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Abstract: Metabolic dysfunction-associated hepatic steatosis (MAFLD) indicates the metabolic risk
associated with hepatic steatosis, overweight and obesity, and clinical evidence of metabolic dysreg-
ulation. Since MAFLD is one of the diseases that show a high frequency of alterations in the lipid
content of cell membranes, the aim of this study was to evaluate the indices of oxidative damage of
erythrocyte membranes in overweight and obese MAFLD subjects. The study was conducted on
serum samples and red blood cell membranes of overweight and obese MAFLD subjects. For each pa-
tient, biochemical measurements and lipidomic analyses of erythrocytes membranes were performed.
Significant differences in fatty acid profiles of RBC membranes were found between overweight and
obese patients. In particular, the Peroxidation Index (PI) was higher in the erythrocyte membranes
of obese subjects than in overweight subjects. The same behavior was observed for Unsaturation
Index (UI) and Free Radical Stress Index (Free RSI), supporting the fact that the systemic increase in
oxidative stress was associated with obesity. The study shows that there is a different susceptibility
to erythrocyte membrane peroxidation for overweight and obese subjects, and the increased values
of oxidative stress indices observed in the erythrocyte membranes of obese patients with MAFLD
may be a possible indicator of pro-oxidative events occurring in obesity-related diseases.

Keywords: MAFLD; peroxidation index; fatty acid profile; erythrocyte membranes

1. Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) emphasizes the metabolic
risk associated with liver steatosis, characterized by a pathologic accumulation of fat
inside the hepatocytes (mainly as triglycerides), strongly also linked to insulin resistance,
obesity and overweight [1]. No effective pharmacological intervention against MAFLD
is currently adopted, so diet and lifestyle modifications for weight control are preferably
used to counteract the metabolic alterations that occur in MAFLD [1,2]. The identification
of the mechanisms involved in the progression of this disease is important to reveal novel
biomarkers and therapeutic targets.
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Although many factors contribute to the pathophysiology of MAFLD, several studies
show that lipotoxicity is a key factor, together with chronic inflammatory tissue condi-
tions [3]. Lipid peroxidation produced by oxidative stress activates inflammatory pathways
contributing to an upregulation of reactive oxygen species (ROS) [4].

Literature data demonstrate that in pathological conditions, lipid peroxidation is a
mechanism through which cells respond to ROS [5]. The most susceptible to peroxidation
are the fatty acids with a high number of double bonds, such as the polyunsaturated fatty
acids (PUFAs) located in cell membranes [6].

The erythrocyte membrane might be a valid biomarker for the fatty acid composi-
tion present in other body cells. Several studies have shown that changes in the fatty
acid composition of red blood cell (RBC) membranes have been observed in different
metabolic diseases, including Nonalcoholic Fatty Liver Disease (NAFLD) and colorectal
cancer (CRC) [7–10]. In this regard, we have previously found low levels of Saturation
Index, given by the relationship of stearic acid to oleic acid in RBC membranes of pa-
tients with severe Nonalcoholic Fatty Liver Disease (NAFLD) compared to controls [11].
In addition, high levels of arachidonic acid (AA) were observed in erythrocyte membranes
of NAFLD patients, where the AA/EPA ratio levels (arachidonic acid/eicosapaentenoic
acid) were associated with liver injury [7]. AA is a polyunsaturated fatty acid belonging to
the omega-6 family and constitutes the main precursor of eicosanoids, substances involved
in the inflammatory response [7].

The fatty acid profile of red blood cells has been tested in various studies, in the context
of NAFLD [8,12]. Interestingly, molecular alterations in erythrocyte membranes seem be
mediators of disease [12] and, recently, experimental studies have proved that red blood
cells are active players during immunometabolic dysregulation [13].

There is also evidence that a fatty acid dysregulation in erythrocyte membranes is
associated with fibrosis-related liver disease, supporting the central role of erythrocytes in
the onset of different metabolic alterations [14]. Alterations in the biophysical properties of
the red blood cell membrane contribute to modifying the fluidity and permeability of the
membrane itself, causing damage to the cells.

