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Abstract: Respiratory malignancies, encompassing cancers affecting the lungs, the trachea, and the
bronchi, pose a significant and dynamic public health challenge. Given that air pollution stands
as a significant contributor to the onset of these ailments, discerning the most detrimental agents
becomes imperative for crafting policies aimed at mitigating exposure. This study advocates for the
utilization of explainable artificial intelligence (XAI) methodologies, leveraging remote sensing data,
to ascertain the primary influencers on the prediction of standard mortality rates (SMRs) attributable
to respiratory cancer across Italian provinces, utilizing both environmental and socioeconomic data.
By scrutinizing thirteen distinct machine learning algorithms, we endeavor to pinpoint the most
accurate model for categorizing Italian provinces as either above or below the national average SMR
value for respiratory cancer. Furthermore, employing XAI techniques, we delineate the salient factors
crucial in predicting the two classes of SMR. Through our machine learning scrutiny, we illuminate
the environmental and socioeconomic factors pertinent to mortality in this disease category, thereby
offering a roadmap for prioritizing interventions aimed at mitigating risk factors.

Keywords: explainable artificial intelligence; machine learning; remote sensing; air pollution;
exposome; respiratory disease; socioeconomic indices; public health

1. Introduction

Success in mapping the human genome has stimulated the complementary concept of
the exposome, i.e., the measure of the complete environmental exposure of an individual
or a population to their surrounding environment and the study of how those exposures
relate to health [1]. Research on the exposome in the context of noncommunicable diseases
(NCDs), or diseases that cannot be transferred from one person to the other, is relatively
novel and advancing impressively [2]. Although NCDs are associated with a genetic
predisposition (the genome), exposure to health-affecting environmental parameters has a
strong impact on their risk. With the use of Earth observation data, recent research studies
in this field are exploring possible associations of NCDs with environmental parameters to
identify relevant factors and prioritize intervention strategies to mitigate their effects, in line
with one of the targets of the 2030 United Nations Agenda for Sustainable Development [3],
i.e., reducing premature mortality from NCDs.
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Among NCDs, respiratory tract cancers, which include tracheal, bronchus, and lung
cancer, are the leading causes of cancer death [4], registering the highest age-standardized
mortality rate among all cancers [5]. Studies focusing on respiratory diseases and/or cancer
using Earth observation data include factors such as air pollution, atmospheric factors, and
land surface data in their analysis. They recognize air pollution parameters as important
factors, such as NO2 and O3, and identify prominent associations with parameters such as
PM 2.5 exposure, asbestos exposure, UV irradiation, and light pollution [6–12].

In our analysis, we use air quality estimates by the CAMS reanalysis dataset of atmo-
spheric composition [13] and spatial census data at provincial resolution (environmental
and socioeconomic variables) to predict standard cancer mortality rates (SMRs) attributable
to respiratory tract cancers as provided by the Italian National Institute of Statistics (ISTAT).
More specifically, using data from 2019, we estimate the national average SMR and define a
binary variable with a value of 1 for provinces with an SMR higher than the average and 0
otherwise. We then use Earth observation and census data to predict this binary variable,
comparing the performance of thirteen different models. Finally, we apply an explainable
artificial intelligence strategy, thus providing model-agnostic insights into how the best
model calculates predictions with the aim of facilitating the determination of feature im-
portance and offering a roadmap for prioritizing interventions [14,15]. Our approach is
therefore aimed at contributing to a comprehensive understanding of the relationships
between the environment and human health for the specific disease under consideration.

This paper is structured as follows. In Section 2, we describe the input data and the
adopted methodologies. More specifically, in Section 2.1, we define our input factors; in
Section 2.2, we define our output binary variable; in Section 2.4, we reduce the features of
the dataset through a multicollinearity analysis; in Section 2.5, we introduce the 13 machine
algorithms and the evaluation metrics used; in Section 2.6, we describe the explainable
artificial intelligence approach adopted. In Section 3, we present the results of our analysis
that we discuss in Section 4. Finally, in Section 6, we draw our conclusions.

