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Abstract: We aimed to develop and validate prediction models incorporating demographics, clinical
features, and a weighted genetic risk score (wGRS) for individual prediction of colorectal cancer
(CRC) risk in patients with gastroenterological symptoms. Prediction models were developed with
internal validation [CRC Cases: n = 1686/Controls: n = 963]. Candidate predictors included age, sex,
BMI, wGRS, family history, and symptoms (changes in bowel habits, rectal bleeding, weight loss,
anaemia, abdominal pain). The baseline model included all the non-genetic predictors. Models A
(baseline model + wGRS) and B (baseline model) were developed based on LASSO regression to
select predictors. Models C (baseline model + wGRS) and D (baseline model) were built using all
variables. Models’ calibration and discrimination were evaluated through the Hosmer-Lemeshow
test (calibration curves were plotted) and C-statistics (corrected based on 1000 bootstrapping). The
models’ prediction performance was: model A (corrected C-statistic = 0.765); model B (corrected
C-statistic = 0.753); model C (corrected C-statistic = 0.764); and model D (corrected C-statistic = 0.752).
Models A and C, that integrated wGRS with demographic and clinical predictors, had a statistically
significant improved prediction performance. Our findings suggest that future application of genetic
predictors holds significant promise, which could enhance CRC risk prediction. Therefore, further
investigation through model external validation and clinical impact is merited.

Keywords: colorectal cancer; symptoms; prediction model; polygenic risk score

1. Introduction

Colorectal cancer (CRC) was the third most common cancer and the second leading
cause of cancer-related death in the world, 2022 [1]. Early CRC diagnosis and timely
treatment could improve survival. Survival rate depends on cancer stage at diagnosis,
with 5-year net survival starting at approximately 90% for stage I and reduced to 10% for
stage IV [2]. Although screening has successfully reduced CRC incidence and mortality,
the majority of CRCs are still diagnosed after symptomatic presentation [3]. It is important
to develop accurate prediction models to identify symptomatic patients with higher CRC
risk in whom referral is most appropriate. These models could assist clinical professionals
in their decision-making for further clinical care, such as risk-tailored cancer screening,
testing, and treatments [4].
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We have identified 19 prediction models that have been developed for CRC in patients
with symptoms [5–22]. However, these models used predictors such as basic demographic
characteristics (age, sex, BMI), lifestyle factors (smoking, alcohol consumption), biomarkers
(haemoglobin, CEA), and clinical features (bowel symptoms). None of them use genetic
predictors associated with CRC common susceptibility variants (neither single nucleotide
polymorphisms nor polygenic risk scores). Therefore, we aimed to examine the association
between a constellation of demographic factors, clinical features, and genetic risk scores
in patients with gastrointestinal symptoms and CRC risk. Furthermore, we aimed to
develop and to validate prediction models that incorporate significant predictors, enabling
personalized prediction of CRC risk in patients with symptoms.

2. Materials and Methods
2.1. Studies and Variables

CRC prediction models were developed with internal validation in a study that
included participants from the Study of Colorectal Cancer in Scotland (SOCCS) (n = 1649)
and the Lothian Bowel Symptoms Study (LABSS) (n = 1000). SOCCS, a case-control study,
started in 1999 and has been recruiting CRC incident cases (aged ≥ 16 years old) and healthy
controls (matched on age, sex, and health board) from across Scotland. In the current
study, we only used data from colorectal cancer cases that had developed gastrointestinal
symptoms prior to their recruitment in SOCCS. LABSS, which is a multi-centre case-
control study started in 2017, recruited patients (aged ≥ 18 years old) with gastrointestinal
symptoms through endoscopy, CT scanning, colorectal surgery, and gastroenterology units
within NHS recruiting centres across Scotland. SOCCS and LABSS collected age, sex,
BMI, family history, and symptoms (changes in bowel habits, rectal bleeding, weight
loss, anaemia, abdominal pain). Age (years old), sex (male/female), BMI (kg/m2), and
family history of CRC (yes/no) were collected and documented in questionnaires by
the study nurse in SOCCS and LABSS. We designated individuals as having a positive
family history (yes) if their first-degree (e.g., parents, siblings, and children) or second-
degree (e.g., grandparent/grandchild, half-siblings, aunt/uncle, and niece/nephew) or any
other relatives have a documented history of CRC. In SOCCS, symptoms (yes/no) were
collected by the study nurse through GP referral and/or consultant clinic referral letters, as
documented in medical records in TRAK (the NHS Lothian electronic patient data system).
In LABSS, symptoms (yes/no) were collected by the study nurse through interviews during
patient recruitment and recorded in a pre-designed consultation questionnaire. SOCCS and
LABSS also collected blood samples, and DNA samples were genotyped using Illumina®

HumanHap300, HumanHap240S, and OmniExpressExome BeadChip 8v1 arrays. Genotype
data quality control was performed following the method proposed by Anderson [23].
Untyped variants were imputed using the Michigan Imputation Server, which is based on
1000 genomes (from the European reference panel) [24].