Lipid peroxidation into the cell membranes can have a significant impact on the
intensity of oxidative stress and inflammation inside the cells [6,15]. The increase in inflam-
matory molecules, associated with a down-regulation of cellular antioxidant system, seems
to induce a dysregulation of the lipid metabolism. Altered expression levels of fibroblast
growth factor 21 (FGF21) have been detected in patients with metabolic syndrome [16].
FGF21 is a hormone involved in the regulation of lipid and glucose metabolism and its
expression is often associated with obesity and liver steatosis [17].

Moreover, an overexpression of modified lipoproteins, particularly oxidized- and
glycated- low-density lipoproteins (LDL) has been detected in NAFLD subjects [18]. The
increased prevalence of oxidized LDL (oxLDL) in the serum is often related to higher body
mass index (BMI) [19], and likely to an inflammatory state, consistent with an increased
metabolic risk for patients with NAFLD.

Several studies have demonstrated that both the quantity of LDL and the quality
(particularly small, dense LDL) may increase the metabolic risk [20,21].

Recently, we observed high levels of small dense LDL (sdLDL) particles in the serum
of CRC patients, and this altered pattern was also associated with higher serum levels of
oxLDL [22].

sdLDL has reduced binding capacities to LDL receptors showing a stronger affinity
to extracellular matrix and a major tendency to oxidative modification [23]. sdLDL parti-
cles also play a central role in both the initiation and progression of tissue inflammation
through platelet activation and vascular endothelial cell injury [24]. In particular, the
smaller LDL fractions show greater trans endothelial transport and an increased oxidative
susceptibility [25].

Since MAFLD is one of the pathologies that show a high frequency of the alterations
in the lipid content of cell membranes, the aim of this study was to evaluate the fatty
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acid profile, particularly the indices of oxidative stress in the erythrocyte membranes from
overweight and obese MAFLD subjects. The study was performed to identify biochemical
parameters capable of discriminating a subset of patients who could benefit from nutritional
or dietary interventions.

2. Materials and Methods
2.1. Patients

The study was conducted on 42 subjects with a sedentary lifestyle (26 male and
16 female), aged between 30 and 60, recruited on a voluntary basis by the Clinical Nutrition
Clinic of our Institute. The inclusion criterion was the diagnosis of metabolically associated
fatty liver disease (MAFLD) based on clinical, instrumental, and serum parameters. Specifi-
cally, all subjects had a controlled attenuation parameter (CAP) ≥ 300 dB/m, measured by
vibration-controlled elastography (VCTE) implemented on FibroScan® (Echosens, Paris,
France) and BMI ≥ 25 kg/m2, calculated as weight (kg) divided by the squared height (m2).
The BMI was taken as a reference to define the two categories: overweight patients had
25 ≤ BMI ≥ 29.99 and obese patients had BMI ≥ 30. Exclusion criteria were the following:
gastroesophageal reflux disease; inflammatory bowel disease; oncological diseases; serious
medical conditions that could compromise participation in the study; people on a special
diet or using blood thinners; and subjects unable to follow a diet for religious or other
reasons. Written informed consent was obtained from all subjects for blood tests and
clinical data collection.

2.2. Eating Habits

To evaluate eating habits, all participants were interviewed by nutritionists. During
the personal interview, subjects reported the foods they usually ate, the weekly frequency
and the quantity. To facilitate recording the amount of food consumed, participants were
presented with pictures of 3 different portions of each food they cooked. For other foods,
however, quantities were recorded in household units or volume. Special attention was paid
to the preparation of the dishes, the type of food used, cooking practices, the use of spices,
and the amount and type of oil used. Food consumption was converted to energy using
metaDIETA software, version PROFESSIONAL 4.0.1 (METEDA srl, Rome (RM), Italy).

In addition, metaDIETA made it possible to calculate the percentage and/or grams of
macro- and micronutrients routinely consumed by patients.

2.3. Biochemical Measurements

Blood samples were collected from all participants after a 12 h fast in tubes containing
ethylenediaminetetraacetic acid anticoagulant (EDTA) for blood count analysis or silica gel
as clotting activator for serum separation. Serum samples were separated by centrifugation
at 3200 rpm for 10 min, and used appropriately.

