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Abstract: Oral potentially malignant disorders (OPMDs) are precursors to over 80% of oral cancers.
Hematoxylin and eosin (H&E) staining, followed by pathologist interpretation of tissue and cellular
morphology, is the current gold standard for diagnosis. However, this method is qualitative,
can result in errors during the multi-step diagnostic process, and results may have significant
inter-observer variability. Chemical imaging (CI) offers a promising alternative, wherein label-free
imaging is used to record both the morphology and the composition of tissue and artificial intelligence
(AI) is used to objectively assign histologic information. Here, we employ quantum cascade laser
(QCL)-based discrete frequency infrared (DFIR) chemical imaging to record data from oral tissues.
In this proof-of-concept study, we focused on achieving tissue segmentation into three classes
(connective tissue, dysplastic epithelium, and normal epithelium) using a convolutional neural
network (CNN) applied to three bands of label-free DFIR data with paired darkfield visible imaging.
Using pathologist-annotated H&E images as the ground truth, we demonstrate results that are 94.5%
accurate with the ground truth using combined information from IR and darkfield microscopy in
a deep learning framework. This chemical-imaging-based workflow for OPMD classification has the
potential to enhance the efficiency and accuracy of clinical oral precancer diagnosis.
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1. Introduction

Oral potentially malignant disorders (OPMDs) are precursors of over 80% of oral
cancers [1] with reported malignant transformation rates ranging from 3 to 34%, correlating
with the grade of dysplasia and prognostic biomarkers [2]. Though many OPMD cases will
not progress to cancer, a large number of patients must still be screened for early detection
of possible malignancy. The primary method for OPMD screening characterization is
histopathology. The pathology of these oral cavity lesions may progress from dysplasia
to invasive cancer following malignant transformation [3]. Over time, multiple OPMD
histopathological grading systems have been proposed including five- [4] and three- [5]
tiered scales proposed by the World Health Organization in 2005 and 2017, respectively,
and a binary system [6], the latter included in the most recent 2022 WHO classification [7].
A second review was shown to increase interobserver agreement, but this may not be
feasible in many laboratories [8]. A consensus report on the management of OPMDs
underscored the need for histologic validation of the clinical diagnosis, as relying solely
on clinical features can be misleading [9]. Part of the lack of confidence arises from
current workflows that involve staining biopsy samples with hematoxylin and eosin
(H&E). Routine tissue processing is a multi-step process yielding H&E-stained slides;
quality may vary in different laboratories. In addition, interobserver variability is well
documented in OPMD lesion diagnosis and grading [10]. Numerous prognostic markers
using immunohistochemistry (IHC) have been suggested for OPMDs [11]; however, their
development has been impeded by lack of a well-validated prognostic biomarker [11].
Widespread implementation of IHC staining for OPMDs is limited by reagent cost compared
to conventional stains and expertise needed for interpretation. Innovations in digital
dentistry have ranged from the use of algorithms to analyze stained images [12] to
non-pathological advancements in intraoral scanners as adjuncts for physical impressions [13]
and computational surgical planning [14]. Advancements in label-free imaging techniques
offer the possibility of avoiding the need for staining in histological diagnoses and a potential
alternative to current methods.