2. Materials and Methods
2.1. Pollutants Data and Socioeconomic Indices

The Copernicus Atmosphere Monitoring Service (https://ads.atmosphere.copernicus.
eu/#!/search?text=&type=dataset&keywords=((%20%22Product%20type:%20Reanalysis%
22%20)%20AND%20(%20%22Variable%20domain:%20Atmosphere%20(composition)%22%
20)%20AND%20(%20%22Spatial%20coverage:%20Europe%22%20)%20AND%20(%20%22
Temporal%20coverage:%20Past%22%20) (accessed on 10 April 2024) (CAMS) platform man-
aged by the European Union’s Copernicus Program provides information on air pollution
and air composition globally. It utilizes data from various sources such as satellites, aircraft,
ground stations, and numerical models to monitor and analyze real-time air quality and
provide forecasts. The pollutants data provided by the CAMS platform are the result of an
ensemble median over 9 numerical air quality models [13,16]: CHIMERE (CH) from INERIS
(France) [17], EMEP (EM) from MET Norway (Norway) [18], EURAD-IM (EU) from Jülich
IEK (Germany) [19], LOTOS-EUROS (LO) from KNMI and TNO (the Netherlands) [20],
MATCH (MA) from SMHI (Sweden) [21], MOCAGE (MO) from Meteo-France (France) [22],
SILAM (S) from FMI (Finland) [23], DEHM (DE) from Aarhus University (Denmark) [24],
and GEM-AQ (GE) from IEP-NRI (Poland) [25]. For the purposes of the present study,
which aims at investigating the association between pollution and mortality for cancer
with the respiratory system, only the concentrations of CO, NO, NO2, O3, PM 10, PM 2.5,
and SO2 were considered. Since the data downloaded from the CAMS platform covered
an area larger than that of our interest, the Python library for analyzing geolocalized data
https://geopandas.org/en/stable/ (accessed on 10 April 2024) Geopandas (version 0.14.1)
was used to extract the pollution data of the Italian peninsula. From the daily coverage over
all of 2019, we retrieved the mean values for the concentrations of the selected pollutants.

In order to maximize data consistency, other pollution-related and socioeconomic
variables were considered: cultivated areas, urban areas, benzene, temperature, N fertilizer,
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P4010 fertilizer, microelement fertilizer, organic fertilizer, the number of hospital beds avail-
able (bed number), lifetime, income, life quality, instruction, vehicles per km2 of land area
(vehicles total), vehicles per km2 of urbanized surface (urban traffic), photovoltaic panel,
percentage of urban greenery density on the surface (green urban), electric consumption,
exceeding the limits detected following noise checks (noise), and municipal waste collection
in tons (wastes) [26].

2.2. Standardized Mortality Ratio

The Italian National Institute of Statistics (ISTAT) is the main official statistical institute
in Italy, responsible for collecting, analyzing, and disseminating statistical information
about the country.

The standardized mortality ratio (SMR) is a measure of the mortality rate of a specific
population compared with a standard or reference population (e.g., the national population).
It is calculated by dividing the number of observed deaths in the study population by the
number of expected deaths based on the mortality rates of the standard population. In
our study, the values of the SMR of the Italian provinces were calculated starting from the
number of observed deaths for respiratory system cancer in 2019 by age class provided
by ISTAT. The mean value of the SMR was used to divide the Italian provinces into two
classes: all the provinces with an SMR lower than the mean value were assigned to class 0,
while all the others were assigned to class 1. An outline of the data preparation workflow
is presented in Figure 1. A graphical representation of Italian provinces with a higher or
lower SMR than the mean value for cancer to the respiratory system is shown in Figure 2.

Figure 1. Dataset construction workflow.

2.3. Analysis Flowchart

The diagram presented in Figure 3 serves as a visual representation encapsulating
the comprehensive analytical journey delineated within this paper. At the heart of this
endeavor lies the curation of a dataset, meticulously constructed to encompass a rich
tapestry of data streams. The foundational pillars of this dataset were erected through a
data acquisition process, commencing with the extraction of air pollution metrics from
diverse provinces across the Italian peninsula. These statistics were sourced from the
Copernicus Atmosphere Monitoring Service (CAMS) platform, renowned for its robust
and comprehensive environmental monitoring capabilities. In tandem with air quality
metrics, a plethora of socioeconomic indicators were judiciously incorporated into the
dataset. These encompassed a spectrum of socioeconomic variables, ranging from income
distribution patterns to urbanization indices, providing a holistic perspective on the societal
fabric under scrutiny. Furthermore, the dataset was augmented with mortality data at-
tributable to respiratory system cancers, gleaned from the extensive repository maintained
by the Italian National Institute of Statistics (ISTAT). The analysis commenced with the
exploration of multicollinearity dynamics inherent within the dataset. Leveraging the
Variation Inflation Factor (VIF) as a diagnostic tool, we dissected intervariable relationships
to discern and mitigate the pernicious effects of collinearity. Through a systematic iterative
process, variables exhibiting VIF indices surpassing the critical threshold of 10 were pruned
from the dataset, thereby ensuring the integrity and robustness of subsequent analyses.
Subsequently, the refined dataset served as fertile ground for the cultivation of predictive
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models leveraging state-of-the-art machine learning techniques. Employing the Python
(3.10.12 version) library https://pycaret.org (accessed on 10 April 2024) PyCaret (version
3.3.0) as a conduit, a diverse ensemble of 13 distinct machine learning models was metic-
ulously trained and fine-tuned and tasked with the classification of provinces exhibiting
mortality rates from respiratory system cancers either surpassing or falling below the na-
tional average. The efficacy of these predictive models was rigorously scrutinized through
a comprehensive validation process, employing a 10-fold cross-validation methodology
by evaluating the performance obtained from the validation folds. Once the model with
the largest ROC AUC was identified, the most important features for the model to classify
provinces with higher or lower mortality due to respiratory system cancer were calculated
using the explainable artificial intelligence algorithm SHAP.