Biochemical measurements were performed at the Laboratory of Clinical Pathology of
our Institute. Complete blood count, glucose, insulin, HOMA test, total cholesterol, high
density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides, aspartate amino-
transferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT),
alkaline phosphatase (ALP), protein C-reactive (PCR), and ferritin were assayed by sets
of XN-1000 (Sysmex, Norderstedt, Germany) and Cobas 8000 (Roche diagnostics S.p.A.,
Monza, Italy) autoanalyzers, respectively.

2.4. Red Blood Cell Membrane Fatty Acid Profile

The blood sample in the tube with EDTA was used for red blood cell (RBC) membrane
lipidomic analysis. Briefly, 500 µL of whole blood was centrifuged at 4000 rpm for 5 min at
4 ◦C. The plasma was removed and mature cells, having a smaller diameter and higher
weight, were isolated using an automated protocol (Robot LNG-R1, Lipinutragen-Tecan,
Bologna, Italy). Subsequently, cell lysis, isolation of the membrane pellet, extraction of
phospholipids performed according to the method of Bligh and Dryer [26], and trans-
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esterification of FAMEs with a solution of potassium hydroxide (KOH)/methyl alcohol
(MeOH) (0.5 mol/L) were performed with the Robot LNG-R1. After extraction of the
FAMEs with hexane, the esterified FAMEs were analyzed with a gas chromatograph on
a system equipped with a splitless inlet, an FID detector, and a hydrogen gas generator
(Thermo Fisher Scientific, Milan, Italy). A total of 1 µL of FAME was carried out on BPX70
0.25 UM capillary column SGE analytical science (SGE EUROPE Ltd., Kiln Farm Milton
Keynes, UK). Hydrogen was used as carrier gas (3.0 mL min−1, constant flow mode). The
temperature of the injector and the FID detector was 250 ◦C.

Fatty acid (FA) quantification was calculated as relative % (each FA as total FA con-
tent). Peaks were identified by comparing them with a mixture of standards (Supelco
37-Component FAME Mix, Sigma Aldrich, Milan, Italy). A representative chromatogram
with the retention times of single detected fatty acids is shown in Figure S1.

Of the 37 FAs present in the RBC membranes analyzed, we paid attention to a few
components representative of the three main FA families: saturated fatty acids (SFAs), espe-
cially palmitic and stearic acid; monounsaturated fatty acids (MUFAs), such as palmitoleic,
oleic, and cis-vaccenic acid; polyunsaturated fatty acids (PUFAs), in particular linoleic (LA),
arachidonic (AA) and dihomo-gamma-linolenic (DGLA) acid belonging to the omega-6
PUFAs family; and eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic
(DHA) acid, belonging to the omega-3 PUFAs family.

Taking into account the mentioned FAs, some indices were calculated: the Peroxidation
Index (PI) [(% MUFA × 0.025) + (% LA × 1) + (% DGLA × 2) + (% AA × 4) + (% EPA × 6)
+ (% DHA × 8)], the Unsaturation Index (UI) [(% MUFA × 1) + (% LA × 2) + (% DGLA × 3)
+ (% AA × 4) + (% EPA × 5) + (% DHA × 6)], the Free Radical Stress Index (Free RSI)
(oleic acid + AA) and the Saturation Index (SI) (stearic acid/oleic acid) [27].

2.5. Fibroblast Growth Factor 21 (FGF21) and Oxidized Low-Density Lipoprotein (oxLDL) Assay

Serum levels of fibroblast growth factor 21 (FGF21) and oxidized low-density lipopro-
tein (oxLDL) were measured with a quantitative sandwich ELISA kit (MyBioSource Inc.,
San Diego, CA, USA) according to the manufacturer’s recommendations. Briefly, the stan-
dards and serum samples were pipetted in duplicate into a 96-well plate, and the plate was
incubated at 37 ◦C. The specific antibody was added and the plate was incubated again.
After 60 min, the wells were washed, HRP conjugate reagent was added, and the plate was
incubated at 37 ◦C. After washing, the substrate reagent was applied. The optical density
(OD) was read at 450 nm and the concentration of FGF21 and oxLDL was calculated using
a standard curve for each molecular target.