In this study, we examined the use of label-free infrared (IR) spectroscopic imaging to
quantify spatial variations of vibrational modes in oral tissue, which can then be related
to histological classifications through deep learning. IR imaging is a powerful tool for
studying the spatial variation of the biochemical and molecular structure of tissues without
the need for external dyes or reagents that detect molecular patterns [15,16]. The bulk of
prior IR spectroscopic imaging data, including for oral cancer [17–19], has previously been
acquired using Fourier transform infrared (FT-IR) microscopy that provides full IR spectral
data for all pixels imaged [20–28]. Although FT-IR microscopy provides high-dimensional
data due to the large spectral bandwidth, a large portion of this bandwidth does not
contain biologically relevant vibrations; for example, the “cell-silent” region from ~1900 to
2700 cm−1 is devoid of biochemical features and increasing the number of spectral features
for histopathologic classification is well-known to provide diminishing returns [29]. Many
of the most biologically relevant vibrations, such as those associated with DNA, collagen,
and other proteins, occur in the “fingerprint” spectral region, ~900–1800 cm−1 [15,16],
presenting the strongest and most detailed optical signal reflective of molecular composition.
As opposed to FT-IR imaging, using mid-IR tunable quantum cascade lasers (QCLs) has
enabled discrete frequency infrared imaging (DFIR) [30,31] as a promising technique for
biomedical imaging. By focusing on a select few bands in the fingerprint spectral region,
QCL-based DFIR microscopes facilitate high-throughput IR imaging of samples relevant to
histology, presenting an approach that is more time-efficient and data-optimized compared
to FT-IR microscopy and can provide greater information than H&E-stained tissue alone.
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One of the primary disadvantages of IR imaging is the relatively large diffraction
limited spot size of IR light compared to visible light. The diffraction limited spot size
of IR light limits incorporation of fine spatial and spatially variate spectral features,
which are important for deep learning for histological applications [32]. Although IR
imaging with a resolution finer than the diffraction limit can be achieved by using
complementary modalities to probe IR response, for example, photothermal optical
microscopy [33–37] or atomic force microscopy (AFM)-IR [38–42], these techniques are
considerably slower than direct absorption DFIR. Moreover, AFM-IR provides a much
finer spatial resolution than is required for this use case while presenting significantly
more challenging sample preparation.

Here, we consider the combination of IR microscopy and optical microscopy to address
the simultaneous challenges of obtaining high-resolution and rapid imaging data that retains
chemical specificity and is scalable to clinical application for human biopsies. In particular,
darkfield microscopy allows for unstained tissue sections to be imaged rapidly at the standard
visible microscopy resolution. Darkfield microscopy is ideally suited for unstained tissue
samples because it relies on the light scattered by the highly textured tissue sections to create
image contrast. Brightfield microscopy, the standard method for stained tissue sections, is
ineffective for unstained tissue as too much light is absorbed across the entire spectrum,
resulting in low contrast. Given its capacity to rapidly generate high-resolution morphological
images without the need for staining, darkfield microscopy stands out as an ideal companion
to DFIR microscopy, especially when integrated into deep learning models.

Machine learning, specifically the sub-field of deep learning (DL), has greatly advanced
in applications to pathology by leveraging artificial neural networks designed to mimic the
human brain’s processing patterns. DL analyzes vast datasets, learns intricate patterns, and
produces solutions autonomously [43] with a transformative impact increasingly evident
across various domains, especially in machine vision. For imagery, it has refined techniques
in segmentation [44], classification [45], and generation [46]. DL is also making major
advancements in medical sciences such as models in pathology that aid in discerning
histological components, forecasting disease prognosis and patient survival [47], enabling
virtual staining [48], and generating synthesized histologic images [49]. These capabilities
not only highlight intricate biological processes that may not be fully understood but
also bridge the divide between raw data and insightful diagnostics. Progress has been
made utilizing infrared imaging, both FT-IR and DFIR, for the development of DL models,
showcasing the profound synergy between the two domains [50,51]. The models generated
in this manuscript advance the current DL motifs for IR imaging by incorporating darkfield
microscopy of unstained tissue as a low-cost and time-efficient secondary imaging modality.
The current literature does not contain a method for rapid, label-free histopathological
analysis of OPMDs. The objective of this manuscript is to describe a deep learning
model based upon multimodal DFIR and darkfield microscopy to assist with label-free
histopathological screening of OPMDs. The null hypotheses tested in this manuscript
are that the tissue classes of non-epithelial, dysplastic epithelium, and non-dysplastic
epithelium cannot be segmented using label-free infrared microscopy, darkfield visible
microscopy, or a combination of the two methodologies.

