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Abstract: For the personalization of polygenic/omics-based health care, the purpose of this study was
to examine the gene–environment interactions and predictors of colorectal cancer (CRC) by including
five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a
total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four
major racial ethnic groups in southern California (White, Asian, Hispanics, and Black). We used three
phases of data analytics, including exploratory, family-based analyses adjusting for the dependence
within the family for sharing genetic heritage, the ensemble method, and generalized regression
models for predictive modeling with a machine learning validation procedure to validate the results
for enhanced prediction and reproducibility. The results revealed that despite the family members
sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than
the family controls (p < 0.05), on MTHFR C677T, MTR A2756G, MTRR A66G, and DHFR 19 bp
except MTHFR A1298C. Four racial groups presented different polymorphism rates for four genes
(all p < 0.05) except MTHFR A1298C. Following the ensemble method, the most influential factors
were identified, and the best predictive models were generated by using the generalized regression
models, with Akaike’s information criterion and leave-one-out cross validation methods. Body mass
index (BMI) and gender were consistent predictors of CRC for both models when individual genes
versus total polymorphism counts were used, and alcohol use was interactive with BMI status. Body
mass index status was also interactive with both gender and MTHFR C677T gene polymorphism,
and the exposure to environmental pollutants was an additional predictor. These results point to the
important roles of environmental and modifiable factors in relation to gene–environment interactions
in the prevention of CRC.

Keywords: gene–environment interaction; colorectal cancer; predictor; multi-ethnic groups

1. Introduction

Colorectal cancer (CRC) is a cancer that is preventable by modifying environmental and lifestyle
interventions for human ecological development [1–6]. Well-defined environmental interventions may
improve cancer treatment effects, prevent cancer progression and increase survival through epigenetic
mechanisms with gene environment interactions [1,4,5]. Approximately 70% of CRC is related to
environmental and lifestyle factors, while about 30% of CRC risk is inheritable with 5% being highly
aggressive in cancer progression for metastatic penetrance [7–9]. Hence, the most common risks
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for CRC are preventable by cultivating healthy lifestyles and environments to help keep the human
epigenetic environment free from cancers.

For the prevention of various chronic health conditions, the most published genes related to
the risk for various racial–ethnic groups is the methylenetetrahydrofolate reductase (MTHFR) gene,
identified through the genome application framework [10–14]. As the MTHFR enzyme is encoded
by the MTHFR gene for homocysteine remethylation to methionine, mutations in the MTHFR gene
are associated with MTHFR enzyme deficiency in humans [15]. Studies have emerged to document
the effects of low folate levels and increased CRC risk [12–14]. The mechanism of low folate levels
and CRC as well as a plethora of major cardiovascular and neurodevelopmental diseases have been
associated with the toxic effect of hyperhomocysteinmia [10,12–14]. These toxic effects are mediated
through one-carbon metabolism enzyme pathways, which are critical to basic biological processes
including deoxyribonucleic acid (DNA) and protein methylation, and DNA replication and mutations.
MTHFR gene is listed as a prototype gene for the application of prevention studies for CRC by the
experts at the National Human Genome Research Institute (NHGRI) [16,17]. We examined two loci
of MTHFR gene polymorphisms, C677T (rs1801133) and A1298C (rs1801131), both are associated
with MTHFR enzymatic deficiency resulting in increased homocysteine concentrations [18,19].
The best-characterized MTHFR gene polymorphism is a common missense/loss of function mutation
of 677C→T, resulting in a thermolabile enzyme variant that has a reduced catalytic activity of 35%
for 677 CT and 70% for 677 TT variants, and of nucleotide 1298A→C, resulting in 15% decreased
MTHFR activity for 1298 AC and 30% for 1298 CC variants [20,21]. We also investigated three
additional genes in the folate-methylation pathways: dihydrofolate reductase (DHFR) 19 base pair
(19bp) (rs70991108) which converts folic acid into methylenetetrahydrofolate (MTHF) as usable folate
form [22,23], methionine synthase (MTR A2756G, rs1805087) in the methylation cycle, and methionine
synthase reductase (MTRR A66G, rs1801394) which converts/recycles homocysteine back to usable
MTR for the methylation cycle [24–27]. Together, these five genes play critical roles in the methylation
pathways for biological processes in sustaining human health, and polymorphism mutations of these
genes would lead to missense and lost functions for the methylation process. Sufficient nutrients related
to these genes include folate (vitamin B9) and vitamin B12, as methyl donors, play an integral role in
the phenotypic expression of MTHFR and related gene mutations in the methylation pathways [18–21].

Healthy lifestyles and living environments have a major effect on the development of CRC,
inducing gene expression changes in the key epigenetics regulatory pathways and affect metabolic
processes in colon mucosa [7,10,24]. Lifestyle may play a mediating role with ages in the lifespan
for the development of CRC, based on studies that involved the examination of family members
developing hereditary CRC [7–9]. Thus, studies of gene–environment interactions in families are
significant in providing potential insights for developing prevention strategies affecting cancer
prevention. Additionally, recent studies including meta-predictions that examined gene–environment
interactions consistently presented that increased air pollution is associated with increased gene
polymorphisms across various disease conditions, especially for MTHFR C677T polymorphisms and
genes in the methylation pathways [28–35]. Therefore, the purpose of this study was to examine
the key gene–environmental factors affecting the risk associations with CRC, and the interactions
among these factors affecting the risks of CRC. In this study, we used three phases of data analytics,
including data visualization and identification, data reduction, and model building to validate the
predictive models. These analytics included the ensemble method [36–39], as well as data exploration
and generalized regression models for predictive modeling to cross-validate the results [40–43].

2. Results

We used three phases of data analytics, including exploratory family-based analyses adjusting for
dependence within the family for sharing genetic heritage [44]. In the first stage of data visualization
and understanding, we used bootstrap forest, also known as bagging (i.e. bootstrap aggregating),
which is one of the most popular ensemble methods [37–40]. The ensemble methods are based
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on the logic of resampling, which is a well-known remedy for small-sample studies. For example,
while developing the bootstrapping method in 1983, Diaconis and Efron had only 15 observations [45].
In resampling, the sample is treated as a virtual population and then different subsets are randomly
drawn from the sample for multiple analyses. Bias can be observed and corrected by such repeated
analyses of random subsets [46]. In the second stage, our strategy was to identify the most influential
predictors within three categories of genetic factors, demographic/environmental factors, and lifestyle
factors for dimension reduction. We also used generalized regression models for predictive modeling
with machine learning validation procedures [47], including significant variables and variables with
significant interactions identified through the data visualization of bi-variate interaction profilers,
to validate the results for enhanced prediction and reproducibility.