2.6. Small- and Dense-LDL (sdLDL) Score Analysis

The sdLDL score was calculated as the sum of subfractions 3-7 divided by the sum
of subfractions 1-7 [((Σ LDL 3-7)/(Σ LDL1-7)) × 100]. Specifically, LDL was divided into
seven subfractions using the Lipoprint LDL System (Quantimetrix, Redondo Beach, CA,
USA). Briefly, 25 µL of serum was mixed with 200 µL of gel-loaded Lipoprint and deposited
on top of the polyacrylamide gels. The tubes were placed for 30 min under UV light at
room temperature and then electrophoresis. After the electrophoretic run the tubes were
inserted into a digital scanner to acquire the image and the detected lipoprotein bands were
analyzed using the Lipoware software program (Version 1.62, Quantimetrix Corporation,
Redondo Beach, CA, USA).

2.7. Statistical Analysis

The distribution of the data was checked by the Shapiro–Wilk test. Patients’ character-
istics are reported as mean and standard deviation (Mean ± SD) for continuous variables,
and as frequency and percentages (%) for categorical variables. To test the association
between the independent groups (overweight vs obese), a chi-square or Fisher test was
used for categorical variables, where necessary, and the Wilcoxon Rank Mann–Whitney
was chosen for continuous variables. To test the null hypothesis of non-association, the two-
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tailed probability level was set at 0.05. The analyses were conducted using StataCorp.2021
software. Release 17. College Station, TX: StataCorp LLC.

3. Results

Table 1 shows the clinical and biochemical features of the enrolled subjects. The param-
eters considered have been analyzed for the total, overweight, and obese patient cohorts.

Table 1. Clinical and biochemical characteristics observed in total, overweight, and obese patient cohorts.

Parameters * Total Cohort
(n = 42)

Overweight
(n = 19)

Obese
(n = 23) p ˆ

Gender (M) (%) 26 (61.90) 9 (47.37) 17 (73.91) 0.08 Ψ

Age (yrs) 47.4 ± 8.46 45.5 ± 9.44 49.0 ± 7.38 0.14
BMI (Kg/m2) 29.2 ± 5.52 25.3 ± 2.41 32.4 ± 5.31 <0.0001
RBC (106/µL) 4.93 ± 0.51 4.77 ± 0.58 5.06 ± 0.40 0.04
Hb (g/dL) 14.7 ± 1.69 13.9 ± 1.82 15.3 ± 1.29 0.007
Hematocrit (%) 43.7 ± 4.37 42.1 ± 5.09 45.0 ± 3.25 0.04
MCV (FL) 88.8 ± 3.64 88.0 ± 2.68 89.4 ± 4.23 0.09
Platelets (103/µL) 247 ± 72.29 228 ± 47.37 263 ± 85.57 0.16
WBCs (103/µL) 6.00 ± 1.79 5.38 ± 1.37 6.51 ± 1.95 0.04
Glucose (mg/dL) 90.5 ± 13.62 86.7 ± 12.54 93.6 ± 13.94 0.09
Insulin (µUI/mL) 13.5 ± 5.96 11.9 ± 3.80 14.8 ± 7.10 0.15
HOMA test 3.08 ± 1.67 2.53 ± 0.88 3.54 ± 2.02 0.14
AST (U/L) 20.5 ± 6.04 19.8 ± 4.06 21.1 ± 7.33 0.84
ALT (U/L) 25.9 ± 13.24 20.9 ± 11.32 30.0 ± 13.53 0.002
AST/ALT Ratio 0.91 ± 0.35 1.09 ± 0.38 0.76 ± 0.23 0.002
GGT (U/L) 30.8 ± 23.46 21.8 ± 20.34 37.9 ± 23.70 0.0005
Cholesterol (mg/dL) 202 ± 41.24 190 ± 34.18 212 ± 44.69 0.08
HDL 49.7 ± 12.16 52.5 ± 11.60 47.4 ± 12.38 0.11
LDL (mg/dL) 129 ± 38.11 115 ± 30.52 140 ± 40.48 0.03
Triglycerides (mg/dL) 126 ± 72.83 104 ± 82.19 144 ± 60.01 0.02
sdLDL score (%) 1.96 ± 3.14 1.50 ± 2.69 2.32 ± 3.47 0.39
PCR (mg/dL) 0.23 ± 0.32 0.16 ± 0.21 0.28 ± 0.38 0.14
ALP (U/L) 67.8 ± 22.69 68.0 ± 27.88 67.7 ± 21.39 0.61
Ferritin (ng/mL) 299 ± 252.77 281 ± 181.27 307 ± 285.52 0.94

