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Abstract: MicroRNAs (miRNAs) regulate gene expression by binding to mRNAs, and thus reduce
target gene expression levels and expression variability, also known as ‘noise’. Single-cell RNA
sequencing (scRNA-seq) technology has been used to study miRNA and mRNA expression in single
cells. To evaluate scRNA-seq as a tool for investigating miRNA regulation, we analyzed datasets
with both mRNA and miRNA expression in single-cell format. We found that miRNAs slightly
reduce the expression noise of target genes; however, this effect is easily masked by strong technical
noise from scRNA-seq. We suggest improvements aimed at reducing technical noise, which can
be implemented in experimental design and computational analysis prior to running scRNA-seq.
Our study provides useful guidelines for experiments that evaluate the effect of miRNAs on mRNA
expression from scRNA-seq.
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1. Introduction

miRNAs are small non-coding RNA molecules that regulate gene expression in
metazoan organisms. miRNAs function post-transcriptionally by regulating target genes
through facilitated mRNA degradation or translational repression; this potentially reduces
mRNA and protein levels [1–3]. In addition to affecting the level of gene expression, miR-
NAs reduce gene expression variability, or ‘noise’, particularly of less expressed genes [4,5].
This latter effect has been hypothesized to reduce stochasticity in gene expression and to
confer robustness to genetic pathways [6].

Single-cell RNA sequencing (scRNA-seq) is a rapidly developing technology that
enables direct profiling of gene expression in single-cell resolution. Quantification of cell-to-
cell variation using scRNA-seq provides deep insights into expression level heterogeneity
and stochastic gene expression [7]. A derivative of scRNA-seq, single-cell small RNA
sequencing, reveals the expression pattern of the small-sized fraction of RNAs, including
(among others) miRNAs, tRNAs, and small nucleolar RNAs [8]. The majority of studies
that investigated the miRNA-mRNA regulatory interplay integrated miRNA-mRNA data
from ‘bulk’ sequencing experiments (as opposed to single cell), and focused on the expected
anti-correlative expression levels between the miRNAs and their target genes [9,10]. Those
studies were limited in their ability to measure the effect of miRNAs on the variability of
mRNA expression. However, advancements in single-cell mRNA and miRNA sequencing
technologies now enable exploring the interplay between miRNA levels and noisy gene
expression [11].

Drawbacks of scRNA-seq data include the occurrence of stochastic noise, which
is due to the sampling method, the small amount of starting material, and sequencing
inefficiency [12]. Approaches that have been proposed to resolve these technicalities
include the use of unique molecular identifier (UMI) [13] and external RNA spike-ins [14].
However, technical noise is greater in scRNA-seq than in bulk RNA-seq (non-single cell);
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hence, accurate quantification and decomposition of technical and biological noise in
scRNA-seq remain challenging. Our study evaluated the effect of miRNA on mRNA
expression from single-cell RNA sequencing. We showed that the conclusions that can be
derived from this analysis are limited, and proposed a few ideas for improvement.

2. Materials and Methods
2.1. MRNA and MiRNA Profiling Datasets

In GSE81287 [8], single-cell mRNA sequencing was conducted according to the Smart-
seq2 protocol [15], and single-cell miRNA expression was measured with small RNA
sequencing. Smart-seq2 sequencing data of 21 human naive embryonic stem cells (ESCs)
and 21 primed ESCs were available. The data of other types of cells were not included in
the analysis. Samples with library size < 0.1 million were discarded in the analysis; thus,
16 naive ESCs and 15 primed ESCs were included.

The raw read count and RPKM matrices of mRNAs were downloaded from GEO (https://ftp.
ncbi.nlm.nih.gov/geo/series/GSE81nnn/GSE81287/suppl/GSE81287_smartseq2_refseq_rpkms.txt.
gz accessed on 1 December 2019). Genes expressed in more than five naive ESCs or
five primed ESCs were retained in the analysis.

The molecule count matrix of miRNAs was downloaded from GEO (https://ftp.ncbi.
nlm.nih.gov/geo/series/GSE81nnn/GSE81287/suppl/GSE81287_allcells_mirna_postqc.txt.
gz accessed on 1 December 2019). Samples sequenced with 51 bp reads (41 bp RNA frag-
ments) were used to calculate miRNA expression. To maintain consistency, we normalized
read count similarly as with the other dataset used in our analysis, GSE114071. The raw
read count of each miRNA was first divided by the sum count of all miRNAs. Normalized
data lower than 10e−4 were further set to this minimum level. Then, all the data were log2-
transformed for downstream analysis. Differentially expressed miRNAs were provided in
the supplementary file of Omid R Faridani’s paper [8] (https://static-content.springer.com/
esm/art%3A10.1038%2Fnbt.3701/MediaObjects/41587_2016_BFnbt3701_MOESM4_ESM.
pdf accessed on 10 April 2022), determined using SCDE [16].

In GSE114071, the authors managed to sequence mRNA and miRNA in the same
K562 single cells, using a half-cell genomics approach [17]. In short, the single cells were
manually picked and lysed; the lysate of each single cell was then evenly split into two
half-cell fractions. One fraction was subjected to mRNA sequencing using the Smart-seq
protocol and the other was subjected to miRNA sequencing.