2.2. Descriptive and Association Analysis

We performed a baseline summary for SOCCS and LABSS. The test of correlation
and difference in variables between cases and controls in two studies were examined for
statistical significance by using the t-test (continuous variables) and the Pearson χ2 test
(categorical variables). Univariable and multivariable logistic regression models were fitted
to test the associations between variables and CRC risk (factors with univariable p < 0.05
were included in the multivariable analysis).

2.3. Weighted Genetic Risk Scores

A weighted genetic risk score (wGRS) is defined as a weighted sum of dosages of
risk alleles for k considered SNPs (gi1, . . . , gik) for the n subjects (i = 1, . . . , n). The wGRS
formula is: GRSi = w1gi1 + . . . + wkgik. This means that, for each individual, the number of
risk alleles dosages carried at each genetic variant SNP is summed, and it is weighted by
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its effect size. The effect size derived from the meta-GWAS for a SNP is referred to as the
‘weight’ (w1, . . . , wk).

We used CRC genome-wide significant SNPs (p < 5 × 10−8; n = 202) from a recently
published meta-GWAS study [25]. The meta-GWAS study investigated a total of 205 SNPs,
and 202 SNPs effect sizes in European populations were reported (for SNPs list and their re-
ported effect size, please see Supplementary Table S1). Of the 202 SNPs, 137 were genotyped
in SOCCS and LABSS. We checked the remaining 65 SNPs for proxies. We found proxies
for 26 SNPs (R2 > 0.5) and 39 SNPs (0.034 < R2 < 0.5). Therefore, we calculated three wGRSs
to include 137 (genotyped SNPs), 163 (genotyped SNPs and 26 proxies with R2 > 0.5),
and 202 (137 genotyped SNPs and 65 proxies) SNPs (Supplementary Figure S1). We pre-
sented wGRS202 in the main text and the comparative assessment of model performance of
wGRS137, wGRS163, wGRS202 is in Supplementary Table S2.

2.4. Model Development and Internal Validation

CRC prediction models’ development and validation were conducted and reported
following the Transparent Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD) guideline [26] (Supplementary Figure S2).

Models were developed with internal validation in the combined dataset with a total
number of 2649 participants (CRC symptomatic cases = 1686, symptomatic controls = 963;
Figure 1). The prediction outcome (Y) was defined as CRC (yes/no). Candidate predictors
(X) included (i) continuous variables—age, BMI, and wGRS—as well as (ii) categorical
variables—sex, family history, and symptoms (changes in bowel habits, rectal bleeding,
weight loss, anaemia, and abdominal pain).
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Each continuous variable (X) was modelled to test its association with the predicted
outcome (Y) using two approaches: (i) linear analysis and (ii) restricted cubic splines (RCS).
The continuous variables were then adjusted and incorporated into the full models C (linear)
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and E (RCS). The prediction performance, including overall accuracy (R2, brier score, AIC,
BIC), discrimination (C-statistics), and calibration (p-value of Hosmer-Lemeshow test), were
compared for the two approaches. The brier score (range: 0–1) quantifies the mean squared
difference between the predicted probability and the observed outcome, with a lower score
indicating a better prediction performance [27]. AIC and BIC are estimations concerning
the sample prediction error, with a lower AIC or BIC value indicating a better model fit [28].
The decision on whether to use linear or RCS to adjust continuous variables in the final
model was made by evaluating which method yielded better prediction performance.

After adjusting for the continuous variables (X), CRC risk prediction models were
built (Figure 1). Two main strategies to develop the final models are predictor selection
and full model [29]. A comparison of strengths and limitations of the methods is presented
in Supplementary Table S11. Models A (baseline model + wGRS) and B (baseline model)
were constructed based on LASSO regression algorithm to identify the λ (lambda) in
response to the most parsimonious model where the cross-validation prediction error is
within one standard error of the minimum [30]. The influential predictors selected by
LASSO were incorporated into the prediction models. Models C (baseline model + wGRS)
and D (baseline model) were built using all 10 variables collected in SOCCS and LABSS.
These 10 variables were used as predictors in the 19 CRC prediction models previously
developed (Supplementary Table S3), and, therefore, they were incorporated in models C
and D, irrespective of their associations with the prediction outcome or influence on the
model performance. In addition, we built prediction models F and G based on random
forest regression [31,32], and the results were presented in Supplementary Table S12,
Figures S11–S13.