2.1. Characteristics of Study Participants

We recruited a total of 54 families, 108 participants, 54 CRC cases and 54 matched family controls.
We attempted to match the groups on various demographic factors for this family-based study.
The family control group had a younger age because many of the available family members were
the offspring of the cancer patients. Table 1 presents the comparisons of key demographic [48],
lifestyle health metrics [49,50], and environmental factors [51,52] between the two groups. Parameters
that were significantly different between the control and cancer groups included age, gender, and
exposure to pollutants (all p < 0.05), adjusted for associated blood-related family members [44]. As this
was a proof-of-concept study, additional adjustment of p-values for multiple testing was not used for
the exploratory analyses of related factors.

Other noteworthy factors of importance included sleepiness during day time; cancer patients
reported an average of 0.4 more sleepy days than the family controls. Physical inactivity was associated
with an elevated risk of cancer (an average of 11 min less active per week in cancer patients than the
control group). However, most people were sedentary, only two (3.7%) of the control group and one
(1.9%) of the cancer group participants met the recommended 150 minutes or longer physical activity
in this study. Additionally, using alcohol was associated with a higher risk of cancer (14.9% more use
in the cancer than the control group).

These demographic/lifestyle/environmental factors were compared across the racial–ethnic
subgroups (Table 2). The results showed that the Hispanic and the Black samples had higher body
mass index (BMI) with greater than 50% of the Hispanic and the Black samples being obese than the
White (29.4%) and the Asian (2.4%) samples (p < 0.0001). Additionally, there were more Whites than
the other three racial groups who drank alcohol (p = 0.0001).

Between the two groups, the total gene polymorphism rates of the five chosen genes in the folate
methylation pathways ranged from zero to six, with a possible maximum score of 10 if each of the five
genes had homozygous polymorphisms. MTHFR enzyme deficiency was calculated by combining
the loss of enzyme functions from MTHFR C677T (loss of 35% for each of the two T polymorphic
alleles) and MTHFR A1298C (a loss of 15% for each of the two C polymorphic alleles), a composite
score of both MTHFR C677T and MTHFR A1298C polymorphisms [15]. To decrease the degrees of
freedom and increase the power in the statistical testing, the total polymorphism score was recoded
into two groups using the median split between <4 and ≥4. Increased polymorphism of the five genes
combined was associated with an increased risk of CRC (p < 0.05), while no significant difference
between the control and cancer groups was noted for each gene alone and the composite score on the
MTHFR enzyme deficiency (Table 3). There was a general trend that the cancer group had increased
polymorphisms and lesser percentage of wild type alleles for all genes including MTHFR C677T,
MTR A2756G, MTRR A66G, and DHFR 19bp, except for MTHFR A1298C, where the control group
had increased polymorphisms and lower wild type alleles compared to the CRC group, which had
decreased polymorphisms and higher wild type alleles.
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Table 1. Comparison of demographic/environmental factors between family control and cancer groups.

Factors Control
(n = 54)

Cancer
(n = 54) p-Value

Gender Male
Female

14 (25.9%)
40 (74.1%)

25 (46.3%)
29 (53.7%) 0.0275

Marital Status Married 33 (61.1%) 35 (64.8%) 0.1739

Health Status Good/Excellent 40 (74.1%) 39 (72.2%) 0.6878

Age Years (mean ± SD)
(range)

47.04 ± 17.16
(18–80)

60.98 ± 10.86
(37– 79) <0.0001

Body Mass Index

Lean (<20)
Normal (20–25)

Overweight (25.1–29.9)
Obese (>30)
mean ± SD

(range)

2 (3.7%)
22 (40.7%)
18 (33.3%)
12 (22.2%)
27.8 ± 7.2
(17.2–49.1)

2 (3.7%)
18 (33.3%)
18 (33.3%)
16 (29.6%)
27.4 ± 5.9
(19.0–54.0)

0.8082

Vegetable Intake/Day ≥3 servings 15 (27.8%) 12 (22.2%) 0.6779

Fruit Intake/Day ≥2 servings 27 (50.0%) 24 (44.4%) 0.7345

Whole Grain Intake/Day ≥3 servings 8 (14.8%) 6 (11.1%) 0.7821

Liquid Intake/Day
≥8 cups

mean ± SD
(range)

16 (29.6%)
5.7 ± 1.6

(4–8)

15 (27.8%)
5.6 ± 1.6

(4–8)
0.9645

Sleepy Days/Week
0 days

mean ± SD
(range)

10 (19.6%)
2.8 ± 2.4

(0–7)

7 (13.0%)
3.2 ± 2.3

(0–7)
0.7355

Physical Activity
Minutes mean ± SD

(range)
≥150 minutes per week

48.1 ± 53.9
(0–360)
2 (3.7%)

37.4 ± 41.8
(0–270)
1 (1.9%)

0.2515

Tobacco Use Yes 5 (9.3%) 4 (7.4%) 0.7277

Alcohol Use Yes 24 (44.4%) 32 (59.3%) 0.1478

Stress (0–10)
<5

mean ± SD
(range)

32 (59.3%)
4 ± 2.8
(0–10)

31 (57.4%)
4.1 ± 3.0

(0–10)
0.6671

Nervous or Anxious Not at all 26 (48.1%) 25 (46.3%) 0.9971

Depressed Not at all 36 (66.7%) 34 (63.0%) 0.3581

Cognitive Capacity Good/Excellent 46 (85.2%) 45 (83.3%) 0.7418

Functional Capacity Good/Excellent 49 (90.7%) 45 (83.3%) 0.7027

Role Functions Good/Excellent 49 (90.7%) 44 (81.5%) 0.4913

Spiritual Support Good/Excellent 39 (72.2%) 45 (83.3%) 0.2074

Convenience to Healthcare Good/Excellent 50 (92.6%) 52 (96.3%) 0.2293

Health Insurance Coverage Good/Excellent 44 (81.5%) 47 (87.0%) 0.1330

Air Quality in Community Good/Excellent 34 (63.0%) 29 (53.7%) 0.7790

Air Quality at Home Good/Excellent 12 (22.2%) 13 (24.1%) 0.6859

Tobacco Use by Family Members Yes 5 (9.3%) 6 (11.1%) 0.7005

Exposure to Pollutants Yes 5 (9.3%) 14 (25.9%) 0.0202

Race

White
Asian

Hispanic
African

16 (29.6%)
23 (42.6%)
11 (20.4%)
4 (7.4%)

18 (33.3%)
19 (35.2%)
12 (22.2%)
5 (9.3%)

0.8842

The statistically significant values have been highlighted in red. SD: Standard deviation.
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Table 2. Comparison of demographic, lifestyle, and environmental factors across racial groups.

