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Abstract: Background: Adolescent idiopathic scoliosis (AIS), affecting 2–4% of adolescents, is a
multifactorial spinal disease. Interactions between genetic and environmental factors can influence
disease onset through epigenetic mechanisms, including DNA methylation, histone modifications
and miRNA expression. Recent evidence reported that, among all clinical features in individuals
with 22q11.2 deletion syndrome (DS), scoliosis can occur with a higher incidence than in the general
population. Methods: A PubMed and Ovid Medline search was performed for idiopathic scoliosis
in the setting of 22q11.2DS and miRNA according to PRISMA guidelines. Results: Four papers,
accounting for 2841 individuals, reported clinical data about scoliosis in individuals with 22q11.2DS,
showing that approximately 35.1% of the individuals with 22q11.2DS developed scoliosis. Conclusions:
22q11.2DS could be used as a model for the study of AIS. The DGCR8 gene seems to be essential for
microRNA biogenesis, which is why we propose that a possible common pathological mechanism
between scoliosis and 22q11.2DS could be the dysregulation of microRNA expression. In the current
study, we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-1306,
thus, corroborating the hypothesis that the two diseases share common molecular alterations.

Keywords: scoliosis; 22q11.2 deletion syndrome; DiGeorge syndrome; adolescent idiopathic
scoliosis; microRNA

1. Introduction

Scoliosis, a three-dimensional (3D) rotational deformity of the spine and trunk, is
defined as a lateral deviation of the spine of at least a ten degree Cobb angle [1]. Adolescent
idiopathic scoliosis (AIS) affects approximately 2–4% of adolescents around the world [2,3].
The etiology of AIS is multifactorial, involving both genetic and environmental factors, such
as metabolic, hormonal and biomechanical factors [3,4]. The early diagnosis and accurate
prediction of curve progression are very important in AIS, as they can help clinicians to
avoid the negative effects of AIS treatments including brace therapy, scoliosis surgery
and frequent exposure to radiation. Therefore, the identification of biomarkers that could
help in the diagnosis of individuals in the early stages of the disease is of the utmost
importance, as well as in the prognosis, which could direct clinicians to the identification of
the best treatment for the individual. A major problem in the research of AIS is that most
individuals come to receive medical attention after the manifestation of the curve; thus, it
becomes very difficult to investigate these biomarkers before the disease manifests and in
the very early stages of the disease [5].
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Recent evidence reported that individuals with 22q11.2 deletion syndrome (22q11.2DS),
also known as DiGeorge syndrome or velocardiofacial syndrome, are more affected by
AIS compared to the general population, usually develop scoliosis in adolescence during a
growth spurt and the majority of individuals have an idiopathic-like curve pattern [6]. For
these reasons, it has been proposed to use this syndrome as a model for the study of AIS
etiology [6,7]. 22q11.2DS occurs in approximately 1 in 4000–6000 newborns, making it the
most common microdeletion disorder in humans. 22q11.2DS is associated with a spectrum
of variable clinical phenotypes, including congenital heart disease (CHD), palatal abnor-
malities, laryngotracheoesophageal and gastrointestinal anomalies, immune deficiency,
but also skeletal anomalies, including occipital–cervical malformations, scoliosis, rib and
vertebral anomalies, clubfoot and polydactyly [8]. The genes within the 22q11.2 deleted
region encode for proteins involved in several cellular pathways, including chromatin
modifications, cell signaling, cell–cell adhesion, protein trafficking, mRNA/miRNA biogen-
esis, gene transcription, transmembrane receptors/transporters, mitochondrial metabolism
and homeostasis [9]. Recent research has uncovered novel genetic variants, such as single-
nucleotide polymorphisms (SNPs) and copy number variations (CNVs), and epigenetic
differences in 22q11.2DS individuals that could influence disease severity. Among the
epigenetic mechanisms involved in 22q11.2DS, of particular interest are the microRNAs
(miRNAs), given that a gene included in the chromosomal region deleted in the 22q11.2DS,
the DGCR8 gene, plays a primary role in miRNA biogenesis [10]. The DGCR8 gene encodes
for a nuclear miRNA binding protein required for the biogenesis of miRNAs, and, as
expected, the haploinsufficiency of DGCR8 interferes with the processing of miRNAs, and,
as such it is emerging that some of the phenotypic features of 22q11.2DS can be ascribed
not only to the haploinsufficiency of genes within the deleted region, but also to an altered
global dosage of miRNAs [11].