2. Materials and Methods
2.1. Sample Preparation and Data Acquisition

Formalin-fixed paraffin-embedded (FFPE) human oral potentially malignant punch
biopsies (n = 23) from Roswell Park Comprehensive Cancer Center (RPCCC) were used
for this work. The biopsies were classified either as low-risk dysplastic (n = 5) or high-risk
dysplastic (n = 18) lesions. Each tissue was sectioned onto an IR reflective MirrIR low-E
slide (Kevley Technologies, Chesterland, OH, USA) at a 5 µm thickness. Slides were
then deparaffinized by soaking in hexane (>98.5%, Fisher Chemical, Waltham, MA, USA)
for 24 h prior to imaging. Adjacent sections were H&E stained for reference during
histological annotation.
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IR imaging was performed in a transflection geometry with a custom point scanning
confocal DFIR microscope [30,52] that uses a QCL (Block Engineering, Southborough, MA,
USA), a thermoelectric cooled mercury cadmium telluride (MCT) point detector (Vigo,
Ożarów Mazowiecki, Poland), and a 0.71 N.A. refractive objective (Thorlabs, Newton,
NJ, USA). IR images were acquired at 1238, 1546, and 1658 cm−1 at a magnification of
2 µm/pixel. Darkfield (DF) visible images were acquired on the DFIR system with a 30◦

illumination ring light and a 10x 0.30 N.A. objective (MPLFLN10x Olympus, Tokyo, Japan)
illuminating a CMOS camera (BFS-U3–123S6C-C, FLIR, Wilsonville, OR, USA). The DFIR
images were aligned to each other and processed using MATLAB 2021a (Mathworks, Natick,
MA, USA) and the resulting DFIR and DF images were up-sampled or down-sampled,
respectively, to 1 µm square pixels to allow for image alignment and dataset merging.

2.2. Dataset

From the overall sample size of 23 biopsies, 20 sections were used for training and
3 sections were used for validation and blind testing. This dataset division provided
2241 training patches and 320 testing patches. Patches were 256 × 256 pixels and were
non-overlapping, and at least 50% of the pixels were tissue. Each image was annotated
for 3 classes: (1) non-epithelium (connective tissue); (2) dysplastic epithelium; and (3) non-
dysplastic epithelium under the guidance of a board-certified pathologist. The training
dataset was composed of 87,592,748, 8,418,018, and 22,538,617 pixels of non-epithelium,
dysplastic epithelium, and non-dysplastic epithelium classes, respectively. The testing
dataset was composed of 16,239,690, 1,035,792, and 2,938,829 pixels of non-epithelium,
dysplastic epithelium, and non-dysplastic epithelium classes, respectively.

2.3. Model Design

This model utilized the Fully Convolutional Network (FCN) architecture [53] with
a ResNet50 backbone [54]. A ResNet50 backbone was selected as it has demonstrated good
performance for semantic segmentation tasks. Training utilized the Adam optimizer [55],
with a learning rate of 2 × 10−4 and a weight decay of 1 × 10−5. A cross-entropy loss
function, which is well-suited for classification tasks, was used. A learning rate scheduler
with a step size of 5 epochs and a decay rate (γ) of 0.5 was used to assist with model
training. In order to minimize overfitting, an early stopping approach was integrated
into model training. We have also included data augmentation, which involves applying
random affine transformations to each patch in every iteration. To assess the robustness
and consistency of the models, three parallel training experiments on identical datasets
were performed, allowing for both the mean and standard deviation of the accuracy to be
calculated. The framework was implemented in PyTorch 1.3, CUDA 10.1, and Python 3.7.1.
Computations were performed on a single NVIDIA GeForce RTX 2080 SUPER GPU and
Intel Xeon Silver 4216 CPU @ 2.10 GHz.