Factors White
(n = 34)

Asian
(n = 42)

Hispanic
(n = 23)

African
(n = 9) p-Value

Gender Male
Female

15 (44.1%)
19 (55.9%)

13 (31.0%)
29 (69.0%)

8 (34.8%)
15 (65.2%)

3 (33.3%)
6 (66.7%) 0.6876

Marital Status Married 24 (70.6%) 31 (73.8%) 9 (39.1%) 4 (44.4%) 0.0658

Health Status Good/Excellent 27 (79.4%) 30 (71.4%) 16 (69.6%) 6 (66.7%) 0.3674

Age Years (mean ± SD) (range) 57.53 ± 2.73
(21–80)

53.55 ± 2.45
(19–79)

49.78 ± 3.31
(18–75)

53.67 ± 5.30
(19–77) 0.3478

Body Mass Index

Lean (< 20)
Normal (20–25)

Overweight (25.1–29.9)
Obese (> 30)
mean ± SD

(range)

1 (2.9%)
8 (23.5%)

15 (44.1%)
10 (29.4%)
28.7 ± 6.5
(19–50.7)

3 (7.1%)
27 (64.3%)
11 (26.2%)
1 (2.4%)

23.8 ± 2.9
(17.2–30)

0 (0%)
4 (17.4%)
7 (30.4%)

12 (52.2%)
30.8 ± 6.9
(20.6–46)

0 (0%)
1 (11.1%)
3 (33.3%)
5 (55.6%)
32.7 ± 9.3
(24.2–49.1)

<0.0001

Vegetable Intake/Day ≥3 servings 11 (32.4%) 13 (31.0%) 2 (8.7%) 1 (11.1%) 0.1414

Fruit Intake/Day ≥2 servings 15 (44.1%) 22 (52.4%) 10 (43.5%) 4 (44.4%) 0.3406

Whole Grain
Intake/Day ≥3 servings 7 (20.6%) 4 (9.5%) 2 (8.7%) 1 (11.1%) 0.3985

Liquid Intake/Day ≥8 cups 10 (29.4%) 12 (28.6%) 7 (30.4%) 2 (22.2%) 0.4805

Sleepy Days/Week 0 days 7 (20.6%) 7 (16.7%) 2 (8.7%) 1 (11.1%) 0.8448

Physical
Activity/Week

mean ± SD
(range)

≥150 minutes

39.3±35.2
(0–180)
1 (2.9%)

43.9±54.5
(0–360)
1 (2.4%)

54.1±59.2
(0–270)
1 (4.3%)

21.7±17.7
(0–50)
0 (0%)

0.1223

Tobacco Use Yes 1 (2.9%) 4 (9.5%) 3 (13.0%) 1 (11.1%) 0.5457

Alcohol Use Yes 27 (79.4%) 13 (31.0%) 14 (33.3%) 2 (22.2%) 0.0001

Stress (0–10) <5 15 (44.1%) 28 (66.7%) 14 (33.3%) 6 (66.7%) 0.1253

Nervous or Anxious Not at all 14 (41.2%) 20 (47.6%) 11 (47.8%) 6 (66.7%) 0.4130

Depressed Not at all 22 (64.7%) 28 (66.7%) 13 (56.5%) 7 (77.8%) 0.8608

Cognitive Capacity Good/Excellent 31 (91.2%) 34 (81.0%) 19 (82.6%) 7 (77.8%) 0.3889

Functional Capacity Good/Excellent 27 (79.4%) 40 (95.2%) 19 (82.6%) 8 (88.9%) 0.3398

Role Functions Good/Excellent 31 (91.2%) 36 (85.7%) 18 (78.3%) 8 (88.9%) 0.4095

Spiritual Support Good/Excellent 27 (79.4%) 34 (81.0%) 17 (73.9%) 6 (66.7%) 0.5334

Convenience to
Healthcare Good/Excellent 34 (100%) 37 (88.1%) 23 (100%) 8 (88.9%) 0.2321

Health Insurance
Coverage Good/Excellent 32 (94.1%) 30 (71.4%) 22 (95.7%) 7 (77.8%) 0.1175

Air Quality in
Community Good/Excellent 17 (50.0%) 28 (66.7%) 11 (47.8%) 7 (77.8%) 0.4525

Air Quality at Home Good/Excellent 7 (20.6%) 10 (23.8%) 6 (26.1%) 2 (22.2%) 0.2545

Tobacco Use in Family Yes 2 (5.9%) 4 (9.5%) 4 (17.4%) 1 (11.1%) 0.5316

Exposure to Pollution Yes 7 (20.6%) 5 (11.9%) 4 (17.4%) 3 (33.3%) 0.4659

The statistically significant values have been highlighted in red.
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Table 3. Comparison of gene polymorphisms between family control and cancer groups.

Genes Control
(n = 54)

Cancer
(n = 54) p-Value

MTHFR 677
0 (CC)
1 (CT)
2 (TT)

28 (51.9%)
21 (38.9%)
5 (9.3%)

23 (42.6%)
25 (46.3%)
6 (11.1%)

0.6285

MTHFR 1298
0 (AA)
1 (AC)
2 (CC)

32 (59.2%)
15 (27.8%)
7 (13.0%)

34 (63.0%)
15 (27.8%)
5 (9.2%)

0.8212

MTR 2756
0 (AA)
1 (AG)
2 (GG)

39 (72.2%)
12 (22.2%)
3 (5.6%)

36 (66.7%)
17 (31.5%)
1 (1.8%)

0.3712

MTRR 66
0 (AA)
1 (AG)
2 (GG)

28 (52.4%)
18 (33.6%)
7 (13.0%)

19 (35.6%)
25 (46.8%)
10 (18.5%)

0.1842

DHFR 19 bp
Del/Del
Ins/Del
Ins/Ins

20 (37.0%)
17 (31.5%)
17 (31.5%)

13 (24.1%)
25 (46.3%)
16 (29.6%)

0.2188

Total Polymorphism (0–10)
≥4

mean ± SD
(range)

16 (29.6%)
3.1 ± 1.3

(0–6)

27 (50.0%)
3.3 ± 1.4

(1–5)

0.0306
0.0819

The statistically significant values have been highlighted in red. Ins: Insertion; Del: Deletion.

There were significant differences in the presentation of all five gene polymorphisms across
the four racial–ethnic groups (all p < 0.05, Table 4). For comparison among these racial groups,
in general, the Asian and the White samples had more polymorphisms on these five genes combined
than the Hispanic and the Black samples. For comparisons among the groups of the individual
genes, the Hispanic and the White samples had higher MTHFR enzyme deficiencies (average of 36%)
resulting from polymorphisms of MTHFR C677T and MTHFR A1298C compared to the Asian (27%)
and the Black (0%) subgroups. The Asian (88%) and the Black (78%) samples had higher DHFR 19 bp
deletions than the White (59%) and the Hispanic (48%) samples. The White (79%) and the Black (67%)
samples had higher MTRR A66G polymorphisms than the Asian (52%) and the Hispanic (26%) samples.
Furthermore, the Black (56%) and the White (41%) samples had higher levels of polymorphisms on the
MTR A2756G gene than the Asian (29%) and the Hispanic (9%) subgroups.