Interestingly, recent evidence suggests that altered miRNA expression could also
be involved in the etiology of AIS. In fact, miRNAs have been proposed as important
contributors in bone morphogenesis and osteoclastogenesis, which makes them interesting
biomolecules to study the molecular causes of scoliosis [12]. Moreover, altered miRNA
expression has been reported in specimens from individuals with AIS [13]. Given that
22q11.2DS has been proposed as a model to study molecular pathological mechanisms
underlying AIS, and that altered miRNA expression seems to be a common feature in both
22q11.2DS and AIS, it could be hypothesized that the identification of commonly altered
miRNA expressions in these diseases could help to better understand AIS etiopathogenesis,
potentially providing diagnostic or prognostic biomarkers for this disease. To the best of
our knowledge, no previous papers reported on research for miRNA expression profiles in
22q11.2DS and AIS individuals. In order to validate this hypothesis, we performed a review
of the literature, searching for correlations between scoliosis and 22q11.2DS, between
miRNA dysregulation and 22q11.2 and between miRNA dysregulation and scoliosis.

2. Materials and Methods

A PubMed and Ovid Medline search was performed for idiopathic scoliosis in the
setting of 22q11.2DS and miRNA. PRISMA guidelines (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) were followed [14]. The key words “22q11.2
deletion syndrome”, “DiGeorge syndrome”, “Velo-cardio-facial syndrome”, “microRNA”,
“miRNA” and “idiopathic scoliosis” were used in both “AND” and “OR” combinations. The
inclusion criteria were as follows: papers reporting on data about 22q11.2DS individuals
with scoliosis and papers reporting on data about 22q11.2DS or scoliosis with miRNA. The
exclusion criteria were as follows: (1) review articles, (2) studies published in languages
other than English, (3) studies with animal subjects and (4) studies not related to the topic.
Using the “PubMed Advanced Search Builder” and “Ovid’s Advanced Search Mode” with
the three queries “(22q11.2DS) AND (idiopathic scoliosis) AND (miRNA)” producing no
results. In order to obtain some findings, we conducted the three-query research as follows
“((22q11.2DS) AND (idiopathic scoliosis)) OR ((22q11.2DS) AND (miRNA)) OR ((idiopathic
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scoliosis) AND (miRNA))”, or, for convenience, three different queries that produced
interesting results as follows: “(22q11.2DS) AND (idiopathic scoliosis)”, “(22q11.2DS)
AND (miRNA)” and “(idiopathic scoliosis) AND (miRNA)”. All this complied with the
PRISMA guidelines.

Quality Scoring

A modified version of the Newcastle–Ottawa scale (NOS) was used for the quality
assessment of the included studies [15]. Two authors (N.M. and A.S.) performed the quality
assessment independently, and any disagreement between them was resolved by a third
author (L.R.). All studies included in this review were rated with an NOS ≥ 5.

3. Results

The database search for 22q11.2DS and idiopathic scoliosis yielded 87 articles (Figure 1).
After the removal of duplicates, 40 articles were eligible for screening. A total of 28 articles
met the selection criteria as described above, according to the PRISMA guidelines [5,6,16–41].
Four papers, accounting for 2841 individuals, reported clinical data about scoliosis in in-
dividuals with 22q11.2DS, showing that approximately 35.1% of the individuals with
22q11.2DS developed scoliosis, whereas 64.3% of individuals had CHD, which represented
the most common clinical presentation in all studies reported [18,25,26,32]. Studies reported
that the occurrence of scoliosis was not associated with the presence of CHD [25]. Homans
et al. [25] reported that 20.4% of 1085 individuals with 22q11.2DS had scoliosis, but this
prevalence reached 47.9% when considering individuals older than 16 years old. Sixty-three
percent of all individuals with scoliosis had a scoliotic curve pattern that resembled AIS [25].
Table 1 shows all details.
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Table 1. Analysis of the current literature for individuals with 22q11.2 deletion syndrome and
scoliosis.