* As mean and standard deviation for continuous variables and as frequency and percentage (%) for categorical.
ˆ Wilcoxon rank-sum test (Mann–Whitney); Ψ Chi-square test. Abbreviations: BMI, Body Mass Index; RBC,
Red Blood Cell; Hb, Hemoglobin; MCV, Mean Corpuscular Volume; WBCs, White Blood Cells; HOMA test,
Homeostasis Model Assessment test; AST, Aspartate Aminotransferase; ALT, Alanine Transaminase; GGT,
Gamma-Glutamyl Transferase; HDL, High-Density Lipoprotein; LDL, Low-Density Lipoprotein; sdLDL, small
dense Low-Density Lipoprotein; PCR, Protein C-Reactive; ALP, Alkaline Phosphatase.

Data analysis showed that no difference was detected between the sex and age of the two
groups of patients, excluding the possibility that the age factor is related to oxidative stress.

The RBC counts, hemoglobin, and hematocrit values were significantly higher in
the obese patient group than in the overweight group (Table 1, p = 0.04, p = 0.007 and
p = 0.04, respectively). Furthermore, white blood cell count (WBC) was significantly
higher in obese patients, as well as the serum levels of alanine transaminase (ALT), the
aspartate aminotransferase/alanine transaminase ratio (AST/ALT ratio), gamma-glutamyl
transferase (GGT), low-density lipoprotein (LDL) and triglycerides.

Significant differences in the RBC membrane fatty acid profile have been detected
between overweight and obese patients (Table 2). In particular, obese patients, compared
to overweight patients, showed increased values of AA, the main fatty acid of the omega-6
family. This increase has a great influence on the peroxidation index (PI), which is higher
in the erythrocyte membranes of obese subjects. The same behavior was observed for
the Unsaturation Index (UI) and the Free Radical Stress Indexes (Free RSI), supporting
the concept that an increased systemic oxidative stress associated with obesity occurs in
these patients.
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Table 2. Fatty acid (FA) profile in red blood cell (RBC) membrane in total, overweight, and obese
patient cohort.

RBC Membrane FA% * Total Cohort
(n = 42)

Overweight
(n = 19)

Obese
(n = 23) p ˆ

Saturated fatty acids
Palmitic acid 22.0 ± 1.73 22.4 ± 1.70 21.6 ± 1.69 0.16
Stearic acid 18.0 ± 1.75 17.7 ± 2.06 18.2 ± 1.45 0.35

Monounsaturated fatty acids
Palmitoleic acid 0.16 ± 0.15 0.18 ± 0.16 0.14 ± 0.14 0.36
Oleic acid 15.5 ± 1.37 15.6 ± 1.58 15.3 ± 1.19 0.73
cis-Vaccenic acid 0.74 ± 0.14 0.74 ± 0.13 0.73 ± 0.15 0.74

Polyunsaturated fatty acids
LA 10.4 ± 1.41 10.8 ± 1.60 10.1 ± 1.17 0.04
DGLA 1.75 ± 0.38 1.71 ± 0.45 1.79 ± 0.32 0.14
AA 14.7 ± 1.65 13.9 ± 1.35 15.4 ± 1.58 0.003
EPA 0.58 ± 0.28 0.55 ± 0.22 0.61 ± 0.32 0.83
DPA 1.85 ± 0.34 1.79 ± 0.29 1.90 ± 0.38 0.34
DHA 3.74 ± 0.74 3.78 ± 0.64 3.71 ± 0.83 0.71

