. 2012, 92, 746–756. [CrossRef]
[PubMed]

15. International Warfarin Pharmacogenetics Consortium; Klein, T.E.; Altman, R.B.; Eriksson, N.; Gage, B.F.;
Kimmel, S.E.; Lee, M.T.; Limdi, N.A.; Page, D.; Roden, D.M.; et al. Estimation of the warfarin dose with
clinical and pharmacogenetic data. N. Engl. J. Med. 2009, 360, 753–764. [PubMed]

16. Pirmohamed, M.; Kamali, F.; Daly, A.K.; Wadelius, M. Oral anticoagulation: A critique of recent advances
and controversies. Trends Pharmacol. Sci. 2015, 36, 153–163. [CrossRef] [PubMed]

17. Kimmel, S.E.; French, B.; Anderson, J.L.; Gage, B.F.; Johnson, J.A.; Rosenberg, Y.D.; Geller, N.L.; Kasner, S.E.;
Eby, C.S.; Joo, J.; et al. Rationale and design of the clarification of optimal anticoagulation through genetics
trial. Am. Heart J. 2013, 166, 435–441. [CrossRef] [PubMed]

18. Van Schie, R.M.; Wadelius, M.I.; Kamali, F.; Daly, A.K.; Manolopoulos, V.G.; de Boer, A.; Barallon, R.;
Verhoef, T.I.; Kirchheiner, J.; Haschke-Becher, E.; et al. Genotype-guided dosing of coumarin derivatives:
The European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 2009,
10, 1687–1695. [CrossRef] [PubMed]

19. Pirmohamed, M.; Burnside, G.; Eriksson, N.; Jorgensen, A.L.; Toh, C.H.; Nicholson, T.; Kesteven, P.;
Christersson, C.; Wahlstrom, B.; Stafberg, C.; et al. A randomized trial of genotype-guided dosing of
warfarin. N. Engl. J. Med. 2013, 369, 2294–2303. [CrossRef] [PubMed]

20. Kimmel, S.E.; French, B.; Kasner, S.E.; Johnson, J.A.; Anderson, J.L.; Gage, B.F.; Rosenberg, Y.D.; Eby, C.S.;
Madigan, R.A.; McBane, R.B.; et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing.
N. Engl. J. Med. 2013, 369, 2283–2293. [CrossRef] [PubMed]

21. Zineh, I.; Pacanowski, M.; Woodcock, J. Pharmacogenetics and coumarin dosing—Recalibrating expectations.
N. Engl. J. Med. 2013, 369, 2273–2275. [CrossRef] [PubMed]

22. Furie, B. Do pharmacogenetics have a role in the dosing of vitamin K antagonists? N. Engl. J. Med. 2013, 369,
2345–2346. [CrossRef] [PubMed]

23. Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151.
[CrossRef] [PubMed]

24. Saffian, S.; Duffull, S.; Wright, D. Warfarin dosing algorithms underpredict dose requirements in patients
requiring ≥7 mg daily: A systematic review and meta-analysis. Clin. Pharmacol. Ther. 2017, 102, 297–304.
[CrossRef] [PubMed]

25. Wei, M.; Ye, F.; Xie, D.; Zhu, Y.; Zhu, J.; Tao, Y.; Yu, F. A new algorithm to predict warfarin dose from
polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: Derivation in Han Chinese patients
with non valvular atrial fibrillation. Thromb. Haemost. 2012, 107, 1083–1091. [CrossRef] [PubMed]

26. Gaikwad, T.; Ghosh, K.; Avery, P.; Kamali, F.; Shetty, S. Warfarin dose model for the prediction of stable
maintenance dose in indian patients. Clin. Appl. Thromb./Hemost. 2018, 24, 353–359. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/bmj.329.7456.15
http://www.ncbi.nlm.nih.gov/pubmed/15231615
http://dx.doi.org/10.1186/s13073-015-0255-y
http://www.ncbi.nlm.nih.gov/pubmed/26739746
http://dx.doi.org/10.1182/blood-2008-04-149070
http://www.ncbi.nlm.nih.gov/pubmed/18574025
http://dx.doi.org/10.1182/blood-2007-11-122010
http://www.ncbi.nlm.nih.gov/pubmed/18250228
http://dx.doi.org/10.1021/bi401208m
http://www.ncbi.nlm.nih.gov/pubmed/24138531
http://dx.doi.org/10.1038/clpt.2012.184
http://www.ncbi.nlm.nih.gov/pubmed/23132553
http://www.ncbi.nlm.nih.gov/pubmed/19228618
http://dx.doi.org/10.1016/j.tips.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25698605
http://dx.doi.org/10.1016/j.ahj.2013.04.009
http://www.ncbi.nlm.nih.gov/pubmed/24016491
http://dx.doi.org/10.2217/pgs.09.125
http://www.ncbi.nlm.nih.gov/pubmed/19842940
http://dx.doi.org/10.1056/NEJMoa1311386
http://www.ncbi.nlm.nih.gov/pubmed/24251363
http://dx.doi.org/10.1056/NEJMoa1310669
http://www.ncbi.nlm.nih.gov/pubmed/24251361
http://dx.doi.org/10.1056/NEJMp1314529
http://www.ncbi.nlm.nih.gov/pubmed/24328463
http://dx.doi.org/10.1056/NEJMe1313682
http://www.ncbi.nlm.nih.gov/pubmed/24251364
http://dx.doi.org/10.1126/science.aap9559
http://www.ncbi.nlm.nih.gov/pubmed/29590045
http://dx.doi.org/10.1002/cpt.649
http://www.ncbi.nlm.nih.gov/pubmed/28160278
http://dx.doi.org/10.1160/TH11-12-0848
http://www.ncbi.nlm.nih.gov/pubmed/22534826
http://dx.doi.org/10.1177/1076029616683046
http://www.ncbi.nlm.nih.gov/pubmed/28049362