Year Individuals (n) Mean Age Sex (M/F) Scoliosis (%)

Morava et al. [32] 2002 20 na na 3 (15)
Homans et al. [25] 2018 1085 11.4 560/525 221 (20.4)

Campbell et al. [18] 2018 1421 na 725/696 710 (50)
Homans et al. [26] 2020 315 23 na 64 (20.3)

2841 - - 998 (35.1)

na, not available.

The database search for 22q11.2DS and miRNA yielded 174 articles (Figure 2). After the
removal of duplicates, 99 articles were eligible for screening. A total of four articles (Table 2)
met the selection criteria as described above according to the PRISMA guidelines [11,42–44].
These papers revealed that several miRNAs were dysregulated in biological specimens
from 22q11.2DS individuals. Collectively, the selected four papers identified alterations of
miRNAs that were involved in several pathways, including neurological, immune system
and cardiovascular pathways, as well as in embryonic and skeletal development. A few
miRNAs were replicated from at least two different papers. Three articles [42–44] reported
the deregulation of miR-185, while two articles [43,44] reported the deregulation of miR-150,
miR-194 and miR-363.
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Table 2. Selected papers about 22q11.2 deletion syndrome and alteration of microRNA.

Experimental Model Method of Detection Affected miRNAs Description of Main Findings Reference

Array CGH in
peripheral blood of 21

individuals with
22q11.2DS

Array CGH

miR-3675

In 19 individuals, CNVs
containing miRNAs were
identified, suggesting an
altered dosage of those

miRNAs.

Bertini et al. [11]

miR-570
miR-6891

miR-3914-1/2
miR-4650-2
miR-6761
miR-5007

miR-1233-1/2
miR-650

miR-6817
miR-1256

Investigation of
miRNAs overlapped

with 22q11.2
microdeletion and

investigation of
predicted target genes

Genome database
analysis

miR-185 Authors identified seven
miRNAs encoded within the

typical 22q11.2 deleted region.
The 22q11.2 deletion region
was characterized by high

miRNA density. Functional
enrichment profiles of the

22q11.2 region miRNA target
genes suggested a role in
neuronal processes and
broader developmental

networks.

Merico et al. [42]

miR-649
miR-1286
miR-1306
miR-3618
miR-4761

miR-6816

Selected miRNA
expression analyses in
peripheral blood of 30

individuals with
22q11.2DS and 15

controls

Quantitative PCR

miR-185 MiR-185, miR-150, miR-194
and miR-363 were

downregulated in individuals
with 22q11.2DS, as compared

to TD, while miR-208, miR-190
and miR-1 were upregulated.

Authors also reported
decreased expression levels of

genes within the deletion
region of chromosome 22,

including DGCR8.

Sellier et al. [43]

miR-150
miR-194
miR-363
miR-208
miR-190

miR-1

Selected miRNA
expression patterns in
the peripheral blood of

individuals with
22q11.2DS (n = 31) and
normal controls (n = 22)

MicroRNA array
expression profiling

(containing over
600 human miRNA

probes)

miR-185

Eighteen miRNAs were
differentially expressed in a

statistically significant manner
between 22q11.2DS

individuals and controls.

De la Morena et al.
[44]

miR-1308
miR-720

miR-let-7b
miR-150

miR-let-7i
miR-93

miR-let-7g
miR-let-7a
miR-let-7c
miR-1275

miR-15b-3p
miR-21
miR-194

miR-324-5p
miR-363
miR-23b

miR-361-5p

CNVs, copy number variations; TD, typical developing control subject.