The distribution of the polymorphisms on these five genes for the control and cancer groups and
the four racial–ethnic subgroups are further presented in Table 5. We checked the Hardy–Weinberg
equilibrium (HWE) analysis of these five genes to assess the distribution equilibrium of the
evolutionary mechanisms in population genetics [53], associated with factors such as population
migration or stratification and disease association. MTHFR A1298C and DHFR 19bp had significant
(both p < 0.05) HWE with disequilibrium, while this was not significant for each of the racial–ethnic
subgroups for these two genes. We further checked the distribution of alleles for population-based
allele frequencies across the ethnic groups to provide the reference distribution in comparison
to our findings (Table 5, http://useast.ensembl.org/index.html; https://www.cdc.gov/genomics/
population/genvar/frequencies/mthfr.htm).

http://useast.ensembl.org/index.html
https://www.cdc.gov/genomics/population/genvar/frequencies/mthfr.htm
https://www.cdc.gov/genomics/population/genvar/frequencies/mthfr.htm
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Table 4. Comparison of gene polymorphisms across racial groups.

Genes White
(n = 34)

Asian
(n = 42)

Hispanic
(n = 23)

African
(n = 9) p-Value

MTHFR 677
0 (CC)
1 (CT)
2 (TT)

3 (38.2%)
16 (47.1%)
5 (14.7%)

21 (50.0%)
17 (40.5%)
4 (9.5%)

8 (34.8%)
13 (56.5%)
2 (8.7%)

9 (100.0%)
0 (0%)
0 (0%)

0.0362

MTHFR 1298
0 (AA)
1 (AC)
2 (CC)

18 (52.9%)
12 (35.3%)
4 (11.8%)

29 (69.1%)
9 (21.4%)
4 (9.5%)

10 (43.5%)
9 (39.1%)
4 (17.4%)

9 (100.0%)
0 (0%)
0 (0%)

0.0885

MTHFR
Deficiency

0%
15%
30%
35%
50%
70%

mean ± SD
(range)

2 (5.9%)
7 (20.6%)
4 (11.8%)

11 (32.4%)
5 (14.7%)
5(14.7%)

35.6 ± 19.5
(0–70)

11 (26.2%)
6 (14.3%)
4 (9.5%)

14 (33.3%)
3 (7.1%)
4 (9.5%)

26.9± 21.4
(0–70)

0 (0.0%)
4 (17.4%)
4 (17.4%)
8 (34.8%)
6 (26.1%)
1 (4.4%)

36.1 ± 13.9
(15–70)

9 (100.0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)

0
0

<0.0001

≥50% 10 (29.4%) 7 (16.7%) 7 (30.4%) 0 (0%) 0.1553

MTR 2756
0 (AA)
1 (AG)
2 (GG)

20 (58.8%)
11 (32.4%)
3 (8.8%)

30 (71.4%)
11 (26.2%)
1 (2.4%)

21 (91.3%)
2 (8.7%)
0 (0%)

4 (44.4%)
5 (55.6%)

0 (0%)
0.0475

MTRR 66
0 (AA)
1 (AG)
2 (GG)

7 (20.6%)
15 (44.1%)
12 (35.3%)

20 (48.8%)
18 (43.9%)
3 (7.3%)

17 (73.9%)
4 (17.4%)
2 (8.7%)

3 (33.3%)
6 (66.7%)

0 (0%)
0.0002

DHFR 19 bp
Del/Del
Ins/Del
Ins/Ins

3 (8.8%)
17 (50.0%)
14 (41.2%)

24 (57.1%)
13 (31.0%)
5 (11.9%)

4 (17.4%)
7 (30.4%)

12 (52.2%)

2 (22.2%)
5 (55.6%)
2 (22.2%)

<0.0001

Total
Polymorphism

(0–10)

≥4
mean ± SD

(range)

16 (47.1%)
3.62 ± 1.18

(1–6)

21 (50.0%)
3.31 ± 1.37

(0–6)

5 (21.7%)
2.57± 1.24

(1–5)

1 (11.1%)
2.22 ± 0.97

(1–4)

0.0322
0.1244

Table 5. Distribution of gene polymorphisms per control and cancer groups across racial groups.

n (%) Control Group Cancer Group

Genotypes 0 1 2 p-value
(HWE)

Population
Allele

Frequency
0 1 2

MTHFR 677 CC CT TT % C/T CC CT TT
Total 28 (51.9) 21 (44.4) 5 (9.3) NS 75/25 23 (42.6) 25 (46.3) 6 (11.1)
White 8 (50.0) 7 (43.8) 1 (6.2) NS 53/47 5 (27.8) 9 (50) 4 (22.2)
Asian 12 (52.2) 8 (34.8) 3 (13.0) NS 70/30 9 (47.4) 9 (47.4) 1 (5.2)

Hispanic 4 (36.4) 6 (54.5) 1 (9.1) NS 55/45 4 (33.3) 7 (58.3) 1 (8.3)
Black 4 (100) 0 (0) 0 (0) - 91/9 5 (100) 0 (0) 0 (0)

MTHFR 1298 AA AC CC % A/C AA AC CC
Total 32 (59.2) 15 (27.8) 7 (13) 0.0314 75/25 34 (63) 15 (27.8) 5 (9.3)
White 7 (43.8) 6 (37.5) 3 (18.8) NS 85/15 11 (61.1) 6 (33.3) 1 (5.6)
Asian 16 (69.6) 5 (21,7) 2 (8.7) NS 78/22 13 (68.4) 4 (21.1) 2 (10.5)

Hispanic 5 (45.4) 4 (36.4) 2 (18.2) NS 84/16 5 (41.7) 5 (41.7) 2 (16.7)
Black 4 (100) 0 (0) 0 (0) - 85/15 5 (100) 0 (0) 0 (0)

MTR 2756 AA AG GG % A/G AA AG GG
Total 39 (72.2) 12 (22.2) 3 (5.6) NS 36 (66.7) 17 (31.5) 1 (1.8)
White 10 (62.5) 4 (25.0) 2 (12.5) NS 84/16 10 (55.5) 7 (38.9) 1 (5.5)
Asian 17 (73.9) 5 (21.7) 1 (4.3) NS 65–91/9–35 13 (68.4) 6 (31.6) 0 (0)

Hispanic 11 (100) 0 (0) 0 (0) - 19/81 10 (83.3) 2 (16.7) 0 (0)
Black 1 (25) 3 (75) 0 (0) NS 30–37/63–70 3 (60.0) 2 (40.0) 0 (0)