2.5. Model Prediction Performance

Models’ prediction performance was evaluated in terms of calibration and discrimina-
tion. Calibration, which measures the agreement between the model predicted probabilities
(the risk rate of individuals with CRC) and the observed probabilities, was assessed using
the Hosmer-Lemeshow (HL) goodness of fit test, with a p > 0.05 indicating good model
calibration. Calibration curves were plotted to visualize the models’ calibrative power.
Discrimination performance was examined through analysis of the area under the curve
(AUC), which is also referred to as the C-statistic. The corrected C-statistics were calculated
based on bootstrapping validation (1000 bootstraps resamples). The receiver operating
characteristic (ROC) curve and the precision-recall curve (PRC) were plotted [33,34]. The
continuous Net Reclassification Index (NRI) and Integrated Discrimination Index (IDI) were
calculated after recalibration to compare models and assess the prediction increment [35].
An online nomogram for the final model was built using Shiny.apps.

2.6. Statistical Analysis

The LASSO regression was conducted using the ‘glmnet’ R package. Random forest
regression was performed using the ‘randomForest’ R package. The HL test was constructed
using the ‘hoslem.test’ function in the ‘ResourceSelection’ R package. The C-statistic was
calculated using the “rcorr.cens” and “roc” functions in the ‘rms’ package. The online CRC
risk prediction nomogram/calculator was constructed using the ‘DynNom’ and ‘rsconnect’
R packages. A two-sided p-value less than 0.05 was considered statistically significant. All
analyses were performed using R, version 4.0.3 (R Foundation for Statistical Computing).

3. Results
3.1. Baseline Characteristics

The baseline characteristics of SOCCS (n = 1649) and LABSS (n = 1000) studies are
summarized in Table 1. The distribution of each variable comparing symptomatic cases
versus symptomatic controls in two studies is presented in Supplementary Table S4. There
were no statistically significant differences between CRC symptomatic cases in SOCCS and
LABSS with regards to wGRS202, age, sex, BMI, family history, and symptoms (p > 0.05).
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Comparing symptomatic cases (n = 1686) versus symptomatic controls (n = 963) in SOCCS
and LABSS (Table 1), CRC symptomatic cases had a higher wGRS202, were older in age, and
had a higher proportion of male patients, compared to symptomatic controls (p < 0.001).
Cases had a lower BMI (p = 0.017). No statistically significant differences were found be-
tween symptomatic cases and controls for family history (p = 0.570). Regarding symptoms,
the proportion of anaemia was significantly higher in CRC symptomatic cases (23.31%) than
in the symptomatic control group (14.75%) [p < 0.001], while the proportions of changes in
bowel habits (42.41%), weight loss (14.77%), and abdominal pain (19.69%) in CRC symp-
tomatic cases were significantly lower compared to the symptomatic control group (changes
in bowel habits: 74.87%, weight loss: 18.59%, abdominal pain: 43.93%) [p < 0.001]. Rectal
bleeding was not statistically different between symptomatic cases and controls (p = 0.219).

In univariable analysis, statistically significant baseline factors for CRC risk included
wGRS202, age, sex, BMI, and symptoms: changes in bowel habits, weight loss, anaemia,
and abdominal pain (p < 0.05). Family history and rectal bleeding were not associated
with CRC risk (p > 0.05). The above eight significant baseline factors were included in
the multivariable analysis. Multivariable analysis demonstrated that (i) age (OR = 1.04,
95% CI: (1.03–1.05); p = 1.43 × 10−28), (ii) sex (male: OR = 1.44, 95% CI: (1.20–1.72);
p = 7.11 × 10−05), (iii) wGRS202 (OR = 2.14, 95% CI: (1.74–2.64); p = 5.52 × 10−13), (iv) BMI
(OR = 0.98, 95% CI: (0.97–1.00); p = 0.019), and (v) symptoms—changes in bowel habits
(OR = 0.28, 95% CI: (0.23–0.34); p = 7.92 × 10−37), abdominal pain (OR = 0.51, 95% CI:
(0.42–0.61); p = 8.48 × 10−12) remained independent predictors for CRC risk (Table 1).

3.2. Prediction Models of CRC Risk in Patients with Symptoms

Models A-D were developed with internal validation in SOCCS and LABSS to predict
CRC risk in patients with symptoms (Figure 1).

3.2.1. Continuous Variables Adjustment

The shape of the relationship between each continuous variable (age, BMI, and
wGRS202) and the predicted outcome (CRC probability) is presented in Supplementary
Figures S3–S5. Relationship figures showed steady increments in CRC probability for each
year increase in age, decreasing BMI, and increasing wGRS202. The relationships between
continuous variables and CRC were roughly linear in shape.