The database search for idiopathic scoliosis and miRNA yielded 45 articles (Figure 3).
After the removal of duplicates, 26 articles were eligible for screening. Ten papers that inves-
tigated miRNAs in specimens from AIS individuals focused on the mechanisms underlying
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intervertebral disc degeneration, so they were not included in the current review given that
they used AIS samples as control samples [16,29,30,38,39,41,45–48]. A total of six articles
(Table 3) met the inclusion criteria and was included in the present review [23,33,40,48,49].
Collectively, the six selected papers identified the alterations of miRNAs involved in apopto-
sis, cell adhesion, transmembrane transport, immune responses, as well as in the regulation
of the bone morphogenic protein and Wnt/β-catenin pathway, which are important in
osteoblast/osteoclast differentiation and bone metabolism. Two papers [45,49] identified
the alterations of miR-15a in the inferior facet of joint cartilage and in the bone marrow mes-
enchymal stem cells of AIS individuals. By comparing dysregulated miRNAs in 22q11.2DS
and AIS, two miRNAs, miR-93 and miR-1306, were found to be dysregulated in both
diseases (Figure 4).
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Table 3. Selected papers regarding idiopathic scoliosis and alteration of microRNAs.

Experimental Model Method of Detection Affected miRNAs Description of Main Findings Reference

Investigation of several
miRNAs, including

miR-15a, miR-16,
miR-let7d and miR-29b

in the inferior facet
joint cartilage in 11 AIS

individuals and
10 controls

Real-time PCR miR-15a

Expression of miR-15a was
downregulated in IS individuals,

dysregulating the miR-15a/Bcl2 pathway,
thus, affecting the proliferation of

chondrocytes and leading to abnormal
spine growth, which resulted in the
development and progression of IS

Li et al.
[45]
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Table 3. Cont.

Experimental Model Method of Detection Affected miRNAs Description of Main Findings Reference

Investigation of
miRNA expression in

bone marrow aspirates
from 40 AIS

individuals and 25
non-AIS individuals MiRNA microarray

and real-time PCR

miR-17-5p The study identified 54 differentially
expressed miRNAs in bone marrow
mesenchymal stem cells from AIS

individuals, and interaction network
analysis indicated that 7 most significant
central miRNAs may play essential roles

in AIS pathogenesis and accompanied
osteopenia.

Hui et al.
[49]miR-106a-5p

miR-106b-5p
miR-16-5p
miR-93-5p

miR-15a-5p
miR-181b-5p

RNA sequencing in five
pairs of paravertebral
muscles from five AIS

individuals

RNA sequencing and
real-time PCR miR-675-5p

ADIPOQ and H19 genes were
differentially expressed between two

sides of paravertebral muscles and were
associated with larger spinal curves and
earlier age at initiation. ADIPOQ gene
was regulated by miR-675-5p, which is

encoded by H19.

Jiang et al.
[50]

Bone biopsies from 13
individuals with AIS

and 10 control subjects
and the primary

osteoblasts derived
from those samples

were used to identify
the potential for
osteoblast and

osteocyte functions to
interfere with miRNA

candidates

MiRNA microarray
and real-time PCR miR-145-5p

Microarray analysis identified
overexpression of miRNA-145-5p in bone
biopsies of AIS individuals. On the other
hand, the difference in plasma levels of
miR-145 was not statistically significant

between the control and AIS groups.
However, significant negative correlations
between circulating miR-145 and serum

sclerostin, osteopontin and
osteoprotegerin were observed in

individuals with AIS but not in controls.

Zhang
et al. [40]

Peripheral blood of 30
AIS individuals and 13

healthy controls

NGS and real-time
PCR

miR-122-5p, NGS analyses showed that miR-671-5p
and miR-1306-3p were under-represented,
while miR-1226-5p and miR-27a-5p were
present at high levels in the plasma of the

individuals compared to the controls.
miR-223-5p and miR-122-5p were

homogenously over-represented in the
individuals, but their expression was

heterogeneous among the controls.
RT-PCR detected all the miRNAs derived
from the previous NGS study, except for

miR-1226-5p.

García-
Giménez
et al. [23]

miR-671-5p,
miR-223-5p,

miR-1226-5p,
miR-27a-5p

miR-1306-3p

Genome-wide
association study in

1937 individuals with
AIS divided into

progression (n = 1105)
and nonprogression

groups (n = 832)

GWAS MIR4300HG

GWAS analysis identified a functional
SNP associated with AIS curve

progression. This SNP was found in a
putative enhancer region in intron 1 of
MIR4300HG, and its risk allele showed
significantly lower enhancer activities
than the nonrisk allele. These findings
indicated that MIR4300HG is the gene

responsible for AIS curve progression in
the locus and its decreased expression

would lead to a curve progression.

Ogura
et al. [33]

GWAS, genome-wide association; NGS, next-generation sequencing; PCR, polymerase chain reaction.
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4. Discussion
4.1. Clinical Multifactorial Analysis

In recent years, a primary muscle disorder linked with genetic mutations was postu-
lated as a possible etiology of idiopathic scoliosis [51]. Recently, 22q11.2DS was proposed to
be used as a model for AIS and that within 22q11.2DS, the causal pathways leading to scol-
iosis could be identified, which should be used for the general population [6]. Our review
found that scoliosis occurred in 35.1% of individuals with laboratory-confirmed 22q11.2DS.
The scoliosis had clinical characteristics of AIS. The evidence for the high incidence of
scoliosis within 22q11.2DS was limited. To the best of our knowledge, only four studies
reported on this in the literature. Scoliosis in individuals with 22q11.2DS represents an
important spinal deformity, with surgical intervention applying to 5–6.4% of all 22q11.2DS
individuals [31,52]. Other spinal deformities, such as upper cervical anomalies, spina bifida
and sacral myelomeningocele, were reported in these individuals [53–55].

4.2. MicroRNA and 22q11.2DS

We found four papers in which miRNA expression or miRNA-coding genes were
investigated in individuals with 22q11.2DS. In one of these papers, copy number variations
(CNVs) were investigated in the peripheral blood cells of 21 individuals with 22q11.2DS,
and 11 CNVs in which mapped miRNA-codifying genes were detected in 19 individu-
als [11]. Some of these CNVs in the miRNAs were deleted, some duplicated, and some
others were present as both deletions and duplications; it was interesting to note that
all those miRNAs had a biological role in pathways related to some of the phenotypic
characteristics of 22q11.2DS. Merico and colleagues [42], by using computational tools,
detected seven miRNAs encoded within the typical 22q11.2 deleted region, which are
involved in neuronal processes and in developmental networks, as well as in the bone
morphogenic protein (BMP) group of growth factors and SMAD and transforming factor
beta (TGF-beta) signaling.
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Sellier et al. [43] and De la Morena et al. [44] investigated the expression of several
miRNAs in the peripheral blood of AIS individuals and control subjects, finding alterations
in miRNAs that are involved in neurological, immune system and cardiovascular path-
ways. Overall, these four papers revealed a potential impairment in different miRNAs
in the etiology of 22q11.2DS. Interestingly, three articles reported on the deregulation of
miR-185 [42–44], and two articles reported on the deregulation of miR-150, miR-194 and
miR-363 [43,44]. The observation of the dysregulation of miR-185 was not surprising,
given that the gene that encodes for this miRNA is located within the deleted region of
chromosome 22. Indeed, all three articles reported a strong downregulation of miR-185
expression. Merico et al. [42] reported that miR-185, together with another three miRNAs
that mapped the 22q11.2 deleted region, miR-1286, miR-3618 and miR-4761, was involved
in embryonic development, in the mitogen-activated protein kinase cascade, in the bone
morphogenetic protein group of growth factors and in SMAD and transforming growth
factor beta signaling, all pathways that were found to be involved in scoliosis [55,56].

The potential involvement of miRNA dysregulation in 22q11.2DS is well known,
given that among the genes mapped in the 22q11.2 deleted region was the DGCR8 gene,
which encodes a crucial component of the microprocessor complex that contributes to
miRNA biogenesis and, therefore, to global gene regulation. Thus, miRNA dysregulation
in 22q11.2DS could be due to both the altered expression of miRNAs mapped in the 22q11.2
deleted region and the miRNAs being dysregulated due to the haploinsufficiency of the
DGCR8 gene.

4.3. MicroRNA and AIS

Several authors suggested that miRNA expression dysregulation could be an epige-
netic mechanism that plays a role in the pathogenesis of scoliosis. In the current study, we
found six papers that identified alterations in miRNA expression or in miRNA-encoding
genes in individuals with idiopathic scoliosis [23,33,40,45,49,50,57,58]. Li et al. [45] reported
that miR-15a, which targets Bcl2, was downregulated in the spinal facet joint cartilage
of individuals with scoliosis. Hui et al. [49] investigated the expression of several miR-
NAs in bone marrow mesenchymal stem cells from AIS and control individuals, and
identified 54 differentially expressed miRNAs in the specimens from AIS individuals. Inter-
estingly, among them, miR-15a was found to be dysregulated in the paper by Li et al. [58].
Jiang et al. [57] investigated transcriptomic differences between the two sides of the paraver-
tebral muscle and demonstrated that the mRNA expression of two genes, the adiponectin,
C1Q and collagen domain containing (ADIPOQ) gene and the H19-imprinted maternally
expressed transcript (H19) gene, was differentially expressed between the two sides of
paravertebral muscle, and a lower expression of H19 and higher expression of ADIPOQ
mRNA in the muscle were positively correlated with curve severity and age at initiation.
The authors observed that muscle tissue expression levels of miR-675-5p, encoded by H19,
were positively correlated with that of H19 and negatively with that of ADIPOQ. By means
of bioinformatics algorithms and in vitro investigations, it was observed that miR-675-5p
was able to bind the 3′UTR of the ADIPOQ gene, leading to a reduced expression of the
ADIPOQ protein, further suggesting that miRNAs could play a role in the regulation of
genes involved in the onset and progression of scoliosis [57]. Zhang et al. [40] found that
miR-145 was overexpressed in bone tissues and primary osteoblasts in individuals with
scoliosis, and that serum miR-145 was negatively correlated with bone markers, including
sclerostin, osteopontin and osteoprotegerin. García-Giménez and colleagues [23] reported
a differential expression of several miRNAs in the peripheral blood of individuals with
scoliosis compared to control subjects, suggesting that these miRNAs could participate in
scoliosis pathogenesis by regulating osteoblast and osteoclast activity. Finally, by means
of a genome-wide association investigation performed in 2543 AIS subjects, a functional
variant in MIR4300HG, the host gene of the miRNA MIR4300, was found to be associated
with AIS curve progression [27]. Further evidence of the important role of miRNAs in AIS
etiopathogenesis was derived from an animal study in which rat embryos (gestation day 9)
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exposed to air pollution exhibited a differential expression of 291 miRNAs compared to the
non-exposed group, and, by using bioinformatic analyses, the authors predicted that the
dysregulated miRNAs play crucial roles in the pathogenesis of congenital spinal defects by
deregulating multiple biological processes [59].

4.4. Unifying miRNA Dysregulation Observations in 22q11DS and AIS

By comparing dysregulated miRNAs in 22q11.2DS and in AIS, two miRNAs, miR-93
and miR-1306, were found to be dysregulated in both diseases (Tables 2 and 3). Particularly,
miR-93 was found to be downregulated by De la Morena and coworkers, and upregulated
by Hui et al. [49]. This difference could be due to different specimens used for the analyses.
In fact, De la Morena and coworkers investigated miRNA expression in the peripheral
blood of 22q11.DS individuals, while Hui et al. [49] used bone marrow aspirates from AIS
individuals. However, it was interesting that miR-93 was dysregulated in both 22q11DS
and AIS specimens, given that this miRNA is involved in osteogenic differentiation by
targeting the bone morphogenetic protein-2, in osteoblast mineralization and in the bone
mineral density, which are well-established pathways in the etiology of scoliosis [60–66].