Total fatty acids
Total SFAs 41.5 ± 2.42 41.8 ± 2.13 41.3 ± 2.65 0.37
Total MUFAs 18.0 ± 1.80 18.1 ± 2.20 17.9 ± 1.43 0.85
Total PUFAs 36.4 ± 2.23 35.8 ± 2.17 36.9 ± 2.21 0.19
Total n-9 PUFAs 15.8 ± 1.45 15.9 ± 1.71 15.8 ± 1.23 0.91
Total n-6 PUFAs 30.1 ± 2.44 29.6 ± 2.41 30.6 ± 2.41 0.16
Total n-3 PUFAs 6.23 ± 1.06 6.20 ± 0.97 6.25 ± 1.14 0.99

Fatty acid index
SI 1.17 ± 0.15 1.15 ± 0.18 1.19 ± 0.12 0.43
SFAs/MUFAs 1.15 ± 0.09 1.17 ± 0.09 1.13 ± 0.09 0.18
AA/DHA 4.09 ± 0.98 3.78 ± 0.78 4.35 ± 1.07 0.11
AA/EPA 30.6 ± 13.62 30.0 ± 13.50 31.2 ± 13.99 0.66
Omega3 index 4.33 ± 0.90 4.34 ± 0.75 4.31 ± 1.03 0.79
n-6/n-3 PUFAs 5.00 ± 1.04 4.91 ± 0.99 5.08 ± 1.10 0.68
Free RSI 30.2 ± 1.84 29.5 ± 1.92 30.7 ± 1.61 0.04
UI 128 ± 7.13 125 ± 6.21 130 ± 7.23 0.02
PI 106 ± 8.18 103 ± 5.91 109 ± 9.08 0.05

* As mean and standard deviation for continuous variables and as frequency and percentage (%) for categorical.
ˆ Wilcoxon rank-sum test (Mann–Whitney); Abbreviations: LA, Linoleic acid; DGLA, Dihomo-gamma-linolenic
acid; AA, Arachidonic acid; EPA, Eicosapentaenoic acid; DPA, Docosapentaenoic acid; DHA, Docosahexaenoic
acid; SFAs, Saturated fatty acids; MUFAs, Monounsaturated fatty acids; PUFAs, Polyunsaturated fatty acids; SI,
Saturation Index; Free RSI, Free Radical Stress Index; UI, Unsaturation Index; PI, Peroxidation Index.

Moreover, obese patients with high values of the stress oxidative indices showed
higher levels of RBC, hemoglobin, hematocrit, and small dense LDL (sdLDL) than over-
weight subjects, although these values were in the physiological range. In addition, sig-
nificant differences were detected between the two patient groups for liver biomarkers,
triglycerides, and cholesterol metabolism.

The levels of FGF21 were significantly higher in the serum of the obese group with
respect to overweight subjects (Figure 1A), showing the involvement of FGF21 in the
alterations of lipid metabolism occurring in obesity-related diseases. This growth factor
is mainly exported into the circulation by the liver responding to stress or dietary factors
such as high calories or protein intake.
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Figure 1. Serum levels of FGF21 (A) and oxLDL (B) in total cohort studied, overweight and obese
subjects. * means a p < 0.05.

In the serum of obese patients, a slight increase in the oxLDL levels was observed,
even if the difference with respect to overweight subjects was not statistically significant
(Figure 1B).

These data confirm the fact that obese patients generally present a low grade of
systemic inflammation, often associated with an alteration in lipid metabolism.

The calculation of macronutrient intake (Table 3) demonstrated that the obese subjects
had higher dietary protein and lipid consumption with respect to overweight subjects. In
contrast, total carbohydrate intake was significantly lower in the obese patients, probably
due to a lower fruit consumption.