Continuous variables were then transformed by RCS, and we tested the hypothesis
that the associations between continuous variables and the predicted outcome are not
linear [36]. Spline functions with three, four, and five knots were created to fit each of these
in the logistic regression model.

Supplementary Figures S6–S8 and Tables S5–S7 demonstrated that R2, AIC, and BIC
were the lowest using RCS with three knots, compared to four and five knots. There was
no evidence of significant non-linear associations between age (nonlinear p-value = 0.105),
BMI (nonlinear p-value = 0.587), wGRS202 (nonlinear p-value = 0.688), and CRC risk. The
findings are consistent with Supplementary Figures S3–S5, showing that the relationships
between age, BMI, wGRS, and CRC risk were linear in shape.

The continuous variables were adjusted and incorporated into the full model C (linear)
and model E (RCS with three knots). Supplementary Table S8 summarizes and compares
the two models’ prediction performance. Model C had higher AIC, lower BIC, and higher
corrected C-statistic compared to model E. Therefore, continuous variables (X) were ad-
justed in CRC prediction models, keeping age, BMI, and wGRS202 as continuous covariates
in models.

3.2.2. Models’ Development and Validation

Each model’s predictors, intercept, coefficients, discrimination, and calibration estimates
are presented in Table 2. Model formulas are presented in Supplementary Table S9.
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Table 1. The univariable and multivariable logistic regression models of CRC risk.

SOCCS + LABSS (N = 2649) Univariable Analysis Multivariable Analysis

Cases (n = 1686) Controls (n = 963) Total (N = 2649) p-Value OR 95% CI p-Value OR 95% CI p-Value

wGRS202 † 0.11
(−0.19–0.42)

−0.03
(−0.34–0.26)

0.06
(−0.24–0.37) 3.36 × 10−16 2.14 1.77–2.58 1.88 × 10−15 2.14 1.74–2.64 5.52 × 10−13

Age † 68.01
(59.32–75.36) 60.00 (51.00–70.00) 65.42

(56.00–73.50) <2.2 × 10−16 1.05 1.04–1.05 3.61 × 10−42 1.04 1.03–1.05 1.43 × 10−28

Sex

Female 730 (43.30%) 537 (55.76%) 1267 (47.83%) 8.38 × 10−10 1 * 1 *
Male 956 (56.70%) 426 (44.24%) 1382 (52.17%) 1.65 1.41–1.94 7.35 × 10−10 1.44 1.20–1.72 7.11 × 10−5

BMI † 26.11
(23.39–29.91) 26.64 (23.50–30.47) 26.35

(23.44–30.11) 0.017 0.98 0.97–1.00 0.016 0.98 0.97–1.00 0.019

Family history

No 1418 (84.10%) 801 (83.18%) 2219 (83.77%) 0.570 1 *
Yes 268 (15.90%) 162 (16.82%) 430 (16.23%) 0.93 0.75–1.16 0.534

Symptoms

Changes in bowel habits

No 971 (57.59%) 242 (25.13%) 1213 (45.79%) <2.2 × 10−16 1 * 1 *
Yes 715 (42.41%) 721 (74.87%) 1436 (54.21%) 0.25 0.21–0.29 2.12 × 10−55 0.28 0.23–0.34 7.92 × 10−37

Rectal bleeding

No 1130 (67.02%) 622 (64.59%) 1752 (66.14%) 0.219 1 *
Yes 556 (32.98%) 341 (35.41%) 897 (33.86%) 0.90 0.76–1.06 0.203

Weight loss

No 1437 (85.23%) 784 (81.41%) 2221 (83.84%) 0.012 1 * 1 *
Yes 249 (14.77%) 179 (18.59%) 428 (16.16%) 0.76 0.61–0.94 0.010 0.99 0.78–1.26 0.910

Anaemia

No 1293 (76.69%) 821 (85.25%) 2114 (79.80%) 1.69 × 10−07 1 * 1 *
Yes 393 (23.31%) 142 (14.75%) 535 (20.20%) 1.76 1.42–2.17 1.61 × 10−07 0.94 0.73–1.20 0.619

Abdominal pain

No 1354 (80.31%) 540 (56.07%) 1894 (71.50%) <2.2 × 10−16 1 * 1 *
Yes 332 (19.69%) 423 (43.93%) 755 (28.50%) 0.31 0.26–0.37 1.03 × 10−38 0.51 0.42–0.61 8.48 × 10−12

SOCCS: the Study of Colorectal Cancer in Scotland; LABSS: and the Lothian Bowel Symptoms Study; OR: odds ratio; CI: confidence interval. * Reference group. Only significant factors
(univariable p < 0.05) were included in the multivariable analysis. p-value for t-test or x2 test. † Median and quartiles in parenthesis.
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Table 2. A summary of CRC prediction models A–D.