J. Pers. Med. 2018, 8, 22 8 of 9

27. Kubo, K.; Ohara, M.; Tachikawa, M.; Cavallari, L.H.; Lee, M.T.M.; Wen, M.S.; Scordo, M.G.; Nutescu, E.A.;
Perera, M.A.; Miyajima, A.; et al. Population differences in s-warfarin pharmacokinetics among African
Americans, Asians and Whites: Their influence on pharmacogenetic dosing algorithms. Pharmacogenomics J.
2016, 17, 494. [CrossRef] [PubMed]

28. Gage, B.F.; Bass, A.R.; Lin, H.; Woller, S.C.; Stevens, S.M.; Al-Hammadi, N.; Li, J.; Rodriguez, T., Jr.; Miller, J.P.;
McMillin, G.A.; et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation
control among patients undergoing hip or knee arthroplasty: The gift randomized clinical trial. JAMA 2017,
318, 1115–1124. [CrossRef] [PubMed]

29. Van Spall, H.G.C.; Wallentin, L.; Yusuf, S.; Eikelboom, J.W.; Nieuwlaat, R.; Yang, S.; Kabali, C.; Reilly, P.A.;
Ezekowitz, M.D.; Connolly, S.J. Variation in warfarin dose adjustment practice is responsible for differences
in the quality of anticoagulation control between centers and countries. An analysis of patients receiving
warfarin in the randomized evaluation of long-term anticoagulation therapy (RE-LY) trial. Circulation 2012,
126, 2309–2316. [PubMed]

30. Verhoef, T.I.; Redekop, W.K.; Langenskiold, S.; Kamali, F.; Wadelius, M.; Burnside, G.; Maitland-van der Zee, A.H.;
Hughes, D.A.; Pirmohamed, M. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United
Kingdom and Sweden. Pharmacogenomics J. 2016, 16, 478–484. [CrossRef] [PubMed]

31. Plumpton, C.O.; Roberts, D.; Pirmohamed, M.; Hughes, D.A. A systematic review of economic evaluations
of pharmacogenetic testing for prevention of adverse drug reactions. PharmacoEconomics 2016, 34, 771–793.
[CrossRef] [PubMed]

32. Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.;
Kimmel, S.E.; Perera, M.A.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline
for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther. 2017, 102, 397–404.
[CrossRef] [PubMed]

33. Bank, P.C.D.; Caudle, K.E.; Swen, J.J.; Gammal, R.S.; Whirl-Carrillo, M.; Klein, T.E.; Relling, M.V.;
Guchelaar, H.J. Comparison of the guidelines of the clinical pharmacogenetics implementation consortium
and the dutch pharmacogenetics working group. Clin. Pharmacol. Ther. 2018, 103, 599–618. [CrossRef]
[PubMed]

34. Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.;
Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new Oral
Anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials.
Lancet 2014, 383, 955–962. [CrossRef]

35. Lopez-Lopez, J.A.; Sterne, J.A.C.; Thom, H.H.Z.; Higgins, J.P.T.; Hingorani, A.D.; Okoli, G.N.; Davies, P.A.;
Bodalia, P.N.; Bryden, P.A.; Welton, N.J.; et al. Oral anticoagulants for prevention of stroke in atrial fibrillation:
Systematic review, network meta-analysis, and cost effectiveness analysis. BMJ 2017, 359, j5058. [CrossRef]
[PubMed]

36. Barra, S.; Fynn, S. Untreated atrial fibrillation in the United Kingdom: Understanding the barriers and
treatment options. J. Saudi Heart Assoc. 2015, 27, 31–43. [CrossRef] [PubMed]