3. Results and Discussion

Figure 1 presents a schematic for segmentation of oral potentially malignant biopsies
through a combination of IR and darkfield visible imaging. Overall, three discrete frequency
IR images (1238, 1546, and 1658 cm−1) and a darkfield visible image of unstained tissue
biopsies were acquired. The 1238 and 1546 cm−1 IR images were normalized to the
1658 cm−1 image to account for tissue thickness and density variations resulting in two
final IR channels. These images were registered and, referencing an adjacent H&E-stained
slide, were annotated for three classes: (1) non-epithelium (connective tissue); (2) dysplastic
epithelium; and (3) non-dysplastic epithelium with pathologist guidance. This three-channel
combined dataset and the registered annotations were used to train the deep learning
classification model generated in this study. The IR bands used in this study, 1238, 1546, and
1658 cm−1, were chosen based upon known biologically relevant vibrational modes. The
1238 cm−1 mode is commonly assigned to the asymmetric PO2- stretch that commonly occurs
in DNA and the Amide III mode from coupled N-H bending and C-N stretching [56–60].
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The 1546 cm−1 mode is assigned to the Amide II band, a mixture of C-N stretching and
H-N-C bending [59–62]. The 1658 cm−1 mode is part of the Amide I band, which is
primarily attributed to C=O stretching that is indicative of protein secondary structure.
The 1658 cm−1 band is commonly assigned to the alpha helix and random coil protein
secondary structures and is generally the most intense component of the broader Amide
I band. Amide I-normalized 1238 and 1546 cm−1 absorbance for the three different classes
is presented in Figure 2A. Both the 1238 cm−1 and 1546 cm−1 bands provide median or
distribution differentiation between all three classes. The amide I normalized absorbance
for the non-epithelium class at both 1238 and 1546 cm−1 is greater than either the dysplastic
or non-dysplastic epithelium classes. Absorbance at 1238 cm−1 is increased for dysplastic
epithelium over non-dysplastic epithelium and the interquartile range at 1546 cm−1 is
increased for non-dysplastic epithelium over dysplastic epithelium. The spatial spectral
variations of the absorbance at 1238 cm−1 and 1546 cm−1 are shown in Figure 2B and
Figure 2C, respectively, with the same section darkfield image shown in Figure 2D, the
adjacent section H&E stained image shown in Figure 2E, and the class annotations shown in
Figure 2F for reference. Increased median normalized 1238 cm−1 absorbance for dysplastic
regions is reasonable, as prior studies have shown DNA variation for dysplastic samples
compared to control and cancerous tissues [63]. Dysplastic epithelium shows increased
nuclear content, atypia and irregular mitotic figures, which explain the DNA variation
and increased absorbance. The atypical cells are characterized by morphological changes
in terms of size, shapes of nuclear and cellular architecture, which are leveraged by the
pathologists for diagnosis [64]. Nuclear content is another feature that increases with
disease progression [65]. Although the DFIR spectral images used in this manuscript do
not spatially resolve the nuclei, careful inspection of the darkfield visible images suggests
nuclear features. Spectral differences at 1238 cm−1 were used in the literature to discriminate
between hyperplasia, epithelia dysplasia, and oral squamous cell carcinoma [18]. The prior,
FTIR microscopy, study found that the average spectral intensity at 1240 cm−1 increased as
diagnosis became more severe (hyperplasia < dysplasia < squamous cell carcinoma) [18]. The
variation in Amide I-normalized Amide II absorbance between connective tissue, dysplastic,
and non-dysplastic epithelium is caused by protein concentration and secondary structure
changes. The wide spectral distribution for the non-epithelium class for both 1238 cm−1

and 1546 cm−1 is likely due to the numerous different subclasses encompassed by the
non-epithelium label.
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Figure 1. A combined IR and darkfield microscopy workflow for histopathology of oral potentially
malignant tissues. The workflow combines the IR and DF images with pathologist annotations
for the training dataset. Patches of images are passed to the classifier model to generate the final
segmented image.
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Figure 2. Discrete frequency IR imaging absorbance variation across oral tissue. (A) Normalized
intensity distribution with outliers removed for 3 classes for absorbance at 1238 cm− (left) and
1546 cm−1 (right). Representative whole biopsy IR images at (B) 1238 cm−1 and (C) 1546 cm−1.
(D) Darkfield visible image of whole unstained biopsy section. (E) H&E-stained image of section
adjacent to darkfield and IR imaged section. (F) class annotations for reference. Scale bar: 500 µm.