Figure 2. Colormap of the Italian provinces with higher or lower SMR than the mean value for cancer
to the respiratory system.

Figure 3. Dataset analysis workflow.

2.4. Feature Correlation Analysis

The Variation Inflation Factor (VIF) is a measure used in regression analysis to assess
multicollinearity among independent variables. The VIF provides an indication of the
strength of correlation among independent variables, detecting the effect of inflation on the
variance in estimated coefficients in the regression model.

In this study, the VIF was calculated to identify and address the issue of multicollinear-
ity within our dataset. An iterative approach was adopted, where the VIF was computed
repeatedly, eliminating the variable with the highest VIF at each iteration, provided its
value exceeded the threshold of 10. This process effectively reduced multicollinearity in
the model, thereby improving the stability of coefficient estimates.

https://pycaret.org
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The surviving features are mean NO, cultivated areas, benzene, P4O10 fertilizer,
microelement fertilizer, organic fertilizer, income, instruction, vehicles total, urban traffic,
green urban, and noise.

2.5. Comparison of Classification Models

Thirteen different classification models, Gradient Boosting Classifier (gbc) [27], Light
Gradient Boosting Machine (lgb) [28], Random Forest Classifier (rf) [29], Extra Trees Classi-
fier (et) [30], K Neighbors Classifier (knn) [31], Extreme Gradient Boosting (xgb) [32], Linear
Discriminant Analysis (lda) [33], Ada Boost Classifier (ada) [34], Decision Tree Classifier
(dt) [35], Naive Bayes (nb) [36], Quadratic Discriminant Analysis (qda) [37], Logistic Regres-
sion (lr) [38], and Dummy Classifier (dum) [39], a classification model that does not learn
anything from the training data but is particularly useful for assessing the performance
of more complex models and understanding the difficulty of the classification task, were
trained on the whole dataset in a 10-stratified cross-validation.

The performance of our machine learning models was evaluated on each validation
set through the following metrics:

• Accuracy:

ACC =
TP + TN

TP + FP + TN + FN
(1)

• AUC ROC: The area under the Receiver Operating Characteristic (ROC) curve;
• Recall:

REC =
TP

TP + FN
(2)

• Precision:

PREC =
TP

TP + FP
(3)

• F1-score:

F1 = 2 · PREC · REC
PREC + REC

(4)

• Kappa:

k =
2 · (TP · TN − FN · FP)

(TP + FP) · (TP + FN) · (FN + TN)
(5)

2.6. Explainable Algorithm

We adopted the SHAP algorithm [40,41] to explain the decisions of the Gradient
Booster Classifier models on each test sample. It provides insight into the contribution of
each feature to the model’s prediction for a specific instance. SHAP values are based on
game theory concepts and specifically on Shapley values, which originated in cooperative
game theory. One of the key advantages of SHAP is its model-agnostic nature. It can be
applied to any machine learning model, whether it is a black-box or white-box model,
making it versatile and widely applicable. The measurement of how a feature affects the
performance of the classification model on the validation set is computed by including and
removing it from the model:

Φj(x) = ∑
F⊆S−{j}

|F|!(|S| − |F| − 1)!
|S|! [ fx(F ∪ j)− fx(F)] (6)

where Φj(x) represents the SHAP value of feature j for the prediction of the model f
given the input x, S is the set of all features, F ⊆ S − {j} represents all possible subsets
of features excluding feature j, and |F|!(|S|−|F|−1)!

|S|! is a weight parameter that multiplies all
of the permutations of S! by the potential permutations of the remaining class that does
not belong to S, while fx(F ∪ j) and fx(F) denote, respectively, the model’s prediction
when feature j is added to the subset F and when it is absent. We also averaged the ten
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realizations of SHAP values in order to obtain a single representative SHAP vector. The
whole analysis workflow is shown in Figure 3.