No evident difference was observed between the two groups of subjects for the
composition of dietary micronutrients, except for the content of vitamin E (Table 3).
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Table 3. Daily intake of macro- and micro-nutrients in overweight and obese patients.

Parameters * Total Cohort
(n = 42)

Overweight
(n = 19)

Obese
(n = 23) p ˆ

Macronutrients
Energy intake (Kcal/day) 2057 ± 308.04 1871 ± 248.34 2210 ± 268.59 <0.0001
Proteins (g) 99.8 ± 23.12 88.4 ± 16.20 109 ± 24.02 0.005
Proteins (%) 19.4 ± 3.21 19.0 ± 2.90 20.0 ± 3.47 0.35
Lipids (g) 95.7 ± 22.21 79.4 ± 14.56 109 ± 18.04 <0.0001
Lipids (%) 41.6 ± 5.40 38.3 ± 5.00 44.4 ± 3.98 0.0001
Carbohydrates (g) 210 ± 39.56 212 ± 42.76 208 ± 37.62 0.99
Carbohydrates (%) 38.6 ± 6.35 42.4 ± 5.36 35.5 ± 5.39 0.0003
Starch (g) 84.3 ± 24.35 83.3 ± 25.44 85.1 ± 23.95 0.50
Sugars (g) 52.2 ± 21.34 59.9 ± 25.99 45.8 ± 14.21 0.04
Total Fiber (g) 10.4 ± 2.55 10.6 ± 2.50 10.3 ± 2.64 0.67

Micronutrients
Sodium (mg) 886 ± 828.15 654 ± 149.61 1078 ± 1083.90 0.09
Potassium (mg) 1168 ± 620.39 1055 ± 331.16 1262 ± 779.33 0.65
Iron (mg) 7.16 ± 4.54 5.79 ± 1.50 8.29 ± 5.79 0.16
Calcium (mg) 443 ± 129.51 461 ± 107.77 429 ± 145.84 0.44
Phosphorus (mg) 837 ± 218.69 730 ± 179.49 924 ± 322.03 0.09
Thiamine (mg) 0.53 ± 0.35 0.45 ± 0.14 0.60 ± 0.44 0.42
Riboflavina (mg) 0.63 ± 0.20 0.60 ± 0.20 0.66 ± 0.20 0.33
Niacin (mg) 10.4 ± 5.03 9.04 ± 2.59 11.6 ± 6.22 0.25
Vitamin A (mcg) 389 ± 160.24 358 ± 126.70 415 ± 182.28 0.45
Vitamin C (mg) 44.7 ± 50.16 55.6 ± 64.35 35.7 ± 33.38 0.53
Vitamin E (mg) 8.36 ± 3.73 6.90 ± 3.63 9.57 ± 3.43 0.01

* As mean and standard deviation for continuous variables. ˆ Wilcoxon rank-sum test (Mann–Whitney).

4. Discussion

Accumulating evidence suggests that changes in cell membrane fatty acid composition
are related to the development of different pathologies, including metabolic diseases [28].

The evaluation of the indices of oxidative stress of the erythrocyte membrane in
MAFLD patients has provided further evidence for the role of cell membrane composition
in affecting the metabolism of the entire body.

Compared to overweight subjects with MAFLD, the obese patients showed higher
values of PI, UI, and Free RSI in the erythrocyte membranes, suggesting a higher probability,
for these subjects, of presenting tissue inflammation and altered cell metabolism.

It is interesting to note that, in the obese patients, we detected higher levels of AA,
considered to be a molecular compound linked to inflammation [29] and susceptible to
peroxidation [30].

In this regard, an association between AA oxidation and BMI has been recently
demonstrated [31]. Changes in hepatic n-6 PUFA content, particularly in the AA levels,
predispose the subject to liver steatosis by favoring lipid synthesis, over-oxidation, secretion,
and fat accumulation [32].

The contribution of erythrocytes to the immunometabolic cross-talk, mainly by linking
the systemic metabolism with inflammation, has been widely described [13]. The red blood
cells seem be capable of producing potent immunoregulatory metabolites in response to
various stimuli [33,34]. These characteristics possibly imply that erythrocytes mediate
interactions between the metabolic and the immune systems [13].