Imaging of a representative OPMD sample, as shown in Figure 1, with dimensions
of 2.8 × 3.7 mm2 required 274 s (~4.5 min) per IR band and 30 s for the darkfield visible
image acquisition. The total imaging time for this sample was ~14 min resulting in
83 s/mm2 (~1.4 min/mm2) for all three IR bands and the darkfield image. This speed is
one of the fastest with which IR images can be acquired today and compares favorably
with the time needed for traditional histologic analyses. The sample dimensions provided
were calculated based upon the actual imaging dimensions found by the smallest
horizontal or vertical rectangle that encapsulates the sample. Further time optimizations
are possible on systems that allow for either orientation of a rectangular scan area on
a non-cardinal axis or for irregular scan areas. The imaging time here is longer than that
of a single brightfield image of a stained tissue but eliminates the time and cost required
for staining and subsequent processing and provides information that is unattainable
from H&E alone.
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DL was used to efficiently combine the observed variations in IR absorbance and
darkfield microscopy for histopathological segmentation. The confusion matrices for the
DL models trained using darkfield microcopy alone, DFIR alone, and the combination
of darkfield and DFIR microscopy are shown in Figure 3A, Figure 3B and Figure 3C,
respectively. Figure 3A, generated based upon darkfield microscopy alone, demonstrates
an average accuracy of 93.6% and an F1 score of 0.815 (SD ± 0.021). These results indicate
that, for OPMD segmentation, darkfield microscopy provides valuable diagnostic data,
establishing itself as a dependable, relatively low cost, individual method for tissue
segmentation. However, the accuracy may not be sufficiently high and specific for
classification in a larger study or more sophisticated models. The model trained solely on
IR images, Figure 3B, produced an overall accuracy of 94.2% and an F1 score of 0.799 (SD
± 0.016). The simultaneous increase in accuracy and decrease in F1 score for the IR only
model compared to the darkfield only model is caused by increases in the accuracy for the
non-epithelium and non-dysplastic epithelium classes but a decrease in the accuracy of
dysplastic epithelium class prediction with increased confusion between dysplastic and
non-dysplastic epithelium. The model performance differences based upon the training
dataset indicate the different features that each method highlights that are useful for
machine learning. The combination of the two imaging modalities, Figure 3C, provides
equally good segmentation results. The combination of stain-free high morphological
resolution and inherent chemical contrast provides an overall accuracy of 94.5% and
an F1 score of 0.823 (SD ± 0.019). The deep learning metrics for three-class segmentation
based upon DFIR alone, DF alone, and combined DFIR and DF support refuting the null
hypotheses stated in the introduction and demonstrate that segmentation is achievable.
While this combination of imaging techniques workflow shows good baseline performance,
we anticipate that the chemical imaging data will become more important as we develop
more complicated histology models or use microenvironmental data [66] for decision-making,
which requires significantly more information. We note that the performance of these
models should not be generalized to all acquisition parameters or tissues; each acquisition
and analysis step should be considered part of a workflow that is self-contained. For
example, using more spectral features may lead to an even higher accuracy. Here, we
chose a few features to optimize speed of data acquisition and ensure that the time needed
to record data could be short enough to be clinically relevant.
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potential synergy between the two imaging methods.
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Histology is an inherently visual field; therefore, projections of the darkfield/IR model
onto the dataset are required to corroborate the quantitative results in Figure 3. Figure 4A
presents a representative test set image containing all three classes whereas Figure 4B
presents representative data containing only the non-epithelium and normal epithelium
classes. Each row of Figure 4 presents, from left to right, the IR absorbance at 1658 cm−1,
darkfield, combined model projection, ground truth, and adjacent section H&E-stained
images to show the progression and agreement between the different data types. Although
the IR/darkfield DL model test set projection images generally agree well with both the
ground truth annotations and the adjacent section H&E images, there is some discordance
at the borders of the classes. This discordance is best seen near the top middle of Figure 4A,
where rete pegs of epithelium class protrude into the stroma, and in Figure 4B near the
middle left, where the non-epithelium forms a peninsula in the epithelium (epithelial rete
pegs). This slight, fine feature discordance is likely due to a combination of noise in the
model, the use of the adjacent section H&E image to assist with annotations, and inherent
individual to individual variation in annotations. Even noting these slight discordances
between the test set projection images and the annotated ground truth, the model is still
more than capable of identifying dysplasia and assisting pathologists. Here, we have just
pointed out some features that can possibly result from noise and other variations as it is
important to also point out imperfections in classification. However, in a larger study, the
precise effects and their magnitude can be estimated but the increased number of samples
can also lead to better fidelity of images.
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Figure 4. Comparative visualization of the deep learning model’s accuracy in identifying dysplasia.
(A) Dysplastic sample; (B) non-dysplastic sample. Each set, moving from left to right, includes:
an IR image, a dark field visible image, the ground truth annotation, the model’s prediction, and the
adjacent H&E image.