37. Burn, J.; Pirmohamed, M. Direct oral anticoagulants versus warfarin: Is new always better than the old?
Open Heart 2018, 5, e000712. [CrossRef] [PubMed]

38. Mega, J.L.; Walker, J.R.; Ruff, C.T.; Vandell, A.G.; Nordio, F.; Deenadayalu, N.; Murphy, S.A.; Lee, J.;
Mercuri, M.F.; Giugliano, R.P.; et al. Genetics and the clinical response to warfarin and edoxaban: Findings
from the randomised, double-blind engage Af-Timi 48 trial. Lancet 2015, 385, 2280–2287. [CrossRef]

39. Vandell, A.G.; Walker, J.; Brown, K.S.; Zhang, G.; Lin, M.; Grosso, M.A.; Mercuri, M.F. Genetics and clinical
response to warfarin and edoxaban in patients with venous thromboembolism. Heart 2017, 103, 1800.
[CrossRef] [PubMed]

40. Gulilat, M.; Tang, A.; Gryn, S.E.; Leong-Sit, P.; Skanes, A.C.; Alfonsi, J.E.; Dresser, G.K.; Henderson, S.L.;
Rose, R.V.; Lizotte, D.J.; et al. Interpatient variation in rivaroxaban and apixaban plasma concentrations in
routine care. Can. J. Cardiol. 2017, 33, 1036–1043. [CrossRef] [PubMed]

41. Asic, A.; Marjanovic, D.; Mirat, J.; Primorac, D. Pharmacogenetics of novel oral anticoagulants: A review of
identified gene variants & future perspectives. Per. Med. 2018, 15, 209–221. [PubMed]

42. Tseng, A.S.; Patel, R.D.; Quist, H.E.; Kekic, A.; Maddux, J.T.; Grilli, C.B.; Shamoun, F.E. Clinical review of
the pharmacogenomics of direct oral anticoagulants. Cardiovasc. Drugs Ther. 2018, 32, 121–126. [CrossRef]
[PubMed]

http://dx.doi.org/10.1038/tpj.2016.57
http://www.ncbi.nlm.nih.gov/pubmed/27503578
http://dx.doi.org/10.1001/jama.2017.11469
http://www.ncbi.nlm.nih.gov/pubmed/28973620
http://www.ncbi.nlm.nih.gov/pubmed/23027801
http://dx.doi.org/10.1038/tpj.2016.41
http://www.ncbi.nlm.nih.gov/pubmed/27272045
http://dx.doi.org/10.1007/s40273-016-0397-9
http://www.ncbi.nlm.nih.gov/pubmed/26984520
http://dx.doi.org/10.1002/cpt.668
http://www.ncbi.nlm.nih.gov/pubmed/28198005
http://dx.doi.org/10.1002/cpt.762
http://www.ncbi.nlm.nih.gov/pubmed/28994452
http://dx.doi.org/10.1016/S0140-6736(13)62343-0
http://dx.doi.org/10.1136/bmj.j5058
http://www.ncbi.nlm.nih.gov/pubmed/29183961
http://dx.doi.org/10.1016/j.jsha.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25544820
http://dx.doi.org/10.1136/openhrt-2017-000712
http://www.ncbi.nlm.nih.gov/pubmed/29531758
http://dx.doi.org/10.1016/S0140-6736(14)61994-2
http://dx.doi.org/10.1136/heartjnl-2016-310901
http://www.ncbi.nlm.nih.gov/pubmed/28689179
http://dx.doi.org/10.1016/j.cjca.2017.04.008
http://www.ncbi.nlm.nih.gov/pubmed/28754389
http://www.ncbi.nlm.nih.gov/pubmed/29767545
http://dx.doi.org/10.1007/s10557-018-6774-1
http://www.ncbi.nlm.nih.gov/pubmed/29435777


J. Pers. Med. 2018, 8, 22 9 of 9

43. Powell, J. Are new oral anticoagulant dosing recommendations optimal for all patients? JAMA 2015, 313,
1013–1014. [CrossRef] [PubMed]

44. Lutz, J.; Jurk, K.; Schinzel, H. Direct oral anticoagulants in patients with chronic kidney disease: Patient
selection and special considerations. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 135–143. [CrossRef] [PubMed]

45. Chang, S.H.; Chou, I.J.; Yeh, Y.H.; Chiou, M.J.; Wen, M.S.; Kuo, C.T.; See, L.C.; Kuo, C.F. Association between
use of non-vitamin K oral anticoagulants with and without concurrent medications and risk of major
bleeding in nonvalvular atrial fibrillation. JAMA 2017, 318, 1250–1259. [CrossRef] [PubMed]

46. Newall, F.; Branchford, B.; Male, C. Anticoagulant prophylaxis and therapy in children: Current challenges
and emerging issues. J. Thromb. Haemost. 2018, 16, 196–208. [CrossRef] [PubMed]