3. Results

The aim of this study was to assess, using explainable machine learning models, the
extent to which air pollutants and socioeconomic descriptors are associated with higher or
lower mortality from respiratory system cancer.

3.1. Performance of Classification Models

Table 1 shows the average performance of the 13 machine learning classifiers calculated
as the mean performance obtained during the 10-fold cross-validation. The classifiers are
sorted in descending order according to the accuracy values.

Table 1. Performance of different classification models.

Model Accuracy AUC Recall Prec. F1 Kappa

et 0.78 ± 0.19 0.75 ± 0.17 0.73 ± 0.26 0.82 ± 0.18 0.75 ± 0.23 0.57 ± 0.37

lgb 0.74 ± 0.10 0.86 ± 0.13 0.71 ± 0.16 0.80 ± 0.18 0.73 ± 0.10 0.47 ± 0.21

rf 0.72 ± 0.21 0.80 ± 0.16 0.70 ± 0.25 0.78 ± 0.23 0.70 ± 0.22 0.44 ± 0.42

xgb 0.70 ± 0.16 0.78 ± 0.18 0.68 ± 0.24 0.75 ± 0.18 0.67 ± 0.19 0.39 ± 0.32

gbc 0.68 ± 0.18 0.77 ± 0.19 0.68 ± 0.18 0.72 ± 0.21 0.68 ± 0.16 0.36 ± 0.36

ada 0.67 ± 0.28 0.72 ± 0.17 0.68 ± 0.21 0.67 ± 0.17 0.67 ± 0.17 0.34 ± 0.36

qda 0.65 ± 0.12 0.77 ± 0.14 0.50 ± 0.17 0.73 ± 0.23 0.58 ± 0.16 0.30 ± 0.26

lr 0.64 ± 0.13 0.68 ± 0.17 0.56 ± 0.22 0.71 ± 0.20 0.59 ± 0.17 0.28 ± 0.26

knn 0.64 ± 0.16 0.69 ± 0.15 0.58 ± 0.14 0.69 ± 0.21 0.62 ± 0.15 0.27 ± 0.32

lda 0.62 ± 0.13 0.66 ± 0.21 0.50 ± 0.18 0.70 ± 0.22 0.55 ± 0.16 0.23 ± 0.26

dt 0.61 ± 0.21 0.61 ± 0.21 0.61 ± 0.21 0.64 ± 0.22 0.61 ± 0.19 0.21 ± 0.42

nb 0.55 ± 0.08 0.47 ± 0.17 0.17 ± 0.13 0.60 ± 0.44 0.25 ± 0.18 0.09 ± 0.14

dummy 0.50 ± 0.04 0.50 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

The Extra Trees classifier emerged as the best in predicting an SMR higher or lower
than the mean value of mortality from respiratory system cancer, with a mean accuracy of
0.74 ± 0.13. The mean ROC AUC of the best model is shown in Figure 4. Each fold of the
cross-validation process yielded a distinct AUC value, allowing us to compute the mean
AUC across all folds and assess the model’s overall performance.

3.2. Interpreting Model Predictions: Insights from SHAP Analysis

In this section, we present a summary plot of the SHAP values obtained from a binary
classification model, shedding light on the influential features driving the model’s predic-
tions. Within the 10-fold cross-validation, SHAP values of the features of the provinces
present in the validation fold were calculated after training the classification model with
the nine folds of training data. This procedure was repeated for each of the validation folds.
The summary plot provides a comprehensive overview of the impact of each feature on
model predictions, revealing both the direction and magnitude of their influence. Figure 5
illustrates the summary plot generated from the SHAP values computed for the binary
classification model. Each point in the summary plot represents a feature, with its position
on the y-axis indicating the feature’s importance in terms of absolute SHAP value. The
color of each point represents the feature’s value, with red indicating high values and blue
indicating low values. Additionally, the horizontal bars represent the impact of each feature
on model predictions, with longer bars signifying a stronger influence.
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Figure 4. Average ROC curve with standard deviation of the Extra Trees classifier over
10 validation sets.

Figure 5. Shap summary plot. It reports the SHAP values, represented along the x-axis, of the dataset
features, reported on the y-axis. Each point on the graph represents a province.

