Next Article in Journal / Special Issue
Infectious Disease Management through Point-of-Care Personalized Medicine Molecular Diagnostic Technologies
Previous Article in Journal / Special Issue
Trends in Personalized Therapies in Oncology: The (Venture) Capitalist’s Perspective
J. Pers. Med. 2012, 2(2), 35-49; doi:10.3390/jpm2020035

Molecular Therapeutic Advances in Personalized Therapy of Melanoma and Non-Small Cell Lung Cancer

Divisions of Cancer Medicine/Cancer Research, Peter MacCallum Cancer Centre, Locked Bag 1A'Beckett St Victoria 8006, Australia
* Author to whom correspondence should be addressed.
Received: 1 March 2012 / Revised: 25 March 2012 / Accepted: 3 April 2012 / Published: 10 April 2012
(This article belongs to the Special Issue Recent Advances in Personalized Medicine)
View Full-Text   |   Download PDF [295 KB, uploaded 10 April 2012]   |   Browse Figure


The incorporation of individualized molecular therapeutics into routine clinical practice for both non-small cell lung cancer (NSCLC) and melanoma are amongst the most significant advances of the last decades in medical oncology. In NSCLC activating somatic mutations in exons encoding the tyrosine kinase domain of the Epidermal Growth Factor Receptor (EGFR) gene have been found to be predictive of a response to treatment with tyrosine kinase inhibitors (TKI), erlotinib or gefitinib. More recently the EML4-ALK fusion gene which occurs in 3–5% of NSCLC has been found to predict sensitivity to crizotinib an inhibitor of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase. Similarly in melanoma, 50% of cases have BRAF mutations in exon 15 mostly V600E and these cases are sensitive to the BRAF inhibitors vemurafenib or dabrafenib. In a Phase III study of advanced melanoma cases with this mutation vemurafenib improved survival from 64% to 84% at 6 months, when compared with dacarbazine. In both NSCLC and melanoma clinical benefit is not obtained in patients without these genomic changes, and moreover in the case of vemurafenib the therapy may theoretically induce proliferation of cases of melanoma without BRAF mutations. An emerging clinical challenge is that of acquired resistance after initial responses to targeted therapeutics. Resistance to the TKI’s in NSCLC is most frequently due to acquisition of secondary mutations within the tyrosine kinase of the EGFR or alternatively activation of alternative tyrosine kinases such as C-MET. Mechanisms of drug resistance in melanoma to vemurafenib do not involve mutations in BRAF itself but are associated with a variety of molecular changes including RAF1 or COT gene over expression, activating mutations in RAS or increased activation of the receptor tyrosine kinase PDGFRβ. Importantly these data support introducing re-biopsy of tumors at progression to continue to personalize the choice of therapy throughout the patient’s disease course.
Keywords: targeted therapy; non-small cell lung cancer; melanoma; EML4-ALK; BRAF targeted therapy; non-small cell lung cancer; melanoma; EML4-ALK; BRAF
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
MDPI and ACS Style

Kelleher, F.C.; Solomon, B.; McArthur, G.A. Molecular Therapeutic Advances in Personalized Therapy of Melanoma and Non-Small Cell Lung Cancer. J. Pers. Med. 2012, 2, 35-49.

View more citation formats

Related Articles

Article Metrics


[Return to top]
J. Pers. Med. EISSN 2075-4426 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert