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Abstract: Given the widespread use of whole slide imaging (WSI) for primary pathological diag-
nosis, we evaluated its utility in assessing histological grade and biomarker expression (ER, PR,
HER2, and Ki67) compared to conventional light microscopy (CLM). In addition, we explored the
utility of digital image analysis (DIA) for assessing biomarker expression. Three breast pathologists
assessed the Nottingham combined histological grade, its components, and biomarker expression
through the immunohistochemistry of core needle biopsy samples obtained from 101 patients with
breast cancer using CLM, WSI, and DIA. There was no significant difference in variance between
the WSI and CLM agreement rates for the Nottingham grade and its components and biomarker
expression. Nuclear pleomorphism emerged as the most variable histologic component in intra-
and inter-observer agreement (kappa ≤ 0.577 and kappa ≤ 0.394, respectively). The assessment
of biomarker expression using DIA achieved an enhanced kappa compared to the inter-observer
agreement. Compared to each observer’s assessment, DIA exhibited an improved kappa coefficient
for the expression of most biomarkers with CLM and WSI. Using WSI to assess prognostic and pre-
dictive factors, including histological grade and biomarker expression in breast cancer, is acceptable.
Furthermore, incorporating DIA to assess biomarker expression shows promise for substantially
enhancing scoring reproducibility.

Keywords: breast cancer; core needle biopsy; histological grade; biomarkers; validation; whole slide
imaging; digital image analysis

1. Introduction

The assessment of breast cancer (BC) histological grade and biomarker expression has
become routine practice in clinical pathology. The histological grading of BC is one of the
strongest prognostic factors and has been included in the American Joint Committee on
Cancer (AJCC) staging system as a stage modifier [1]. Beyond its role as a prognostic factor,
histological grading is also essential for recognizing when the histological grade of BC is
unusual or discordant with hormone receptor or human epidermal growth factor receptor
2 (HER2) status; further work-up is warranted to ensure accurate histological typing, grade,
and biomarker status [2]. BC biomarkers, including the estrogen receptor (ER), progesterone
receptor (PR), HER2, and Ki67, are well-established prognostic factors that play crucial roles
in determining biological subtypes and guiding therapeutic strategies for patients [3,4].
Hence, there is a substantial demand for accurate, precise, and standardized evaluation of
these biomarkers. ER, PR, HER2, and Ki67 analyzed through immunohistochemistry (IHC)
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could act as surrogate markers for gene expression-based subtypes to reflect prognosis.
Such assays are generally more accessible than gene expression molecular profiling assays,
which are costly and time-consuming [5]. The interpretation of BC biomarkers through IHC
is a critical component of pathological reporting, especially since the St. Gallen consensus
guidelines endorsed it as a diagnostic standard [6].

Digital pathology, originally known as “telepathology”, has seen significant progress
since its advent in the 1980s. Digital imaging hardware and software innovations have
led to whole slide imaging (WSI), in which glass slides of pathological specimens are
digitally scanned at a high resolution for viewing on a computer screen [7,8]. Recently,
WSI has been used globally for digital imaging preservation, education, teleconsultation,
and, increasingly, primary pathological diagnosis because it has several advantages over
conventional light microscopy (CLM), such as portability, ease of sharing and retrieval of
archival images, and the ability to utilize computer-aided diagnostic tools [9–11]. When
using WSI for practical diagnostic purposes, validating specific WSI systems before clinical
use is necessary to ensure accurate diagnoses to at least the same level as CLM [12,13].
Studies validating WSI systems for primary diagnostic purposes have been conducted by
pathology laboratories across various subspecialties, including breast pathology [14–16].
However, most of these studies primarily used hematoxylin–eosin (H&E) slides for pri-
mary diagnosis rather than focusing on the assessment of prognostic pathologic factors
or the expression of IHC-stained biomarkers. As WSI becomes the established norm in
surgical pathology, a pertinent line of inquiry emerges concerning the potential influence of
integrating digital pathology into patient prognostic indicators within a real-world clinical
environment. Consistently, there have been concerns regarding the use of WSI as a primary
diagnostic tool in breast pathology, including the assessment of prognostic and predictive
variables such as histological grade determination and interpretation of biomarker staining
results [7,17,18]. Furthermore, given the inherent limitations of visual assessment for evalu-
ating biomarker expression using IHC, automated digital image analysis (DIA) has been
proposed as a potential method to improve accuracy and inter-observer reproducibility
when assessing IHC expression, and its utility has been analyzed [17,19].

Core needle biopsy (CNB) is one of the most common methods for performing patho-
logical breast lesion diagnosis [20]. When diagnosing invasive BC through CNB, it is
imperative to assess not only the initial histological grade but also ER, PR, and HER2
through IHC testing [21]. This process informs critical treatment decisions regarding
potential neoadjuvant therapy before surgical interventions. In instances of complete patho-
logical responses, the biopsy sample represents the sole remains of the available tumor [22].
Additionally, CNB samples are preferred over excision for biomarker testing because this
approach helps to prevent many fixation problems [3,23]. Consequently, ensuring reliable
evaluation of the histological grade and BC biomarker expression in CNB samples is critical,
whether using CLM or WSI.

This study aimed to evaluate the effectiveness and reliability of WSI in BC CNB
as a primary diagnostic method, focusing on determining the histological grade and
characterizing biomarker expression, compared with CLM systems. The feasibility of using
DIA to assess biomarker expression in clinical practice was also evaluated.

2. Materials and Methods
2.1. Case Selection and Immunohistochemistry

A total of 115 specimens of primary BC cases previously diagnosed through US-guided
CNB at Chungnam National University Sejong Hospital from July 2020 to December 2022
were retrospectively analyzed. All routine H&E-stained slides were collected and reviewed.
Specimens with scant tumor cells or poor fixation for IHC staining were excluded (n = 14).
Four 4 µm sections from each formalin-fixed paraffin-embedded block were subjected
to IHC using the Dako Omnis autostaining device (Agilent Technologies, Santa Clara,
CA, USA). Four primary antibodies were used: ER (1:100, 6F11; Novocastra Laboratories,
Newcastle, UK), PR (1:100, 16; Novocastra Laboratories), HER2 (C-erbB2 oncoprotein, 1:600,
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polyclonal; Dako, Glostrup, Denmark), and Ki-67 (1:50, MIB-1; Dako). This study was
approved by the Institutional Review Board of Chungnam National University Sejong
Hospital (IRB No. 2022-10-005) and contained a waiver for written informed consent based
on the retrospective and anonymous character of this study.

2.2. Conventional Light Microscope and Pathologist Visual Grading and Scoring

Histological grading and IHC staining assessment were performed using glass slides
via CLM with eyepieces with a field number of 22 mm (Nikon Ci-L, Tokyo, Japan). Cases
were initially reviewed by three board-certified pathologists, each with varying levels of
experience and training (Figure 1). The Nottingham combined histological grade (NG; Not-
tingham modification of the Scarff–Bloom–Richardson grading system) is recommended
for the histological grading of conventional H&E slides by the College of American Pathol-
ogists and WHO guidelines. For this grade, the score for three categories is totaled: tubule
formation (TF) as an expression of glandular differentiation (score 1–3), nuclear pleomor-
phism (NP) (score 1–3), and mitotic counts (MCs) (score 1–3). Combined scores of 3–5, 6–7,
and 8–9 points were classified as grades 1, 2, and 3, respectively [24]. The interpretation of
ER and PR was based on the Allred score and defined positive when ≥1% of the tumor
cell nuclei showed immunostaining, according to the 2010 ASCO/CAP guidelines [23,25].
HER2 IHC was regarded as negative (0 or 1+), equivocal (2+), or positive (3+) based on
the 2018 ASCO/CAP guidelines [26]. Nuclear staining of any intensity was defined as
Ki67 positive. The assessment of Ki67 staining was conducted globally by determining an
average score across all tumor cells in invasive tumor areas, scored as 0, 1 (≤5%), 2 (5–30%),
and 3 (≥30%) based on the report of the International Working Group on Ki67 in Breast
Cancer [3]. The assessment of biomarkers’ IHC expression scores was conducted through a
consensus meeting involving three observers to compare DIA results.
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Figure 1. Three board-certified pathologists participated in this study, and their years of experience
were documented. WSI, whole slide imaging.

2.3. Slide Digitization, Re-Grading, and Scoring with WSI

For WSI, H&E and corresponding IHC-stained slides were imaged at a high reso-
lution (0.121 µm/pixel) and 40× magnification (40×/0.95 Plan-Apochromat, Carl Zeiss
Microscopy, NY, USA) with a single z-plane using a whole slide scanner (PANNORAMIC
250 Flash III, 3DHISTECH, Budapest, Hungary). Digital images were generated and saved
in the MRXS format, managed with server software (Panoramic Scanner, 3DHISTECH),
and retrieved using a file management web interface (CaseViewer, 3DHISTECH). The mean
file size of the scanned images was as follows: 1.95 GB for H&E, 1.24 GB for ER, 1.24 GB for
PR, 1.50 GB for HER2, and 1.39 GB for Ki67. Scanned digital images were evaluated for
quality to ensure that they were in focus and analyzed using 27-inch 3840 × 2160 resolution
monitors (4 K UHD, LG, Seoul, Korea).
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For the intra-observer agreement of BC histological grading using WSI, all three
pathologists graded all included cases using WSI blinded to the CLM grade and other
clinicopathological parameters according to the same criteria used for CLM after a washout
period of at least 3 months with no special training during that time [13,27]. As for counting
mitoses, the pathologists were provided instructions for annotating areas corresponding to
a total area of 2.38 mm2, which corresponds to the area in the high-power fields evaluated
using an eyepiece with a field diameter of 0.55 mm to perform MCs. ER, PR, HER2, and
Ki67 IHC were also re-scored using WSI and the same CLM criteria.

2.4. Digital Image Analysis

Images of IHC stained slides from WSI were analyzed using DIA software (QuantCen-
ter Digital Image Analysis Software Version 2.2; 3DHISTECH). Firstly, the images were
reviewed by a breast pathologist at low magnification to identify and select the invasive
tumor area to be scored. At least five areas to be scored were selected to represent the spec-
trum of staining observed in the initial WSI overview. The expression of each biomarker in
the selected fields was analyzed using DIA software, applying the same scoring methods
as those used by the pathologist for visual scoring, and the mean value of each case was
obtained (Figure 2).
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Figure 2. Examples of images analyzed using digital image analysis (DIA) software for the assessment
of breast cancer biomarker expression (QuantCenter Digital Image Analysis Software Version 2.2,
3DHISTECH, Budapest, Hungary). (a) Tumor cells strongly stained for ER, detected via the software,
and highlighted as red circles. (b) PR-stained slide from the same case as ER, exhibiting a more
heterogenous pattern compared to that of ER. Different staining intensities are indicated by color (0:
blue; 1+: yellow; 2+: orange; 3+: red). (c) HER2-stained image classified as 0 (blue), 1+ (yellow), 2+
(orange), or 3+ (red). (d) Ki67 staining, identified as negative (blue) or positive (red). (a–d) Images
captured at original magnification: ×40.
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2.5. Definition of Perfect Concordance, Minor Discordance, and Major Discordance

Perfect concordance was established as an absolute agreement between histological
grading and biomarker expression. In histological grading and its components, minor
discordance was defined as a disparity between grades 1 and 2 or grades 2 and 3. A major
discordance can arise when there is a grading disparity of more than one level. In IHC
staining, perfect concordance for ER and PR was defined as the same Allred score being
assigned. For HER2 and Ki67, perfect concordance was defined as scores of 0, 1, 2, or 3
being matched. Minor concordance was defined as different staining scores with no clinical
implications. Major discordance was defined as a notable shift in staining results that could
have clinical implications, including positive versus negative outcomes for ER, PR, and
HER2, as well as instances of equivocal versus negative HER2 staining [4]. For Ki67, a
grading discrepancy of more than one level was defined as major discordance.

2.6. Statistical Analysis

Cohen’s kappa was utilized to assess intra-observer agreement when comparing CLM
and WSI, with higher kappa values indicating a greater level of agreement: 0.01–0.20
indicated slight, 0.21–0.40 indicated fair, 0.41–0.60 indicated moderate, 0.61–0.80 indicated
substantial, and 0.81–0.99 indicated strong agreement [28]. Cohen’s kappa was also used
to compare intra-observer or intra-class correlations among CLM, WSI, and DIA. The
differences between CLM and WSI for histological grade and biomarker expression scores
were not normally distributed (p for Kolmogorov–Smirnov tests < 0.01), and the Wilcoxon
signed-rank test was used to compare the paired difference between CLM and WSI for
all values. Fleiss’ kappa was utilized to estimate the concordance rates among the three
pathologists (representing inter-observer variability) for each evaluation method. Statistical
significance was set at p < 0.05. Statistical analyses were performed using SPSS software for
Windows (version 26.0; SPSS, Chicago, IL, USA).

3. Results
3.1. Patients and Clinicopathologic Characteristics

This study included 101 cases of BC, with 46 detected in the right breast and 55 in
the left breast. The diagnosed cases were histologically categorized as follows: 88 cases
of invasive carcinoma of no special type, 8 cases of invasive lobular carcinoma, 2 cases of
invasive mucinous carcinoma, 1 case of papillary carcinoma, 1 case of tubular carcinoma,
and 1 case characterized by a mixed presentation of invasive ductal and lobular carcinoma.
All patients included in this study were female, with a median age of 55 years (range,
36–88 years).

3.2. Intra-Observer Concordance and Agreement of Nottingham Grade and Its Components
between CLM and WSI

Perfect concordance of NG between CLM and WSI was achieved in 78 (77.2%), 81
(80.2%), and 77 (76.2%) cases identified by the three observers (Table 1). Minor discordance
was observed in 23 (22.8%), 20 (19.8%), and 24 (23.8%) cases (Figure 3). No major discor-
dance was observed among the three observers. For the individual components of the
histological grade, perfect concordance for TF was achieved in 79 (78.2%), 83 (82.2%), and
84 (83.2%) cases. Perfect concordance for NP was attained in 74 (73.3%), 78 (77.2%), and
65 (64.4%) cases. Perfect concordance of MCs was observed in 87 (86.1%), 84 (83.2%), and
84 (83.2%) cases. Although no major discordance was observed for TF and NP, four cases
(3.9%) of major discordance were observed in MCs by one observer.
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Table 1. Intra-observer concordance of the Nottingham combined histologic grade and its component
scores between CLM and WSI.

Perfect Concordance Minor Discordance Major Discordance

Observer 1
Nottingham grade 78 (77.2%) 23 (22.8%) 0 (0.0%)
Tubule formation 79 (78.2%) 22 (21.8%) 0 (0.0%)
Nuclear pleomorphism 74 (73.3%) 27 (27.7%) 0 (0.0%)
Mitotic counts 87 (86.1%) 14 (13.9%) 0 (0.0%)

Observer 2
Nottingham grade 81 (80.2%) 20 (19.8%) 0 (0.0%)
Tubule formation 83 (82.2%) 18 (17.8%) 0 (0.0%)
Nuclear pleomorphism 78 (77.2%) 23 (22.8%) 0 (0.0%)
Mitotic counts 84 (83.2%) 13 (12.9%) 4 (3.9%)

Observer 3
Nottingham grade 77 (76.2%) 24 (23.8%) 0 (0.0%)
Tubule formation 84 (83.2%) 17 (16.8%) 0 (0.0%)
Nuclear pleomorphism 65 (64.4%) 36 (35.6%) 0 (0.0%)
Mitotic counts 84 (83.2%) 17 (16.8%) 0 (0.0%)

CLM, conventional light microscopy; WSI, whole slide imaging.
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Figure 3. An example of minor discordant Nottingham combined histologic grade and its component
scores between CLM and WSI, demonstrating both intra-observer and inter-observer discordance.
The specimen comprised two biopsy cores exhibiting heterogeneous histologic patterns. (a) One core
showed poor glandular differentiation but had lower mitotic counts. (b) The other core displayed
enhanced glandular differentiation but had higher mitotic counts. (a,b) WSI showed the possible
appearance of mitosis-like figures surrounded by red circles. The images were captured at original
magnification: ×40.

Intra-observer agreement for NG between CLM and WSI was substantial for all ob-
servers. For the individual grade components, TF and MCs showed moderate to substantial
agreement. For NP, the degree of agreement ranged from fair to moderate for all observers
(Figure 4 and Table S1). There was no significant difference in the variance between the
WSI and CLM agreement rates for NG and its components (all kappa coefficients showed
p values < 0.001).

Comparing the paired difference in NG between CLM and WSI, CLM had a higher
grade than WSI for one observer. For TF, one observer showed a higher score with CLM
than WSI, whereas the other two observers showed lower scores with CLM than WSI. For
NP, the two observers achieved higher scores with CLM than WSI (Table 2). No significant
paired differences were observed in MCs using CLM or WSI among the three observers.
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Figure 4. Intra-observer agreement of Nottingham combined histologic grade and its component
scores between CLM and WSI utilizing kappa. All kappa coefficients demonstrated significance
(p < 0.001).

Table 2. Results of Wilcoxon signed-rank test comparing Nottingham combined histologic grade and
its component scores between CLM and WSI for each observer.

Observer 1 Observer 2 Observer 3

Z-Score p-Value Z-Score p Z-Score p-Value

Nottingham grade −2.294 0.022 −1.342 0.180 −0.816 0.541
Tubule formation −4.264 <0.001 −3.771 <0.001 −3.638 <0.001
Nuclear pleomorphism −0.557 0.564 −3.545 <0.001 −2.667 0.008
Mitotic counts 0.000 1.000 −0.876 0.381 −1.231 0.225

CLM, conventional light microscopy; WSI, whole slide imaging. p values in bold indicate significance (p < 0.05).

3.3. Inter-Observer Agreement for Nottingham Grade and Its Components in CLM and WSI

Inter-observer agreement for NG was substantial both in CLM and WSI. For the
individual categories, the degree of agreement ranged from moderate in TF to substantial
in MC and fair in NP (Table 3).

Table 3. Inter-observer agreement of Nottingham combined histologic grade and its component
scores in CLM and WSI.

CLM WSI

Fleiss Kappa (95% CI) p-Value Fleiss Kappa (95% CI) p-Value

Nottingham grade 0.630 (0.628–0.633) <0.001 0.620 (0.618–0.623) <0.001
Tubule formation 0.543 (0.540–0.546) <0.001 0.523 (0.519–0.526) <0.001
Nuclear pleomorphism 0.356 (0.353–0.359) <0.001 0.394 (0.391–0.397) <0.001
Mitotic counts 0.654 (0.651–0.657) <0.001 0.720 (0.717–0.723) <0.001

CLM, conventional light microscopy; WSI, whole slide imaging; CI, confidence interval. p values in bold indicate
significance (p < 0.05).
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3.4. Agreement and Intra-Observer Variability in Biomarker Expression

Strong intra-observer concordance was observed between CLM and WSI by all three
pathologists (Table 4). Perfect ER concordance for each observer was obtained in 92
(91.0%), 89 (88.1%), and 92 cases (91.1%). Perfect concordance of PR for each observer was
achieved in 74 (73.2%), 66 (65.3%), and 80 (79.2%) cases. For HER2, perfect concordance
was observed in 85 (84.1%), 93 (92.0%), and 80 (79.2%) cases for each observer. Ki67 staining
showed perfect concordance in 86 (85.2%), 78 (77.3%), and 84 (83.2%) patients. The major
discordance of HER2 was higher than those of the other biomarkers for two observers, with
11 (10.9%) and 10 cases (9.9%).

Table 4. Intra-observer concordance of breast cancer biomarker expression between CLM and WSI.

Perfect Concordance Minor Discordance Major Discordance

Observer 1
ER 92 (91.0%) 5 (5.0%) 4 (4.0%)
PR 74 (73.2%) 23 (22.8%) 4 (4.0%)
HER2 85 (84.1%) 5 (5.0%) 11 (10.9%)
Ki67 86 (85.2%) 15 (14.8%) 0 (0.0%)

Observer 2
ER 89 (88.1%) 9 (8.9%) 3 (3.0%)
PR 66 (65.3%) 32 (31.7%) 3 (3.0%)
HER2 93 (92.0%) 6 (6.0%) 2 (2.0%)
Ki67 78 (77.3%) 23 (22.7%) 0 (0.0%)

Observer 3
ER 92 (91.1%) 8 (7.9%) 1 (1.0%)
PR 80 (79.2%) 19 (18.8%) 2 (2.0%)
HER2 80 (79.2%) 11 (10.9%) 10 (9.9%)
Ki67 84 (83.2%) 17 (16.8%) 0 (0.0%)

CLM, conventional light microscopy; WSI, whole slide imaging; CI, confidence interval.

The intra-observer agreement of BC biomarker expression between CLM and WSI
is shown in Figure 5 (see also Table S2). For ER, the degree of agreement ranged from
substantial to strong for the three observers (κ = 0.824, κ = 0.790, and κ = 0.817). Moderate
to substantial concordance was obtained in PR (κ = 0.652, κ = 0.563, and κ = 0.716). HER2
staining showed substantial to strong concordance (κ = 0.765, κ = 0.888, and κ = 0.713). In
Ki67, substantial concordance was achieved (κ = 0.763, κ = 0.652, and κ = 0.725). Statistical
analysis revealed no significant differences in variance between the WSI and CLM agree-
ment rates for all four biomarkers (all kappa coefficients were p < 0.001). When comparing
paired differences in biomarker expression between CLM and WSI, there was no clear
bias in intra-observer variability in the expression of the four biomarkers among the three
observers (Table 5).

Table 5. Results of Wilcoxon signed-rank test comparing breast cancer biomarker expression between
CLM and WSI for each observer.

Observer 1 Observer 2 Observer 3

Z-Score p-Value Z-Score p Z-Score p-Value

ER −0.420 0.674 −0.243 0.808 −0.490 0.624
PR −0.596 0.551 −1.553 0.120 −0.600 0.549
HER2 −0.688 0.491 0.000 1.000 −1.528 0.127
Ki67 −0.258 0.796 −1.877 0.061 −1.698 0.090

CLM, conventional light microscopy; WSI, whole slide imaging.
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3.5. Inter-Observer Variability in Biomarker Expression

Inter-observer agreement for ER was substantial both in CLM and WSI (Fleiss’ κ = 0.792
and Fleiss’ κ = 0.783, respectively) (Table 6). For PR, the degree of agreement was moderate
to substantial (Fleiss’ κ = 0.598 in CLM and Fleiss’ κ = 0.648 in WSI). In HER2, substantial
inter-observer agreement was reported in CLM and WSI (Fleiss’ κ = 0.680 in CLM and
Fleiss’ κ = 0.618 in WSI). The degree of agreement for Ki67 showed Fleiss’ kappa coefficients
of 0.577 for CLM and 0.642 for WSI.

Table 6. Inter-observer agreement of breast cancer biomarker expression in CLM and WSI.

CLM WSI

Fleiss Kappa (95% CI) p-Value Fleiss Kappa (95% CI) p-Value

ER 0.792 (0.790–0.795) <0.001 0.783 (0.781–0.786) <0.001
PR 0.598 (0.596–0.600) <0.001 0.648 (0.646–0.650) <0.001
HER2 0.680 (0.678–0.683) <0.001 0.618 (0.615–0.620) <0.001
Ki67 0.577 (0.575–0.580) <0.001 0.642 (0.639–0.644) <0.001

CLM, conventional light microscopy; WSI, whole slide imaging; CI, confidence interval. p values in bold indicate
significance (p < 0.05).

3.6. Evaluation of Biomarker Expression with DIA

The comparison of BC biomarker expression between with CLM and DIA, as well as
between WSI and DIA, was conducted for each observer. The results revealed moderate to
substantial agreement among observers, with kappa values ranging from 0.676 to 0.753
for ER, 0.581 to 0.645 for PR, 0.614 to 0.769 for HER2, and 0.664 to 0.709 for Ki67 in the
CLM/DIA comparison (Figure 6, Table S3). Similar kappa agreements were observed in
the WSI/DIA comparison, ranging from 0.681 to 0.773 for ER, 0.616 to 0.663 for PR, 0.575 to
0.759 for HER2, and 0.656 to 0.726 for Ki67 (Figure 7, Table S3). To assess the utility of DIA,
following a consensus meeting between the three observers, the intra-class correlations
between CLM and DIA and between WSI and DIA were evaluated, and the results are
presented in Figures 6 and 7 (see also Table S4). For ER, the degree of intra-class agreement
was substantial between CLM and DIA (κ = 0.720) and between WSI and DIA (κ = 0.791).
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PR agreement was substantial in both intra-class analyses (κ = 0.664 for CLM/DIA and
κ = 0.675 for WSI/DIA). For HER2, the agreement was substantial for both the compared
methods (κ = 0.768 for CLM/DIA and κ = 0.796 for WSI/DIA). Ki67 interpretation achieved
substantial to strong intra-class concordance (κ = 0.805 for CLM/DIA and κ = 0.721 for
WSI/DIA).

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

3.6. Evaluation of Biomarker Expression with DIA 
The comparison of BC biomarker expression between with CLM and DIA, as well as 

between WSI and DIA, was conducted for each observer. The results revealed moderate 
to substantial agreement among observers, with kappa values ranging from 0.676 to 0.753 
for ER, 0.581 to 0.645 for PR, 0.614 to 0.769 for HER2, and 0.664 to 0.709 for Ki67 in the 
CLM/DIA comparison (Figure 6, Table S3). Similar kappa agreements were observed in 
the WSI/DIA comparison, ranging from 0.681 to 0.773 for ER, 0.616 to 0.663 for PR, 0.575 
to 0.759 for HER2, and 0.656 to 0.726 for Ki67 (Figure 7, Table S3). To assess the utility of 
DIA, following a consensus meeting between the three observers, the intra-class correla-
tions between CLM and DIA and between WSI and DIA were evaluated, and the results 
are presented in Figures 6 and 7 (see also Table S4). For ER, the degree of intra-class agree-
ment was substantial between CLM and DIA (κ = 0.720) and between WSI and DIA (κ = 
0.791). PR agreement was substantial in both intra-class analyses (κ = 0.664 for CLM/DIA 
and κ = 0.675 for WSI/DIA). For HER2, the agreement was substantial for both the com-
pared methods (κ = 0.768 for CLM/DIA and κ = 0.796 for WSI/DIA). Ki67 interpretation 
achieved substantial to strong intra-class concordance (κ = 0.805 for CLM/DIA and κ = 
0.721 for WSI/DIA). 

 
Figure 6. Agreement for breast cancer biomarker expression between CLM and DIA among three 
observers and their consensus. All kappa coefficients demonstrated significance (p < 0.001). 

Figure 6. Agreement for breast cancer biomarker expression between CLM and DIA among three
observers and their consensus. All kappa coefficients demonstrated significance (p < 0.001).

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Agreement for breast cancer biomarker expression between WSI and DIA among three 
observers and their consensus. All kappa coefficients demonstrated significance (p < 0.001). 

4. Discussion 
The grading of BC using the Nottingham combined histological grade is one of the 

strongest prognostic factors, independent of tumor size or the number of positive lymph 
nodes, and it is also incorporated into the AJCC Cancer Staging Manual [29,30]. Despite 
increasing interest in utilizing WSI for primary diagnostic purposes, the digital validation 
of BC prognostic factors has not yet been established in the literature. This study achieved 
a substantial level of intra-observer agreement for NG and its components among three 
pathologists between CLM and WSI. Furthermore, the inter-observer agreement regard-
ing NG and its associated elements in WSI displayed agreement levels similar to that in 
CLM, comparable to the concordance rates reported by diverse pathologists who assessed 
BC grading using CLM (κ = 0.48–0.70) [31–33]. 

As for the individual components of NG, intra-observer agreement for NP scores was 
the most variable for all three observers. Moreover, NP showed the lowest agreement rate 
for inter-observer comparisons with CLM and WSI. Consistently, in previous studies, NP 
had the lowest intra-observer agreement of all components of NG between CLM and WSI 
[7,34] and the worst agreement component in inter-observer variation using WSI [35,36]. 
As NP lacks a quantitative definition, in contrast to TF and MCs, it emerges as the least 
reproducible among the three grading components. Therefore, when interpretating NP, it 
is crucial to meticulously examine and compare it with the surrounding normal breast 
epithelium through not only CLM but also WSI. Compared to previous studies with no 
clear biases by format [7,34], in the present study, two observers showed consistently 
higher NP scores for CLM than for WSI, indicating bias. In contrast, for TF, two observers 
showed lower scores for CLM than with WSI. Additionally, previous studies have re-
ported that WSI shows reduced ability to identify MCs [34,37]. Rakha et al. demonstrated 
that, among the three NG components, the most challenging to evaluate by WSI was MCs 
because of the difficulty in discerning mitotic figures from apoptotic cells [7]. They also 
recommended using a higher magnification (×40) to ensure adequate resolution for accu-

Figure 7. Agreement for breast cancer biomarker expression between WSI and DIA among three
observers and their consensus. All kappa coefficients demonstrated significance (p < 0.001).



J. Pers. Med. 2024, 14, 312 11 of 16

4. Discussion

The grading of BC using the Nottingham combined histological grade is one of the
strongest prognostic factors, independent of tumor size or the number of positive lymph
nodes, and it is also incorporated into the AJCC Cancer Staging Manual [29,30]. Despite
increasing interest in utilizing WSI for primary diagnostic purposes, the digital validation
of BC prognostic factors has not yet been established in the literature. This study achieved
a substantial level of intra-observer agreement for NG and its components among three
pathologists between CLM and WSI. Furthermore, the inter-observer agreement regarding
NG and its associated elements in WSI displayed agreement levels similar to that in CLM,
comparable to the concordance rates reported by diverse pathologists who assessed BC
grading using CLM (κ = 0.48–0.70) [31–33].

As for the individual components of NG, intra-observer agreement for NP scores was
the most variable for all three observers. Moreover, NP showed the lowest agreement
rate for inter-observer comparisons with CLM and WSI. Consistently, in previous studies,
NP had the lowest intra-observer agreement of all components of NG between CLM
and WSI [7,34] and the worst agreement component in inter-observer variation using
WSI [35,36]. As NP lacks a quantitative definition, in contrast to TF and MCs, it emerges as
the least reproducible among the three grading components. Therefore, when interpretating
NP, it is crucial to meticulously examine and compare it with the surrounding normal breast
epithelium through not only CLM but also WSI. Compared to previous studies with no
clear biases by format [7,34], in the present study, two observers showed consistently higher
NP scores for CLM than for WSI, indicating bias. In contrast, for TF, two observers showed
lower scores for CLM than with WSI. Additionally, previous studies have reported that
WSI shows reduced ability to identify MCs [34,37]. Rakha et al. demonstrated that, among
the three NG components, the most challenging to evaluate by WSI was MCs because of
the difficulty in discerning mitotic figures from apoptotic cells [7]. They also recommended
using a higher magnification (×40) to ensure adequate resolution for accurate grading.
In the present study, we conducted WSI and graded MCs at ×40 magnification. The
improvement in the MC agreement rate through high-magnification scanning is worth
noting. However, the substantial size of the files may limit the utility of this technique for
routine diagnostic purposes, especially considering the high storage capacity and costs
involved [18]. In the present study, even though all H&E slides were derived from CNB
specimens, the scanned file size was substantial (range: 0.59–4.97 GB; mean: 1.95 GB).
Efforts to reduce storage requirements are necessary to make this approach more practical
for diagnostic purposes.

For patients with BC, determining prognosis and treatment strategies based on ER,
PR, HER2, and Ki67 status depends on accurate IHC evaluation [3,6]. The conventional
approach for IHC assessment involves visually determining and scoring positivity by
manually counting stained cells. Although WSI has gained broader acceptance in surgical
pathology for primary diagnosis, the digital validation of BC biomarker expression has
not been established [4]. Previous studies have attempted to employ WSI to validate
primary diagnoses when reporting breast biomarkers; most were focused on HER2 stains,
reporting a substantial kappa value (κ = 0.791) and substantial agreement percentages
(range, 61.3–92.5%) [38,39]. In the present study, consistent results were observed, with a
substantial level of perfect concordance (65.3–92.0%) and kappa coefficients (0.563–0.888)
for the CLM/WSI pairs in evaluating ER, PR, HER2, and Ki67 expression. Based on these
findings, a consensus was reached that WSI is non-inferior to CLM when interpreting
breast biomarkers, although each pathologist achieved slightly different concordance rates.
Furthermore, there are concerns regarding the differences in color tone and contrast of
immunostained materials when scanned into the WSI device. The HER2 scores on WSI
were shown to be higher than those on glass slides, possibly because of the increased
color contrast in WSI [38]. The current study revealed no apparent biases regarding intra-
observer variability concerning HER2 scores based on the format used. This pattern was
consistently observed for other biomarkers. Including IHC-positive controls in the slides
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likely contributed to this consistency, as described in a previous study [4]. Additionally,
PR concordance was slightly lower than that of ER. Previous studies have consistently
indicated that PR expression shows lower agreement than ER expression in assessing inter-
observer variability [40,41]. PR is a target gene regulated by estrogen and naturally displays
greater homogeneity in normal breast tissues and tumors [22,42]. Intermediate biomarker
expression categories are less reproducible than categories at the extremes [43,44]. Therefore,
the heterogeneous expression of PR may be linked to reduced levels of intra-observer
agreement, and a more cautious approach is advised for observers when interpreting
biomarkers within tumors exhibiting heterogeneous expression, not just through CLM but
also through WSI.