MTRR 66 AA AG GG % A/G AA AG GG
Total 28 (52.6) 18 (33.4) 7 (13) NS 64/36 19 (35.6) 25 (46.8) 10 (18.5)
White 3 (18.8) 6 (37.5) 7 (43.8) NS 45/55 4 (22.2) 9 (50.0) 5 (27.8)
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Table 5. Cont.

n (%) Control Group Cancer Group

Genotypes 0 1 2 p-value
(HWE)

Population
Allele

Frequency
0 1 2

Asian 14 (63.6) 8 (36.4) 0 (0) NS 74/26 6 (31.6) 10 (52.6) 3 (15.8)
Hispanic 10 (90.9) 1 (9.1) 0 (0) NS 72/28 7 (58.3) 3 (25.0) 2 (16.7)

Black 1 (25.0) 3 (75.0) 0 (0) NS 73/27 2 (40.0) 3 (60.0) 0 (0)

DHFR 19 bp II ID DD % I/D II ID DD
Total 20 (37) 17 (31.5) 17 (31.5) 0.0068 50/50 13 (24.1) 25 (46.3) 16 (29.6)
White 2 (12.5) 6 (37.5) 8 (50.0) NS 45–47/53–55 1 (5.6) 11 (61.1) 6 (33.3)
Asian 15 (65.2) 6 (26.1) 2 (8.7) NS 63/37 9 (47.4) 7 (36.8) 3 (15.8)

Hispanic 2 (18.2) 4 (36.4) 5 (45.4) NS 58/42 2 (16.7) 3 (25.0) 7 (58.3)
Black 1 (25.0) 1 (25.0) 2 (50.0) NS 55/45 1 (20.0) 4 (80.0) 0 (0)

HWE: Hardy–Weinberg equilibrium; - not available; NS: Not significant; HWE calculator: http://www.koonec.
com/k-blog/2010/06/20/hardy-weinberg-equilibrium-calculator/; http://useast.ensembl.org/index.html; https:
//www.cdc.gov/genomics/population/genvar/frequencies/mthfr.htm.

2.2. Most Influential Predictors per Category—The Ensemble Method

Influential predictors were identified in three categories: genetic factors, demographic/
environmental factors, and lifestyle factors (as indicated by health metrics) [48,49]. Individual
predictors were then selected by using the decision tree methods to build models and then from
the rank order of column contributions selecting the most influential variables using the bootstrap
forest method [28–31]. The column contribution is presented using the G2 statistics, which is derived
from the conventional likelihood ratio chi-square statistic, as chi-square is a test of goodness-of-fit
between the expected count and the actual account. By the same token, G2 indicates how well the
expected count and actual count classified into that group fit with each other.

The most crucial genetic predictors of cancer (Table 6) appeared to be MTRR66 polymorphism
and MTHFR deficiency. On the rank order of importance among the 10 demographic/environmental
factors (Table 7), BMI ranked the highest for importance, followed on the next level by marital status
and race, then dropped to the variables of exposure to pollution and gender, then dropped to health
insurance coverage and air quality in the community, and finally to variables including the convenience
of access health care, air quality in the home, and tobacco smoker in the home. Our exploration found
that age alone trumped all other potential predictors. However, this result is not informative because it
is a well-known fact that older people are more vulnerable to chronic health issues leading to cancer.
This piece of information about age cannot lead to any actionable item because nothing can be done
to reverse aging. Thus, age was not included in the exploratory analysis to allow other potential
predictors to emerge. Among the 16 lifestyle/health metrics variables (Table 8), after six rows there is a
sharp drop of G2, and therefore stress, physical activity minutes, time using alcohol, spiritual support,
sleepiness, and functional role are considered the most important predictors.

Table 6. Genetic predictors of cancer.

Term Number of Splits G2 Column Contribution Portion

MTRR A66G Polymorphism 46 1.09506968
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Table 7. Demographic/environmental predictors of cancer.

Term Number of Splits G2 Column Contribution Portion

Body mass index 10 6.78930886
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In the second stage, dimension reduction, our strategy was to identify the most influential
predictors within the three categories of genetic factors, demographic/environmental factors, and
lifestyle factors (as indicated by health metrics). To select the most influential predictors within each
category, we used the criteria of column contribution and variable importance. Both the ensemble
method and the regression methods were run to identify potential predictors in each group and in
each category. The misclassification rates of both models were compared to verify the function of a
predictive model according to genetic, demographic/environmental factors, and lifestyle categories.
For this sample, the random forest models outperformed the original logistic regression analyses for
all three domains of factors, as presented by lower misclassification rates (Table 9).

Table 9. Model comparisons between bootstrap forest and logistic regression.

Misclassification Rates
Factors Bootstrap Forest Logistic Regression

Demographic–Environmental 0.1942 0.2353
Genetic 0.2019 0.3137

Health Metrics/Lifestyle 0.1584 0.2475
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2.3. Predictors for Gene–Environment Interaction

The most significant variables for gene–environment interactions were then taken into
consideration simultaneously, and Table 10 presents the rank order of important factors by G2 and a
portion of combined bootstrap forest analyses of all three domain factors. G2 is based on LogWorth
and the likelihood ratio chi-square statistics, whereas portion is counted by how often the variable
recurs in the repeated analyses. It is important to point out that like using the scree plot in factor
analysis, the decision of adopting the most important predictors is based on the overall pattern i.e.,
how the variable pops out in G2 relative to others, not an absolute cut-off like the alpha level. It is
noteworthy that the first four top predictors are modifiable (BMI, physical activity, sleepiness, and
spiritual support). Genetic factors (MTHFR deficiency and MTRR A66G polymorphism), which are
non-malleable, rank number five and number nine for the total sample.

The role of important predictors in cancer was further examined by racial–ethnic subgroups
to explore potential actionable factors per racial–ethnic groups. Table 11 indicates that for Asians
(n = 42) the number one predictor was sleepiness, then followed by the stress levels, then MTRR A66G
polymorphism and physical activity levels. The outstanding G2 suggests that sleepiness and stress
trumped all other factors in predicting cancer for Asians. For Hispanics (n = 23) the top predictor was
spiritual support, which trumped all other factors, as shown in Table 12. For Whites (Table 13, n = 34),
the most important variables were physical activity, BMI, and alcohol use. Because there were only
nine black participants, there was not enough variation for resampling to construct a model using the
bootstrap forest method.

Table 10. All predictors of cancer for gene–environment interactions.

Term Number of Splits G2 Column Contribution Portion

Body mass index 73 2.34801946
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Table 12. Predictors of cancer for Hispanics.