Model Method Case Control λ Intercept Predictors Coefficient OR (95% CI) p-Value R2 Brier AIC BIC C-Statistic Corrected C-Statistic AUC-PR HL p-Value

Model A LASSO 1686 963 0.0257 −1.3030

wGRS202 0.7612 2.14 (1.74–2.64) 5.31 × 10−13

0.266 0.183 2911.234 2946.526 0.767 (0.748–0.786) 0.765 (1000 bootstrap) 0.8325 0.024
Age 0.0410 1.04 (1.03–1.05) 3.53 × 10−29

Sex 0.3611 1.43 (1.20–1.72) 7.19 × 10−5

Changes in bowel habits −1.2411 0.29 (0.24–0.35) 8.06 × 10−29

Abdominal pain −0.6784 0.51 (0.42–0.62) 7.65 × 10−12

Model B LASSO 1686 963 0.0310 −1.2124

Age 0.0401 1.04 (1.03–1.05) 1.06 × 10−28

0.244 0.188 2962.840 2992.25 0.754 (0.735–0.774) 0.753 (1000 bootstrap) 0.8243 0.711Sex 0.3690 1.45 (1.21–1.73) 4.09 × 10−5

Changes in bowel habits −1.2411 0.29 (0.24–0.35) 1.34 × 10−39

Abdominal pain −0.7020 0.50 (0.41–0.60) 7.77 × 10−13

Model C Full model 1686 963 NA −0.7679

wGRS202 0.7603 2.14 (1.74–2.64) 6.91 × 10−13

0.269 0.183 2915.181 2979.883 0.767 (0.749–0.786) 0.764 (1000 bootstrap) 0.8334 0.018

Age 0.0410 1.04 (1.03–1.05) 2.65 × 10−28

Sex 0.3631 1.44 (1.20–1.72) 7.05 × 10−5

BMI −0.0195 0.98 (0.96–1.00) 0.0187
Family history −0.0024 1.00 (0.78–1.27) 0.9846
Changes in bowel habits −1.2616 0.28 (0.23–0.34) 7.68 × 10−37

Rectal bleeding 0.0402 1.04 (0.86–1.27) 0.6858
Weight loss −0.0112 0.99 (0.78–1.26) 0.9278
Anaemia −0.0531 0.95 (0.74–1.22) 0.6785
Abdominal pain −0.6786 0.51 (0.42–0.63) 1.55 × 10−11

Model D Full model 1686 963 NA −0.7170

Age 0.0404 1.04 (1.03–1.05) 4.12 × 10−28

0.247 0.187 2966.240 3025.059 0.755 (0.736–0.775) 0.752 (1000 bootstrap) 0.8240 0.428

Sex 0.3714 1.45 (1.21–1.73) 3.94 × 10−5

BMI −0.0191 0.98 (0.97–1.00) 0.0200
Family history −0.0349 1.04 (0.82–1.32) 0.7738
Changes in bowel habits −1.2667 0.28 (0.23–0.34) 7.07 × 10−38

Rectal bleeding 0.0734 1.08 (0.89–1.31) 0.4553
Weight loss −0.0661 0.99 (0.78–1.27) 0.9655
Anaemia −0.6999 0.94 (0.73–1.20) 0.6021
Abdominal pain −0.6786 0.50 (0.41–0.60) 2.03 × 10−12

AIC: Akaike’s Information Criteria; AUC-PR: area under the precision recall curve; BIC: Bayesian information criteria; CI: confidence interval; HL: Hosmer-Lemeshow; OR: odds ratio.
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CRC prediction models A, B, C, and D were evaluated, and they demonstrated good
prediction performance. The summary of discrimination and calibration results for these
models is as follows: Model A had a C-statistic of 0.767 (corrected 0.765) and a HL-test
p-value of 0.024, while Model B had a C-statistic of 0.754 (corrected: 0.753) and a HL-test
p-value of 0.711, as shown in Table 2 and Figures 2–4. Model C had a C-statistic of 0.767
(corrected: 0.764) and a HL-p value of 0.018, while Model D had a C-statistic of 0.755
(corrected: 0.752) and a HL-p value of 0.428 (Table 2; Figures 5–7). Precision recall curves,
which visualize the relationship between precision (positive predictive value) and recall
(sensitivity) to compare across models, were shown in Figures 4 and 7.
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Models A (parsimonious LASSO model) and C (full model) had better prediction
performance, compared to baseline models B and D. The findings suggested incremental
predictive value had been introduced by the addition of wGRS [Model A vs. B: NRI = 0.226
(0.149–0.335), IDI = 0.019 (0.013–0.024); Model C vs. D: NRI = 0.239 (0.154–0.340), IDI = 0.018
(0.013–0.023); p < 0.01]. There was no statistical difference in the predictive accuracy
between models A and C (C-statistic increment = 0.001, p = 0.479). In addition, the sensitivity
analysis found that there was no statistical difference in models for wGRS137, wGRS163,
and wGRS202 predictive accuracy (Supplementary Table S2; Figures S9–S10). Random
forest models F (baseline model + wGRS) and G (baseline model), with 500 trees, were
built, and the results were consistent with the findings in cross-assessment of models A/B
and C/D (Supplementary Table S12; Figures S11–S13). Model F had an out-of-bag (OOB)
prediction error rate of 27.64%, compared to 27.37% for model G. Models that integrated
wGRS in combination with demographic and clinical predictors had better performance
than baseline models.
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We developed an online CRC risk prediction nomogram/calculator A. This can be ac-
cessed through the following link: (https://crcpredictionmodel.shinyapps.io/dynnomapp/;
accessed on 27 June 2023). The CRC risk for individuals can be calculated via inputting
each patient’s information.