The ability for the combined label-free three-band IR/darkfield deep learning model
to identify dysplastic regions rapidly and accurately in OPMD biopsies points toward the
ability to efficiently screen large populations in a cost-effective manner. The accurate and
timely identification of dysplasia in OPMD biopsies is critical as the first step toward
medical interventions, potentially improving both the efficiency and effectiveness of
subsequent therapeutic strategies. Early detection will not only improve patient outcomes
but should also allow for less invasive treatment as the disease was detected early in
its progression. Historically, the medical community has relied heavily on traditional
methods such as H&E staining and human expertise to interpret these results. Although
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these methods provide reasonable results, the development of artificial intelligence allows
for computational assistance in diagnosis based upon patterns that are non-obvious and
non-trivial for humans [67,68]. These findings, which highlight the potential of rapid
label-free multi-modal imaging deep learning models for histopathological evaluations,
are an example of artificial-intelligence-based histopathology.

The current model and dataset are a promising start for label-free multi-modal
imaging-based segmentation of OPMD biopsies. The model presented here needs validation
in a larger patient cohort, inclusion of variance in disease progression (i.e., no cancerous
tissues were considered here), and samples from multiple institutions before this new
model can be recommended for clinical application. Even with these stated limitations,
the performance of the combined three-band DFIR/darkfield CNN model points toward
the promise of this technique and lays the groundwork for future expansion to develop
a clinically relevant model. Building on this foundation, another crucial area for exploration
involves the integration of spatial information obtained through visible microscopy with the
spectral data acquired from IR imaging. The current approach of simply concatenating these
modalities appears to be suboptimal. Developing an architecture that is specifically tailored
to leverage the unique aspects of these modalities could significantly improve the accuracy
of the classification process. Such an improvement could, in turn, reduce the number of
IR bands required, streamlining the data recording process. This efficiency gain is not just
a technical improvement; it paves the way for the easier integration of this technology into
clinical practice. By enhancing the model’s ability to accurately segment OPMD biopsies
with less data and greater precision, the pathway to adopting this innovative diagnostic
tool in clinics becomes more feasible, potentially transforming patient care in oncology
and pathology departments. Future applications of this model can assist in the precise
quantification of dysplastic epithelium of OPMDs into low-grade and high-grade categories,
which may reduce diagnostic discordance and subjectivity.

4. Conclusions

This work demonstrates the ability for a chemical imaging workflow, based upon
a simple three-discrete-frequency IR image dataset paired with darkfield microscopy as
inputs to a DL framework, to classify oral potentially malignant lesions without the use
of stains. IR absorbance at 1238 and 1546 cm−1, normalized to 1658 cm−1, provided the
necessary chemical information, and darkfield visible microscopy contributed higher
resolution morphological data than is available with standard IR microscopy. Deep
learning models trained independently with either of these modalities fall short of the
accuracy provided by the combination of IR and darkfield imaging, pointing to the utility
of multimodal stainless imaging for histopathology. This work paves the way forward for
high-throughput rapid screening of OPMDs by developing deep learning segmentation
models based upon multi-modal label-free imaging to assist clinicians.
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