Regarding miR-1306, it was found to be downregulated in the peripheral blood of AIS
individuals, and Merico and coworkers reported that the gene encoding miR-1306 was
located in the 22q11.2 deleted region, meaning that it was also downregulated in 22q11.2DS
individuals [23,42]. Particularly, miR-1306 was encoded in the genomic sequence of the
DGCR8 gene [42]. García-Giménez and collaborators found that miR-1306-3p targeted
the protein serine/threonine phosphatase 2CB, which participates in the TGFβ signaling
pathway, which has already been shown to be involved in AIS, as an increased expression
of TGF-β2, TGF-β3 and TGFBR2 (encoding for a TGFβ receptor) was found in samples from
the curve concavity of AIS patients [67] and it was reported that TGFB1 may play a role in
the curve progression of AIS [68]. Moreover, miR-1306-3p also targets Rac2, which is an
essential Rho GTPase in mature osteoclasts for chemotaxis and resorptive activity, while
among the target miR-1306-5p. there was bone morphogenic protein 1, which is involved
in bone and cartilage development [69,70]. Therefore, the altered expression of miR-93 and
miR-1306 could be involved in the pathological mechanism underlying scoliosis in both
22q11.2DS and AIS.

Further suggestions for a common miRNA expression alteration link between 22q11DS
and AIS were derived from observations of the involvement of DGCR8 in bone turnover, the
impairment of which is strongly involved in scoliosis [71–73]. Sugatani and colleagues [71]
observed that the osteoclast-specific deletion of DGCR8 in mice led to impaired osteoclastic
development and bone resorption, so that bone development was significantly retarded.
In cell cultures, the expression levels of osteoclastic phenotype-related genes and proteins
were remarkably inhibited during osteoclastogenesis in DGCR8 deficiency, evidencing
that DGCR8-dependent miRNAs were indispensable for the osteoclastic control of bone
metabolism [71]. Similarly, Choi et al. [72] generated mice, in which DGCR8 was condi-
tionally deleted in osteoprogenitor cells, observing alterations in osteoblast differentiation.
These observations provide evidence that miRNA dysregulation underlies pathological
mechanisms in both 22q11.2DS and AIS, and that they share dysregulations of the same
miRNAs (Figure 5).
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Figure 5. Schematic representation of the potential role of dysregulated miRNAs in 22q11.2DS
and scoliosis. Individuals usually harbor one of three common deletion sizes (3, 2 and 1.5 Mb)
between low-copy repeats (LCRs) designated as A-D, A-C and A-B, respectively, which leads to
haploinsufficiency of several genes, including DGCR8, which is involved in miRNA biogenesis.
MiRNA binds to mRNA transcripts, targeting them for degradation, thus, playing a pivotal role in
regulating mRNA translation. The genetic background of individual and environmental factors could
interfere with miRNA expression, leading to dysregulation of their target genes.

5. Conclusions

In conclusion, we confirmed that scoliosis is a frequent hallmark of individuals with
22q11.2DS and that this syndrome could be a useful model for the discovery of the patho-
logical mechanisms underlying AIS. In particular, a miRNA alteration investigation in
22q11.2DS could provide new insight in the etiopathogenesis of AIS. In the current study,
we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-
1306, thus, corroborating the hypothesis that the two diseases share common molecular
alterations, although it is likely that there are many others that have yet to be discovered.
Further investigations are needed to identify other potential miRNAs involved in the gene-
sis of scoliosis in the two diseases, as well as to confirm the connection between 22q11.2
and scoliosis pathological mechanisms. Since 22q11.2DS is a congenital disability that
can be diagnosed during infancy, and scoliosis affects at least 35% of these individuals,
this syndrome offers the opportunity to identify early biomarkers for scoliosis develop-
ment and severity valid also for AIS. For example, miRNA expression investigations in
22q11.2 individuals with and without scoliosis, as well as in individuals with AIS, could
be useful for identifying specific biomarkers of scoliosis and, subsequently, for expanding
these findings to the general population to clarify which miRNAs are directly involved
in scoliosis onset and development. Moreover, scoliosis monitoring should be part of the
clinical management of individuals with 22q11.2DS [32]. The identification of dysregulated
miRNAs specific to AIS could help with the development of early diagnostic biomarkers
of the disease, which could allow earlier postural interventions and could provide new
targets for the development of pharmacological therapies. More importantly, future studies
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should not only be aimed at looking for possible miRNAs associated with scoliosis, but
also at its severity, in order to identify not only biomarkers for disease diagnosis, but also
for disease prognosis.
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