4. Discussion
4.1. Interpretation of Main Findings

Our study investigated the predictive value of demographic characteristics, a wGRS
based on 202 CRC susceptibility SNPs, family history, and symptoms on CRC risk. The
dedicated CRC prediction models were developed and internally validated for personalized
cancer risk prediction for patients presenting with symptoms.

4.1.1. Model Predictors

CRC risk prediction models A-D were constructed using a polygenic risk score, age,
sex, BMI, family history, and symptoms to predict CRC risk in patients with symptoms.

https://crcpredictionmodel.shinyapps.io/dynnomapp/
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In previous studies, a total of 19 CRC prediction models were developed [5–22]. The
median number of predictors included in the models was ten (ranging from three to 16).
An amount of 55 unique predictors were incorporated in at least one of the above 19 models
(Supplementary Table S3). The 19models used predictors, such as demographic characteris-
tics (age: in 16 models, 82.4%; sex in 11 models, 57.9%), lifestyle factors (smoking in four
models, 21.1%; alcohol consumption in three models, 18.8%), biomarkers (haemoglobin
in five models, 26.3%; CEA in two models, 10.53%), family history (in six models, 31.6%),
and symptoms (rectal bleeding in 15 models, 78.9%; changes in bowel habits in 10 models,
52.6%; abdominal pain in nine models, 47.4%; weight loss in nine models, 47.4%; anaemia
in five models, 26.3%).

The 10 candidate variables (except wGRS) in our study were all used as predictors in
the previously developed 19 CRC prediction models. Our models’ findings were in line with
these previous studies. It should be noted that family history data in SOCCS and LABSS
studies was collected based on self-reported bowel cancer history, which was recorded in
patient questionnaires and may be affected by recall bias. Furthermore, predictive value
of symptoms as indicators for CRC is not well established. Previous studies argued that
bowel symptoms correlate poorly with the presence of CRC [37]. They are also common in
patients free from CRC risk, which implies they do not have good sensitivity for CRC [38].
Bowel symptoms are associated with CRC risk, but only for patients who have had the
symptom at least weekly and for less than 12 months [5]. For symptoms that may be
relevant, investigating the frequency and duration of symptoms is helpful. Data related to
duration and frequency of bowel symptoms were unfortunately not collected in SOCCS,
and thus we could not explore this in our study.

None of the 19 models incorporated genetic factors (neither individual SNPs nor a
wGRS). To the best of our knowledge, this is the first study that developed and internally
validated prediction models that included a wGRS in addition to demographic and clinical
factors for CRC risk in patients with symptoms. Models A and C verified that the wGRS,
including 202 CRC susceptibility SNPs, is the score with the best prediction performance,
compared to baseline models B and D. The findings showed that the inclusion of the
genetic predictor (wGRS) into the baseline model could improve CRC risk stratification.
By comparison, previous studies were mainly focused on the predictive ability of genetic
factors to capture the overall risk of CRC in the general population, not in symptomatic
patients [39]. A recently published systematic review synthesized and evaluated a total of
33 CRC risk prediction models, which were developed by incorporating genetic predictors
(SNPs or GRS) for the prediction of CRC risk in the general population [39] (Supplementary
Table S10). An amount of 78.8% of the identified 33 CRC risk prediction models applied
GRS, and the remaining 21.2% of them, incorporated SNPs as genetic predictors. The
meta-analysis findings suggested no correlation between the number of SNPs and AUC
improvement (p = 0.695). Furthermore, AUC improvement for the addition of genetic
predictors to baseline models ranged from 0.010 to 0.084. The meta-analysis resulted in a
pooled estimate of AUC improvement for genetic-enhanced prediction models compared
with baseline models of 0.040 (95% CI: 0.035–0.045) [39].