Term Number of Splits G2 Column Contribution Portion

Spiritual Support 41 2.51879811
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2.4. Predictive Modeling for Gene–Environment Interactions—Generalized Regression Analysis

Using the most influential variables identified in Section 2.2, two generalized regression models
were developed using leave-one-out cross-validation methods to predict the probability of cancer.
Generalized regression is also known as penalized regression. As the name implies, the modeling
process penalizes complicated models to avoid overfitting. Hence, compared with conventional
regression modeling, generalized regression tends to yield an optimal model. In each case, the
models were first compared to a logistic regression model with validation for a baseline. For model
one the parameter estimates along with the associated p-values for the baseline logistic regression
results with validation are shown in the left panel of Table 14, including significant interaction terms
(BMI interacting with alcohol use) in addition to total gene polymorphism score and other significant
parameters. The regularized parameters remaining in the generalized regression elastic net Alkaike’s
information criterion (AIC) with correction (AICc) and leave-one-out models are shown in the middle
and right panels of Table 14, with the predictor, alcohol use, eliminated from the model as indicated by
the zero value for the estimate.



J. Pers. Med. 2018, 8, 10 12 of 21

Table 14. Baseline logistic regression model and generalized regression elastic net models on the
predictors of colorectal cancer from gene–environment interactions (of total gene polymorphisms).

Logistic Regression
Original Model with

Validation

Generalized Regression Elastic Net Model

With AICc Validation With Leave-One-Out
Validation

Parameters Estimate p (X2) Estimate p (X2) Estimate p (X2)

(Intercept) −0.2875 0.6144 0.3218 0.4096 0.3486 0.3785
Gender

(Male/Female)
1.5023 0.0119 1.2972 0.0074 1.4286 0.0018

BMI * Alcohol Use,
Interaction

−2.2790 0.0367 −1.9512 0.0146 −1.2376 0.0062

Total Polymorphisms −0.7185 0.1865 −1.1444 0.0125 −2.1202 0.0063
BMI 1.3637 0.0602 0.7541 0.1993 0.8991 0.1036

Alcohol Use 0.5468 0.4038 0 1.000 0 1.000

Misclassification Rate 0.3714 - 0.2963 - 0.2804 -
AICc 56.98 - 138.81 - - -
AUC 0.7817 - 0.7531 - 0.7652 -

* Denotes Interaction; - not available; AICc: Akaike’s information criterion with corrections; AUC: Area under
the curve.

The predictive performance for the generalized regression elastic net models can be characterized
by examining the receiver operating characteristic (ROC) curve and the misclassification rates (Figure 1).
The misclassification rate for the baseline logistic regression in the left panel was higher than the other
two methods, with a misclassification rate of 0.3714 as compared to 0.2963 and 0.2804. The elastic
net validation model outperformed the original logistic regression model on predictive accuracy by
lower misclassification rates. The ROC areas under the curve are shown in Figure 1, with the baseline
logistic regression model in the left panel with an area under the curve of 0.7817 and the generalized
regression elastic net AICc model and leave-one-out model in the middle and right panels with an
area under the curve (AUC) of 0.7652. In the elastic net models, alcohol use was the variable to leave
out; however, BMI and alcohol had significant interactions. Therefore, as the base of the interactive
variable, the BMI variable must remain in the model.
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Figure 1. Receiver operating characteristic (ROC) curve and AUC for the baseline logistic regression
model (left panel), elastic net with Akaike’s information criteria with correction validation model
(middle), and leave-one-out validation model (right panel) on the predictors of colorectal cancer from
gene –environment interactions (of total gene polymorphisms).

In a similar way to the previous model, in the second model we used an elastic net AICc validation
and with leave-one-out validation with a baseline model of logistic regression with a validation column
by including the individual gene parameters and significant interaction terms (gender with BMI,
MTHFR C677T with BMI. Results of the parameters for the logistic regression are shown in Table 15,
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and results for the model results are shown in Figure 2 for ROC area under the curve. As before,
the generalized regression Elastic Net models outperformed the baseline logistic regression model with
better predictive accuracy (lower misclassification rates and larger AUCs). In the elastic net model,
BMI was the variable to leave-out; however, BMI and gender status as well as BMI and MTHFR C677T
polymorphism had significant interactions. Therefore, BMI variable must remain in the model.

In both predictive models of CRC, by either including total gene polymorphisms or individual
genes as part of genetic factors of gene–environment interactions, gender (more men than women in
the CRC group compared to the control group) and BMI status (more overweight and obese status
in the CRC group than the control group) were consistent predictors. In the model where the total
gene polymorphism was used for prediction of CRC, alcohol use (more use in the CRC group than the
control group) was interactive with BMI status. In the model where the single genes were included
for the prediction of CRC, the BMI variable was interactive with both gender and MTHFR C677T
polymorphism and the exposure to pollution was an additional predictor of CRC in the model when
single genes were included. These predictive models were run for each racial–ethnic subgroup.
However, we did not observe stable results because of the limited number of samples per racial–ethnic
subgroups. Therefore, the subgroup analyses per racial–ethnic subgroups of the predictors of CRC
from gene–environment interactions are not presented.

Table 15. Baseline logistic regression model and generalized regression elastic net models on the
predictors of colorectal cancer from gene–environment interactions (of single genes).

Logistic Regression
Original Model With

Validation

Generalized Regression Elastic Net Model

Elastic Net Model With
AICc Validation

With Leave-One-Out Cross
Validation

Parameters Estimate p-value (X2) Estimate p-value (X2) Estimate p-value (X2)

(Intercept) 0.5768 0.5445 1.2292 0.0498 1.3171 0.0487
Gender

(Male/Female)
3.1964 0.3465 1.4525 0.0049 1.8934 0.0006

Gender
(Male/Female) * BMI

−4.2655 0.0039 −1.9736 0.0219 −-2.5539 0.0042

MTHFR C677T
Polymorphism

−2.3824 0.0345 −0.9065 0.0523 −1.1847 0.0174

MTHFR C677T
Polymorphism * BMI

2.2401 0.1157 1.2404 0.0667 −1.5750 0.0253

Exposure to Pollution −0.8194 0.2853 −1.2110 0.0368 −1.2466 0.0458
MTRR66 −0.8694 0.1426 −0.6792 0.0975 1.3172 0.0800

BMI 0.8029 0.3465 0 1.000 0 1.000

Misclassification Rate 0.4103 - 0.3241 - 0.3396 -
AICc 85.24 - 140.69 - - -
AUC 0.5842 - 0.7536 - 0.7639 -

* Denotes Interaction; - not available; AICc: Akaike’s information criterion with corrections; AUC: Area under
the curve.
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and leave-one-out validation model (right panel) on the predictors of colorectal cancer –environment
interactions (of single genes).