4. Discussion

Our findings show that most of the input variables included in this study are weakly
correlated to the target variable, the standard mortality ratio, while our Extra Trees model
accurately predicts provinces withan SMR higher than the mean value. Therefore, it is
likely that a nonlinear relationship between air quality and SMR exists, thus suggesting the
beneficial role of including machine learning tools in this analysis. This is also consistent
when comparing the classification performance of the tree-based algorithms with other
shallow classification algorithms, including the LDA (and others). In ecological studies,
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linear models should be preferred since they are easy to interpret; however, Extra Trees
combined with the SHAP is a robust choice that does not require any prior assumptions,
while providing local feature importance values that are completely intelligible.

We also used the distribution of the SHAP values as a tool to estimate the global
feature importance of the variables included in our analysis. Accordingly, this analysis
confirms that average exposure to NOX is the most important feature in predicting the SMR
of respiratory system cancer that is higher than the mean value. This result is in agreement
with previous analyses confirming the positive association between respiratory diseases
and exposure to NO when conducting studies on populations [42,43].

According to this study, the second most important feature was the average benzene
concentration per province. Chronic exposure to benzene has been linked to leukemia [44,45];
however, there is limited evidence of a link with respiratory cancer in the scientific litera-
ture [45–47]. Nevertheless, benzene pollution is typically generated because of biomass
combustion due to wildfires [48] and vehicle exhaust [49]. Hence, we believe this variable
is a proxy for population exposure to poor air quality due to smoke from combustion from
human and natural activities.

Minor effects can also be imputed to microelement fertilizer consumption and exten-
sion of the cultivated areas. As can be seen in Figure 5, the distribution of the related SHAP
values suggests that these two variables act as a proxy for living in a rural environment.

Another important feature was the mean income per province. Although it is known
that socioeconomic inequalities have a role in respiratory cancer outcomes [50], this effect
cannot be assessed through a population study. Besides, it is likely that the average income
per province is acting as a proxy for residing in high-populated areas, where most of the air
pollution is emitted [42], while not accounting for social disparities.

5. Limitations

Key limitations in the proposed workflow stem from the dataset’s limited size and the
utilization of standard mortality ratios aggregated at provincial levels to explore associa-
tions between respiratory cancer mortality and air pollution. In fact, the dataset’s limited
size hampers the ability to discern reliable nonlinear relationships due to the significant
influence of outliers and noise. Consequently, we employed a k-fold cross-validation
framework and then computed confidence intervals for both predictions and local feature
importance. On the other hand, the reliance on aggregated mortality ratios for individual
provinces exposes the study to the ecological fallacy, as well as to potential omitted vari-
able bias [51,52], meaning that conclusions drawn at the group level may not accurately
represent individual-level associations or causality. Finally, it should be stressed that most
of the important variables according to the SHAP algorithm may act as a proxy for the high
density of urban activities. If a causality exists, this might be related to the role of NOx
in contributing to the development of asthma and respiratory infections, causing a range
of harmful effects on lungs [53–55]. On the other hand, NO is also related to proximity to
residential areas and human activities, so the measured positive association could be partly
attributable to other air pollutants, including particulate matter [42]. This work presents
a first attempt to extensively evaluate the statistical association between air quality and
respiratory cancer mortality over the Italian provinces while accounting for effects from
confounding socioeconomic variables. Our conclusions are in agreement with previous
cohort studies and meta-analyses [42,56]. The database considered here examined a single
year of observations; thus, extending the temporal range of our study could grant increased
robustness to the analyses and design a regression approach to model the SMR due to
respiratory cancer.

6. Conclusions

This paper explores the intricate relationship between air pollution and respiratory
cancer, with a focus on cancers of the lung, trachea, and bronchi. Recognizing the urgent
public health challenge posed by respiratory cancers, we address the need to identify the
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most harmful pollutants to inform targeted policy interventions. Our study introduces a
novel approach using explainable artificial intelligence based on remote sensing data and
socioeconomic data to predict Italian provinces with respiratory system cancer mortality
rates higher or lower than the average, which offers several implications for formulating
regulations and allocating resources. The results of the research can provide an empirical
basis for adopting or strengthening regulations regarding air quality. Identifying provinces
with higher mortality rates for respiratory system cancers can highlight areas with higher
levels of air pollution and provide an incentive for implementing policies aimed at reducing
atmospheric pollution. The ability to predict provinces with respiratory system cancer
mortality rates higher or lower than the average can guide more efficient allocation of
resources. Areas identified with higher risk may require additional investments in pre-
vention programs, early diagnosis, and treatment of respiratory system cancer, as well as
interventions to improve air quality. The adoption of stricter regulations on air pollution
and the targeted allocation of healthcare resources can improve the respiratory health of a
population and reduce the incidence and mortality of respiratory system cancers.
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