These results are consistent with our finding of the polygenic risk score value in
symptomatic patients. The integration of genetic predictors into classical CRC prediction
models (baseline models) could improve the models’ prediction accuracy. There are several
strengths for using genetic risk stratification in CRC. First, wGRS provides a measure of
genetic susceptibility to CRC risk. Second, genetic predisposition to CRC remains relatively
unchanged throughout life and affords the opportunity to provide long-term estimation of
risk trajectories. Third, genetic risk stratification could improve CRC risk prediction in peo-
ple who carry high-impact disease-causing genetic variants. Future application of genetic
predictors holds significant promise and has the potential to enhance CRC risk prediction,
assist clinical decision-making in precision therapeutics, and improve population-level
screening [40]. Despite the potentials and benefits of using genetic predictors, there are
risks and limitations of clinical use, which should be acknowledged. The first concern
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is to balance the cost and net benefit of using genetic predictors [40]. Genetic variants
are not routinely collected in clinical practice, and it is not clear whether their predictive
accuracy is better than for traditional risk factors, which can be more easily collected from
routine patient records [39]. In addition, the standards and methods to incorporate genetic
predictors in prediction models are constantly developing [41]. There has not been a unified
standard, and this inconsistency becomes a major challenge during its clinical application.
Another challenging aspect of using genetic predictors in clinical practice is to ensure that
they are equally applicable to all ethnic groups [42]. The majority of current genetic variants
data are from European populations, thus, GRS are primarily developed and validated
in those of European descent [43]. This usually leads to a decrease in predictive accuracy
when applied to non-European ancestries [44]. Lastly, it is important to validate genetic
predictors’ feasibility in routine clinical practice [41]. It is suggested to evaluate the CRC
genetic model’s clinical impact (e.g., cost-effectiveness) prior to implementation in the
clinical setting [45].

4.1.2. Model Prediction Performance, Validation, and Clinical Impact

CRC prediction models A, B, C, and D were found to have good predictive perfor-
mance, surpassing the area under the ROC curves threshold of 0.7. Our models have the
advantage of identifying symptomatic patients who have a higher probability of CRC
among all patients. In addition, the calibration plots illustrated the acceptable agreement
between the observed CRC probabilities and the predicted CRC probabilities. Due to a
lack of external data, it was unfortunate that models A, B, C, and D could not be validated
in the external population. Comparing LASSO model A and full model C, there was no
statistical difference in the models’ predictive accuracy. It is critical to consider whether the
model’s predictive accuracy increment is worth the additional time and cost to collect all
the predictors. The parsimonious model A used five LASSO-selected influential predictors.
LASSO approach could select the most influential predictors [46]. By comparison, the full
model C used all the 10 predictors. In this study, the increased time and cost to collect
the larger number of predictors for the full model C outweighed the increased predictive
accuracy. It is important to balance model parsimony and accuracy [47]. From a practical
perspective, the parsimonious model A is easier to interpret, generalize, and use in practice.
In the current study, model A is preferred over model C.

Compared to the previously published 19 risk prediction models, 13 (68.4%) models
reported a median AUC value of 0.85 (ranged from 0.73 to 0.97), which indicated that
these models had better discrimination ability. With regards to validation, 10 (52.6%)
models did not undergo either internal or external validation; five (26.3%) models were
internally validated; and three (15.8%) models were validated in external datasets. One
model (5.3%) was developed with both internal and external validation. None of the
19 models performed clinical impact analysis. Although they perform at a level that is
considered ‘clinically acceptable’ with a C-statistic >0.7, however, these models have not
yet been applied in clinical practice.

4.2. Strengths and Limitations

The main strength of this study is that CRC prediction models were developed with
internal validation to alleviate the models’ overfitting and optimism. Models incorporated
both influential genetic and non-genetic predictors to increase the models’ prediction
performance, which were validated to have good calibration and discrimination.