Moreover, there is evidence for the pro-inflammatory role of red blood cells in the
context of systemic metabolism. Benson et al. [35] showed that erythrocytes are excellent
contributors to the pathogenesis of NAFLD, reporting an increase in reactive oxygen species
(ROS) in red blood cells. It is evident that these erythrocyte alterations could be responsible
for important molecular changes in the liver [12], enhancing the hepatic inflammation and
fibrosis development.
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High levels of circulating FGF21 are often linked to different dysfunctional metabolic
processes, such as obesity [36]. In accordance with these studies, we found an upregulation
of this hormone in the serum of the obese group, suggesting that serum FGF21 levels
are indicative of a lipid dysregulation that occurs in obese patients with MAFLD. Several
studies have positively correlated serum FGF21 levels with ALT levels. ALT is one of the
parameters used to indicate liver failure; in fact, our data show higher levels of ALT in
obese patients compared to overweight patients [37].

In these patients, probably because of a greater presence of visceral fat, we observed
significant changes in the fatty acid profile of the erythrocyte membrane.

The identification of biochemical profiles, capable of evaluating a cell oxidative in-
jury, is important to better understand the pathogenetic mechanisms involved in obesity-
related diseases.

Other studies have demonstrated that altered membrane fluidity in erythrocytes could
be the expression of a more generalized systemic phenomenon [38–40]. The interest in
examining mature erythrocytes allows for the evaluation of possible lipid profile alterations
connected more to metabolism than to dietary intake [40].

In this study, it is evident that the increase in the PI detected in the obese patient
group confirms the role of the peroxidation of a specific type of lipids in the pathology
of several human diseases, including obesity complicated with MAFLD. The proposed
mechanisms of peroxidation, in turn, leads to cell membrane damage including an increase
in stress-activated pathways associated with adiposity. In obese individuals, the PI could be
a valid biomarker of a prolonged stress condition, which can explain disease severity, even
if more clinical studies are required to understand its value and usage in clinical practice.

Diet is a major environmental factor contributing to metabolic diseases [41]. Sev-
eral studies have shown that the type of diet and the Westernization of lifestyle nega-
tively influence the cell membrane fatty acid profile [41,42]. A balanced diet involves the
following distribution of macronutrients: 40–60% carbohydrates, 10–12% proteins, and
20–35% fats. The study of the eating habits of the enrolled patients highlighted an imbalance
in the percentages of macronutrients, in particular a higher protein and lipid consumption.
Compared to overweight patients, obese patients made excessive use of margarine, butter
and oily fruits and their derivatives such as olives, walnuts, hazelnuts, peanuts, olive oil,
walnut oil, sunflower oil, and foods rich in vitamin E.

The consumption of food marketing or larger food portions causes an inflammatory
status and a higher production of oxidant products. The replacing of energy intake from
saturated fatty acids with an equivalent energy intake from PUFAs or MUFAs could inhibit
adipose inflammasome-mediated IL1-beta secretion [43].

A diet rich in natural antioxidants and bioactive compounds, such as the Mediter-
ranean diet, has beneficial properties on metabolic syndrome. Different studies have
demonstrated that one of the mechanisms of action involved in reducing the risk for the
development of metabolic diseases seen in the Mediterranean diet is the ability of some
its dietary compounds to inhibit the NF-kB and consequently to reduce the secretion of
proinflammatory cytokines [44]. Moreover, nutrients as polyphenols reduce inflammation
and oxidative stress by affecting the levels of C-reactive protein [45].

5. Conclusions

The identification of specific fatty acid profiles in red blood cell membranes is useful
to better understand the molecular mechanisms involved in MAFLD.

The limited number of subjects enrolled and the lack of a control group of healthy
subjects could represent some limitations of the study. However, in light of the current
experimental data, the study demonstrates that the oxidative indices of the erythrocyte
membranes are able to discriminate between overweight and obese subjects, confirming
the role for cell membrane conditions in the pathogenesis of obesity-related diseases.
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