3. Discussion

We presented the gene–environment interactions and predictors of CRC by including key genes
in the one-carbon metabolism pathways, with environmental and lifestyle factors, by using various
analytics to validate the findings across the methods. Using the ensemble method, the most influential
factors included gene polymorphisms of MTRR A66G and MTHFR, and lifestyle factors such as BMI,
exposure to pollutants, and gender. Using the most influential factors, the two best predictive models
were also generated using the generalized regression models and leave-one-out cross validation
methods. With the machine learning approach, these models included a random validation dataset
to yield more reliable prediction. For the prediction of CRC, BMI status and gender were consistent
predictors in the models. The use of alcohol (more use in the CRC group) interacted with BMI status in
predicting CRC. BMI status was also interactive with both gender and MTHFR C677T polymorphism
in predicting CRC. Also, the exposure to pollutants was an additional predictor of CRC.

While previous studies have presented gene–environment interactions, associating genes in the
one carbon metabolism pathways with folate deficiency [24,25,27] and CRC [24,27], new predictive
modeling and validation analytics with interactions have become readily available for convenient
use through SAS JMP programming (SAS Institute, Cary, NC, USA). Therefore, we included the
gene–environment interactions, between the modifiable factors and the genes in our analytic approach,
to examine potential epigenetic mechanisms. Overall, the CRC group had increased combined
gene polymorphisms than the control group, including MTHFR C677T, MTR A2756G, MTRR A66G,
and DHFR 19bp, except MTHFR A1298C. Additional modifiable factors included BMI status, exposure
to pollutants, and alcohol use for CRC risks.

We presented the distributions of the genotype alleles for five genes in the one carbon metabolism
pathway for four racial–ethnic groups. In addition to the four gene polymorphisms (MTHFR C677T
and A1298C, MTR A2756G, and MTR A66G) that were presented for the CRC cases [24,27], and in
numerous meta analyses [10–13], we included DHFR 19 bp deletion as an additional gene in the
folate-metabolism pathway. DHFR 19 bp in the folate methylation pathway has not been presented
for the CRC cases in various ethnic groups before. These four ethnic groups presented different
polymorphism patterns for these five genes.

As a proof-of-concept study, to examine gene–environment interactions for cancer prevention,
we used the ensemble method, as it is a well-known remedy for small-sample studies to validate the
analyses by the random subsets of samples [45]. We further used the generalized regression method
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integrating significant parameters and bivariate interactions to maximize the model quality with the
simplest optimal model. We did not have a sufficient number of subjects for the ethnic subgroups for
analyses, especially the Black sample, for most influential predictors or subgroup analyses using the
generalized regression model. Therefore, further studies are needed that include larger samples
to further validate these findings for various ethnic groups. We presented the very first study
cross-validating the findings using both conventional inferential statistics and the ensemble method
to predict the risk of CRC. While there are limitations to family-based, case-control designs because
of genetic associations among the family members, we used the family-based analysis technique
to explore and control for the family associations. Despite these limitations, there are advantages
for methodological concerns to include family members in community-based studies. First, the
inclusion of family members can enforce the active participation of the family as an ecological unit,
and more reliable reporting of modifiable lifestyle or environmental parameters [54,55]. Involving
family members in a community-based study can also facilitate support from family members
for patients, with a heightened awareness within the family unit of the importance of modifiable
lifestyles, thus helping to adopt healthier lifestyles. The validity of research observations is also
strengthened in that patient lifestyles are better monitored with the increased awareness of the family
unit. Therefore, the rigor and reliability of the data are enhanced, for sustainable interventions with
behavioral improvements.

To add to the genetic factors, our results point to a list of modifiable lifestyle and environmental
factors [33–36] in relation to the gene–environment interactions for the prevention of CRC. The top
modifiable factors included BMI status, environmental pollution, and alcohol use. Recent studies
including metaprediction studies that examined gene–environment interactions consistently presented
that increased air pollution is associated with increased gene polymorphism and trends to increased
disease risks across various disease conditions, especially for MTHFR C677T polymorphisms and
genes in the methylation pathways [28–35]. Environmental toxicants such as air pollution and smoking
can induce oxidative stress and disregulate reactive oxygen species [28–30]. Studies suggested that
exposure to oxidative stress caused damage to cellular DNA that leads to mutations, genomic
instability, and ultimately malignancy [28–30]. From these understandings, future studies may
focus on the epigenetics of methyl-donors to detox the hazards from environmental pollution, with
healthy lifestyles and weight-based interventions to prevent CRC. Additionally, future research can be
designed to examine environmental pollutants and lifestyles with gene–environment interactions in
CRC prevention.

4. Materials and Method

4.1. Study Population and Setting

We included 108 participants, 54 CRC cases and 54 matched family/friend controls by accessing
the California Cancer Registry (CCR) database and additional cases through case referrals by the
participants. The study was approved by the appropriate Human Subjects Institutional Review
Boards (IRB) from the California State Committee for the Protection of Human Subjects for data access
through the CCR (CPHS-12-12-1007, approved 2013-2019), and from the local educational institutions
(Azusa Pacific University, approved 2013-2015; Augusta University, 806069-7, approved 2015–2018).
To qualify for the study, CRC cases had to be: (1) not at the terminal stage of cancer expecting death
within six months, (2) 18–80 years of age, (3) have a family member living with or nearby the case for
over one year. Family members must be: (1) 18–80 years of age, (2) not having CRC, (3) not at the
terminal stage of other illness expecting death within the six months. Both the case and the family
member had to have adequate cognitive and mental capacities, and be willing to participate in the
interviews and biological sample for genotyping data collection. The CRC cases were survivors, having
been diagnosed with CRC for at least two years by the time the CCR released their data. CRC cases
and their families were screened based on the inclusion criteria.



J. Pers. Med. 2018, 8, 10 16 of 21

Given that a diverse racial–ethnic population resides in southern California, we targeted to recruit
at least five families per racial–ethnic group. representing the proportions of various populations in
southern California. Following the approval by the IRBs, CRC cases were screened and randomly
selected by systematic stratification based on the racial–ethnic groups from the roster databases
provided by the CCR. The qualified cases were contacted through the established procedures as
required by the CCR, with an introduction letter followed with phone contact. Moreover, family/friend
members residing with or near the CRC cases were recruited along with the CRC cases. Most families
were visited at their homes for data collection while a few families visited the campus to participate in
data collection.

4.2. Demographic/Environmental and Lifestyle Data

Participants were interviewed with items of standardized instruments for health-related lifestyle
status [33], following the framework of My Own Health Report (MOHR). The MOHR project included
a web-based survey with the list of health metrics including health behaviors and lifestyles. The intent
of the MOHR project was to harmonize the national health metrics databases with a minimum
dataset in the primary care settings. For this project, the elements of these health metrics included
in the MOHR project were included to evaluate the lifestyles in relation to the polygenic one
carbon metabolism pathways. Family history, functional capacities, cancer risks and activities, and
demographics were collected using the items summarized from the Centers for Disease Control and
Prevention (CDC) 1999–2012 National Health and Nutrition Examination Survey and National Health
Interview Survey [50]. Community environment and health were collected using the items listed in the
integrated prevention framework of Institute of Medicine [51] and World Health Organization [52] for
cancer prevention. The family pedigrees were completed with family history data using the standard
process established by the Coalition for Health Professional Education in Genetics [48].