In clinical practice, IHC is considered a standard diagnostic tool for tumor classifi-
cation, therapeutic decision-making, and prognostic factors in BC and other malignan-
cies [5,45]. Nevertheless, manual interpretation of BC biomarker expression has inherent
limitations, such as subjectivity and variability between different observers [46]. In the
present study, we assessed inter-observer concordance of BC biomarker expression through
visual assessment, revealing lower concordance rates, especially for PR and Ki67 using
CLM and HER2 using WSI. Importantly, our findings suggest that inter-observer vari-
ability is not specific to particular biomarkers or expression patterns. Automated DIA,
conversely, is a promising alternative that could produce precise results with enhanced
accuracy and reliability [17,19,47]. However, a consensus statement from the College of
American Pathologists expert panel underscores the necessity of validating the use of DIA
against other methods, acknowledging the insufficient published data available to establish
best practices [48]. In the present study, the application of DIA to assess biomarker expres-
sion exhibited an enhanced kappa coefficient compared with the inter-observer agreement,
particularly for HER2 and Ki67. Notably, when compared to each observer’s individual
assessment, DIA exhibited an improved kappa coefficient when considering the consensus
of three observers for the expression of most biomarkers, both with CLM and WSI. This
study’s results align with previous observations, suggesting that automated HER2 IHC
measurements are more comparable to consensus visual scores determined by multiple
pathologists, as well as HER2 gene amplification data [49]. Given the impracticality of
achieving consensus scoring by experts in routine practice, DIA may enhance the quality
of biomarker expression assessment. These findings highlight the capability of DIA to
improve agreement and concordance in biomarker expression assessment compared to
manual assessment with CLM, as well as the consistency of results with WSI. The ob-
served agreements emphasize that integrating DIA into the diagnostic workflow in clinical
practice can significantly enhance scoring reproducibility among observers and improve
objective assessment.

Given the recent efforts to validate WSI, it is crucial to underscore its numerous po-
tential benefits [50]. WSI facilitates the easy exchange in pathological opinions between
medical institutions located remotely, improves pathology education and learning expe-
riences by enhancing educational environments, can enhance the accuracy and efficiency
of pathological interpretation through automated DIA and computer-aided tools, and
decreases problems associated with the retrieval of glass slides from physical storage sites.
However, intra-observer discrepancies remain problematic, particularly in borderline, dif-
ficult, or challenging cases, which are often sources of disagreement [16]. Difficulties in
identifying mitotic figures, nuclear details, and chromatin patterns are also commonly
reported [51]. Integrating DIA is useful for quantifying pathological images and identifying
objects and can enhance the consistency and accuracy of pathological interpretation [17].
However, it requires technical skills for the implementation and maintenance of complex
DIA software and difficulty in accurately identifying some pathological features due to
limitations in algorithms.

One of the major limitations of this study was the relatively small number of cases.
This study was conducted at a single institution, which could affect the external validity
of the results as variations may arise in different clinical settings, with diverse devices, or
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based on the pathologist’s training level. Additionally, because all samples included in this
study were CNB, the results may differ from those of the excision samples. However, as
this study’s aim was to assess WSI’s effectiveness and reliability as a primary diagnostic
tool, focusing on histological grade and the assessment of biomarker expression in BC CNB,
we believe that the use of WSI could be viewed as a strength. Furthermore, this study’s
data are vital for developing guidelines and protocols for integrating WSI into routine
pathology practice, ultimately enhancing diagnostic accuracy.

5. Conclusions

Overall, the results of inter- and intra-observer agreements regarding NG and its
components, along with the assessment of biomarker expression in BCs, indicated no
significant difference between the interpretations from CLM and WSI. However, a more
cautious approach is advisable when interpreting histological grading and biomarker
expression within tumors exhibiting heterogeneous histological or biomarker expression
patterns. This study offers substantial evidence supporting the use of WSI for assessing
prognostic and predictive variables in BC, including NG and biomarker expression, for
routine diagnostic purposes. Furthermore, the incorporation of DIA for assessing biomarker
expression has the potential to significantly improve scoring reproducibility.

Supplementary Materials: The following supporting information can be downloaded via this link:
https://www.mdpi.com/article/10.3390/jpm14030312/s1, Table S1: Intra-observer agreement of the
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kappa; Table S2: Intra-observer agreement of the breast cancer biomarker expression between CLM
and WSI utilizing kappa; Table S3: The agreement of breast cancer biomarker expression among
three observers between CLM and DIA and between WSI and DIA; Table S4: Intra-class agreement of
breast cancer biomarker expression between CLM and DIA and between WSI and DIA.
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