47. Biss, T.; Hamberg, A.K.; Avery, P.; Wadelius, M.; Kamali, F. Warfarin dose prediction in children using
pharmacogenetics information. Br. J. Haematol. 2012, 159, 106–109. [CrossRef] [PubMed]

48. Vear, S.I.; Stein, C.M.; Ho, R.H. Warfarin pharmacogenomics in children. Pediatric Blood Cancer 2013, 60,
1402–1407. [CrossRef] [PubMed]

49. Hamberg, A.-K.; Wadelius, M. Pharmacogenetics-based warfarin dosing in children. Pharmacogenomics 2014,
15, 361–374. [CrossRef] [PubMed]

50. Hawcutt, D.B.; Ghani, A.A.; Sutton, L.; Jorgensen, A.; Zhang, E.; Murray, M.; Michael, H.; Peart, I.;
Smyth, R.L.; Pirmohamed, M. Pharmacogenetics of warfarin in a paediatric population: Time in therapeutic
range, initial and stable dosing and adverse effects. Pharmacogenomics J. 2014, 14, 542–548. [CrossRef]
[PubMed]

51. Eikelboom, J.W.; Connolly, S.J.; Brueckmann, M.; Granger, C.B.; Kappetein, A.P.; Mack, M.J.; Blatchford, J.;
Devenny, K.; Friedman, J.; Guiver, K.; et al. Dabigatran versus warfarin in patients with mechanical heart
valves. N. Engl. J. Med. 2013, 369, 1206–1214. [CrossRef] [PubMed]

52. Lee, M.T.; Klein, T.E. Pharmacogenetics of warfarin: Challenges and opportunities. J. Hum. Genet. 2013, 58,
334–338. [CrossRef] [PubMed]

53. Zuhlke, L.; Engel, M.E.; Karthikeyan, G.; Rangarajan, S.; Mackie, P.; Cupido, B.; Mauff, K.; Islam, S.;
Joachim, A.; Daniels, R.; et al. Characteristics, complications, and gaps in evidence-based interventions in
rheumatic heart disease: The global rheumatic heart disease registry (the remedy study). Eur. Heart J. 2015,
36, 1115–1122. [CrossRef] [PubMed]

54. Mouton, J.P.; Njuguna, C.; Kramer, N.; Stewart, A.; Mehta, U.; Blockman, M.; Fortuin-De Smidt, M.;
De Waal, R.; Parrish, A.G.; Wilson, D.P.; et al. Adverse drug reactions causing admission to medical wards:
A cross-sectional survey at 4 hospitals in South Africa. Medicine 2016, 95, e3437. [CrossRef] [PubMed]

55. Pink, J.; Lane, S.; Pirmohamed, M.; Hughes, D.A. Dabigatran etexilate versus warfarin in management of
non-valvular atrial fibrillation in UK context: Quantitative benefit-harm and economic analyses. BMJ 2011,
343, d6333. [CrossRef] [PubMed]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1001/jama.2015.59
http://www.ncbi.nlm.nih.gov/pubmed/25756434
http://dx.doi.org/10.2147/IJNRD.S105771
http://www.ncbi.nlm.nih.gov/pubmed/28652799
http://dx.doi.org/10.1001/jama.2017.13883
http://www.ncbi.nlm.nih.gov/pubmed/28973247
http://dx.doi.org/10.1111/jth.13913
http://www.ncbi.nlm.nih.gov/pubmed/29316202
http://dx.doi.org/10.1111/j.1365-2141.2012.09230.x
http://www.ncbi.nlm.nih.gov/pubmed/22804567
http://dx.doi.org/10.1002/pbc.24592
http://www.ncbi.nlm.nih.gov/pubmed/23682017
http://dx.doi.org/10.2217/pgs.14.8
http://www.ncbi.nlm.nih.gov/pubmed/24533715
http://dx.doi.org/10.1038/tpj.2014.31
http://www.ncbi.nlm.nih.gov/pubmed/25001883
http://dx.doi.org/10.1056/NEJMoa1300615
http://www.ncbi.nlm.nih.gov/pubmed/23991661
http://dx.doi.org/10.1038/jhg.2013.40
http://www.ncbi.nlm.nih.gov/pubmed/23657428
http://dx.doi.org/10.1093/eurheartj/ehu449
http://www.ncbi.nlm.nih.gov/pubmed/25425448
http://dx.doi.org/10.1097/MD.0000000000003437
http://www.ncbi.nlm.nih.gov/pubmed/27175644
http://dx.doi.org/10.1136/bmj.d6333
http://www.ncbi.nlm.nih.gov/pubmed/22042753
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Warfarin Pharmacology and Pharmacogenetics 
	Direct Oral Anticoagulants 
	Conclusions 
	References