4.3. Genotyping Data

Data sent to the laboratories were de-identified for subjects. Laboratory staff members were
blinded to the case control and other status of the samples to enhance the objectivity of laboratory
analyses. The specimens were stored on ice and sent in containers with dry ice via express mail to the
laboratory following data collection. Once arrived at the laboratory, specimens were kept frozen in
deep freezer at −80 ◦C freezer until analysis.

Genotyping procedures were described elsewhere earlier [56,57]. Briefly, genomic DNA was
isolated from salivary samples using the SK-1 swab and Isohelix collection tubes with dry capsules
(Boca Scientific, Boca Raton, FL, USA), and/or from peripheral blood samples using the Qiagen Blood
DNA Kit (Qiagen Inc., Valencia, CA, USA). The Taqman technique [56] was used for genotyping
of the gene polymorphisms using allele specific fluorescent probes with a StepOnePlus™ real-time
polymerase-chain reaction system (Thermo Fisher Scientific, Waltham, MA, USA). Quality control
was strictly conducted with four duplicate positive controls and four negative controls loaded in each
of 96-well plates. Additionally, genotyping assays were repeated with 10% of the samples that were
duplicate with salivary and blood samples, and genotyping results were in 100% agreement for the
repeated tests. The results of the genotyping for five genes were shared with the participants within
six months or sooner following the data collection, as soon as they became available.

MTHFR enzyme deficiency was calculated by adding up the total loss of enzymatic functions from
both MTHFR C677T and A1298C polymorphisms, 35% for 677 CT and 70% for 677 TT polymorphisms,
and 15% for 1298 AC and 30% for 1298 CC variants [20,21,58]. The total gene mutations from five
genes were computed together, with possible ranges of 0–10, with scores of one for heterozygous and
two for homozygous polymorphism mutations per each of the five genes included in this study.
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4.4. Data Analysis

Our data analysis followed three phases of exploratory family-based analysis [44] to adjust for
the effects of sharing the genetic heritage within the family, data visualization and understanding,
data reduction, and model building using JMP Pro 13 (SAS Institute, Cary, NC, USA) [59,60]. In the
first stage of data visualization and understanding, we used bootstrap forest, also known as bagging
(i.e., bootstrap aggregating), which is one of the most popular ensemble methods [24–27]. The ensemble
methods are based on the logic of resampling, which is a well-known remedy for small-sample
studies [45]. In resampling the sample is treated as the virtual population and then different subsets
are randomly drawn from the sample for multiple analyses. Bias can be observed and corrected by
such repeated analyses on random subsets [46].

The ensemble method is a resampling technique that synthesizes analyses of many subsets of the
original data. This approach is superior to conventional regression modeling because ordinal least
square regression or logistic regression analyses tend to yield an overfitted model. Numerous studies
have confirmed that the ensemble approach outperforms any single model, such as regression or
univariate statistics [61–63]. In addition, conventional statistical procedures are limited by the sample
size. If the number of parameters to be estimated exceeds the degrees of freedom, the regression model
would be highly unstable. The ensemble method is based on machine learning, in which datasets are
partitioned and analyzed by different models. Each model is considered a weak learner and the final
solution is a synthesis of all these weak learners. When different models are generated by resampling,
inevitably some are high bias model (underfit) while some are high variance model (overfit). In the
end, the ensemble cancels out these errors. Specifically, each model carries a certain degree of sampling
bias, but finally the errors also cancel out each other [62].

In the second stage, dimension reduction, our strategy was to identify the most influential
predictors within the three categories of genetic factors, demographic/environmental factors,
and lifestyle factors (as indicated by health metrics). To select the most influential predictors within
each category, we used the criteria of column contribution and variable importance. Both the ensemble
method and the regression methods were run to identify potential predictors in each group in each
category. The misclassification rates of both models were compared to verify the function of a predictive
model per genetic, demographic/environmental factors, and lifestyle categories. As shown in Table 9,
the bootstrap forest model in all three domains outperformed the original logistic regression model
with lower misclassification rates per category. Using the bootstrap forest ensemble method, G2 and
the portion of column contribution per variable were used to present the rank order of importance.

In the final stage of model prediction, we used generalized regression to obtain a smaller prediction
error [59]. The most significant variables and significant interactions were visualized using the
interaction profilers for bi-variate interactions of the three categories of variables, and the final set of
significant variables were selected for the tested models. The prediction profiler enables the analyst to
ask “what if” questions. Specifically, the analyst manipulates the levels of including different variables
to see how the model is changed. By doing so we can understand how the interaction of various
factors affect the outcome and the sensitivity of the model. Generalized regression is also known as
penalized regression, meaning that the variable selection process penalizes complexity. To get the
optimal model, the algorithm imposes a penalty on the model when redundant predictors are included.
The index for showing complexity is AIC or AICc [64–66], developed by Hirotsugu Akaike [67,68],
and is in alignment with Ockham’s razor: All things being equal, the simplest model tends to be the
best one; and simplicity is a function of the number of adjustable parameters. Thus, a smaller AIC
suggests a more optimal model. Specifically, AIC is a fitness index for trading off the complexity
of a model against how well the model fits the data. The general form of AIC is AIC = 2k - 2lnL,
where k is the number of parameters and L is the likelihood function of the estimated parameters.
Increasing the number of free parameters to be estimated improves the model fitness, however, the
model might be unnecessarily complex. To reach a balance between fitness and parsimony, AIC not
only rewards goodness of fit, but also includes a penalty against over-fitting and complexity. Hence,



J. Pers. Med. 2018, 8, 10 18 of 21

the most optimal model is the one with the lowest AIC value. Since AIC attempts to find the model
that best explains the data with a minimum of free parameters, it is considered an approach favoring
simplicity. In this sense, AIC is better than R2 and adjusted R2, which always go up as additional
variables enter in the model, favoring complexity. However, AIC does not necessarily change by
adding variables. Rather, it varies based upon the composition of the predictors and thus it is a
better indicator of the model quality [47]. Burnham and Anderson recommend replacing AIC with
AICc [64,65], especially when the sample size is small, and the number of parameters is large. Actually,
AICc converges to AIC as the sample size gets larger and larger. Hence, AICc should be used regardless
of sample size and the number of parameters. The methodology of JMP Pro allows for several classes
of modeling estimation methods including lasso, forward selection and elastic net [69], and several
validation methods including the ones we chose, AICc validation and leave-one-out cross validation
methods, because of their effectiveness for small data sets [70]. Model performance was assessed using
misclassification rate (smaller is better), AICc, and the area under the ROC curve.
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