However, the following potential limitations should be considered. (1) This risk
prediction modelling study was based on a small sample size and may not be sufficiently
representative of the population. Furthermore, due to the small sample size, we did not
develop risk prediction models for CRC risk in males and females separately or in different
CRC cancer sites. (2) The majority of CRC cases came from SOCCS (97.81%), and all
controls, were from LABSS. The different variable collection methods in SOCCS (GP e-
referrals) and LABSS (questionnaire) could bias the study’s results. For GP e-referrals, it is
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possible that not all the symptoms would be accurately recorded by GPs. By comparison,
for LABSS, patients were asked whether they had presented the symptoms (those were
variables of interest and were designed to be collected in the questionnaire), and, therefore,
they were more likely to recall a greater number of symptoms. (3) Previous systematic
reviews found that biomarkers (e.g., haemoglobin, CEA, qFIT result), lifestyle (e.g., vitamin
D) variables, and bowel symptoms (e.g., rectal mass, abdominal mass) are associated with
CRC risk [48,49]. However, these predictors were not collected in SOCCS and LABSS
studies and could not be employed in the developed CRC prediction models. (4) The
prediction performance of using genetic predictors may vary, depending on the SNPs
included (whether they are high-risk susceptibility), SNPs weight estimates from a meta-
GWAS dataset, and the specific computational method used for GRS construction [39].
We included a list of genome-wide CRC significant SNPs (p < 5 × 10−8) from the most
recently published meta-GWAS study [25]. However, 8.43% of the meta-GWAS participants
were SOCCS participants. Thus, this could overestimate our wGRS when we used their
SNPs’ coefficients for external weight. Another limitation is that current genetic variants
are from European populations, which usually leads to a decrease in predictive accuracy
when applied to non-European ancestries [50]. (5) Internal validation cannot address
selection bias with recruitment, or measurement errors, as validation is performed within
the study population [51]. (6) The C-statistic, HL goodness of fit test, and calibration plots
were employed to examine model performance (discrimination and calibration). These
metrics have their own limitations. The C-statistic does not have a clear interpretation
when assessing the incremental value after adding a new predictor [52]. The HL test might
lack statistical power to detect overfitting, it is sensitive to the sample size, and it provides
no information on the direction or magnitude of miscalibration [53]. The calibration plot
cannot provide quantitative assessment of model calibration [54]. (7) The developed CRC
risk prediction models have not been externally validated due to lack of data. Validation
studies of large sample size may be considered in the future.

4.3. Clinical Implications and Future Research

CRC prediction models have the benefit of providing disease risk assessment to iden-
tify patients, whilst also supporting clinical decision-making about risk-tailored, person-
alised clinical care [55]. This eventually could improve patients’ health outcomes and the
cost-effectiveness of care [38]. Despite their benefits, CRC prediction models in front-line
clinical practice remain under-utilized. There are risks and limitations of CRC prediction
models in clinical use. The first concern is associated with prediction accuracy. Incorrect
CRC prediction models might prioritize the wrong patients for further screening, interven-
tions, and clinical treatments [56]. In addition, two studies conducted interviews/focus
groups and surveys to investigate attitudes regarding the use of CRC prediction models
among GPs and to identify barriers to their clinical use [57,58]. The findings indicate that
clinicians may interpret symptoms inconsistently which would lead to inaccurate and
unreliable CRC risk assessment. Therefore, future application of genetic predictors holds
significant promise and has the potential to enhance CRC risk prediction.

5. Conclusions

CRC prediction models were developed with internal validation for personalized
cancer risk prediction for patients presenting with symptoms. The integration of genetic
architecture into the CRC classical prediction model could improve prediction performance.
This could be helpful to identify a subpopulation among the symptomatic population with
higher CRC risk due to genetic susceptibility. The findings merit further investigation
through model external validation and model clinical impact.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13071065/s1, Figure S1: Flow chart for wGRS137, wGRS163,
wGRS202; Figure S2: TRIPOD checklist; Figure S3: Plot-association between age and risk of CRC;
Figure S4: Plot-association between BMI and risk of CRC; Figure S5: Plot-association between
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wGRS202 and risk of CRC; Figure S6: Restricted cubic splines fit age with CRC risk; Figure S7:
Restricted cubic splines fit BMI with CRC risk; Figure S8: Restricted cubic splines fit wGRS202 with
CRC risk; Figure S9: ROC curves- wGRS137, wGRS163, wGRS202 comparison; Figure S10: Calibration
curves-wGRS137, wGRS163, wGRS202 comparison; Figure S11: Random forest parameters tuning:
mtry versus OOB error; Figure S12: Model F_Plot of OOB errors against number of trees; Figure S13:
Model G_Plot of OOB errors against number of trees; Table S1: CRC SNPs used for the generation of
polygenic risk score; Table S2: wGRS137, wGRS163, wGRS202 comparison; Table S3: Risk prediction
models for CRC in patients with symptoms; Table S4: Comparison of CRC cases in SOCCS (n = 1649)
and LABSS (n = 37); Table S5: Age-CRC restricted cubic splines; Table S6: BMI-CRC restricted cubic
splines; Table S7: wGRS202-CRC restricted cubic splines; Table S8: Model C and model E comparison;
Table S9: Summary of models A-D formula; Table S10: CRC risk prediction models that incorporated
genetic predictors; Table S11: Methods for variable selection in the development of the final prediction
model; Table S12: Random forest model F and model G comparison.
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