The normalized miRNA expression matrix was downloaded from GEO (https://ftp.
ncbi.nlm.nih.gov/geo/series/GSE114nnn/GSE114071/suppl/GSE114071_NW_scsmRNA_
K562_norm_log2.gct.gz accessed on 1 December 2019). The normalized expression values
represented the fraction that each miRNA constituted the total miRNA content. The au-
thors did not provide the read count for gene expression matrices, and only the RPKM
matrix is available on GEO. DCA requires a read count matrix as input; therefore, we
downloaded the raw mRNA sequencing data from SRA (https://www.ncbi.nlm.nih.gov/
Traces/study/?acc=PRJNA464059 accessed on 1 December 2019) and quantified the gene
expression ourselves. Downloaded sra files were decompressed using fastq-dump v2.8.0
and then mapped to hg38 transcriptome using STAR v2.5.3a [18]. Aligned reads were
quantified using RSEM v1.3.1 [19] to obtain expected read count and RPKM values. The
gene annotation used for expression quantification was the NCBI RefSeq gtf file, retrieved
by Table Browser at UCSC Genome Browser (accessed on 7 December 2019). Consistent
with the read count matrix, the RPKM matrix output by RSEM was used, rather than the
RPKM matrix provided by the authors. Genes expressed in more than five single cells were
retained in the analysis.

2.2. Noise Estimation and miRNA Target Prediction

As the coefficient of variation (CV) and the mean of normalized counts are linearly
related in the logarithmic scale (Figure 1), we fitted a regression line with RPKM of all the
genes. Residual CV (RCV) was defined as the residual in the regression model for each
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gene, namely, the difference between log10 (CV) and log10 (fitted mean CV), as predicted
by the regression model. This regressed out the effect of the mean expression level on noise.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

2.2. Noise estimation and miRNA target prediction 
As the coefficient of variation (CV) and the mean of normalized counts are linearly 

related in the logarithmic scale (Figure 1), we fitted a regression line with RPKM of all the 
genes. Residual CV (RCV) was defined as the residual in the regression model for each 
gene, namely, the difference between log10 (CV) and log10 (fitted mean CV), as predicted 
by the regression model. This regressed out the effect of the mean expression level on 
noise. 

 
Figure 1. The effect of miRNA on target mRNAs in GSE81287 primed ESCs. (a) The linear relation 
between the mean and the coefficient of variation (CV) of RPKM values of genes. The red line is 
fitted by ordinary least squares regression and the blue line is fitted by the smoothing method, Gen-
eralized Additive Models. (b) Residual CV (RCV) RPKM is defined as log10 (CV) RPKM, after re-
gressing out the mean RPKM. Overall, RCV RPKM measures the relative noise of mRNAs compared 
with the mean noise of mRNAs with the same expression level. (c) Raw read counts are denoised 
by DCA and then normalized. The relation between the mean and the CV of DCA normalized 
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Figure 1. The effect of miRNA on target mRNAs in GSE81287 primed ESCs. (a) The linear relation
between the mean and the coefficient of variation (CV) of RPKM values of genes. The red line is fitted
by ordinary least squares regression and the blue line is fitted by the smoothing method, Generalized
Additive Models. (b) Residual CV (RCV) RPKM is defined as log10 (CV) RPKM, after regressing out
the mean RPKM. Overall, RCV RPKM measures the relative noise of mRNAs compared with the
mean noise of mRNAs with the same expression level. (c) Raw read counts are denoised by DCA
and then normalized. The relation between the mean and the CV of DCA normalized counts is also
linear. (d) RCV is also calculated for DCA normalized data. (e) Cumulative distribution functions
(CDFs) of RCV RPKM of target mRNAs. Target genes are grouped by miRNA mean expression levels.
As the miRNA mean expression level increases, the RCV RPKM of the target genes significantly
decreases. (f) Kolmogorov–Smirnov (KS) test −log10 (p) values between CDFs in (e). Red indicates
higher statistical significance and white indicates lower statistical significance. (g) CDFs of RCV
DCA normalized count of target genes. Target genes are grouped by miRNA mean expression levels.
(h) KS-test −log10 (p) values between CDFs in (g). Red indicates higher statistical significance and
white indicates lower statistical significance.
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Deep Count Autoencoder (DCA) was designed by Eraslan et al. to denoise scRNA-seq
datasets [20]. In the DCA algorithm, a zero-inflated negative bimodal (ZINB) distribution is
used to model sparse and overdispersed single-cell count data. An autoencoder framework
is used to estimate the parameters of ZINB distribution, and the mean parameter of the
distribution is output as the denoised count. During model training, the count data are
first compressed through a bottleneck layer, where only the essential latent features are
captured by the autoencoder. Therefore, random noises are largely removed in the data
reconstruction step. According to Eraslan et al.’s results, DCA managed to remove technical
noise and improve several downstream analyses, such as clustering, time course modeling,
and differential expression analysis. We ran DCA v0.2.2 with default settings on read
count matrices of GSE81287 and GSE114071 separately. Output ‘mean.tsv’ files were
used as denoised count matrices. We further normalized denoised counts by the effective
gene length and library size, to create DCA normalized counts. CV and RCV were also
calculated for DCA normalized counts, as for RPKM values. In addition to DCA, we used
another consensus clustering-based dropout imputation method for denoising, namely,
ccImpute [21]. The output denoised counts were normalized using the same approach as
with the DCA output.

The target genes of each miRNA were predicted using TargetScanHuman v7.2 (http://www.
targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi accessed on 10 July 2018) [22].
TargetScan prediction results only include conserved targets of conserved miRNA families.
These targets are the default prediction results obtained from browsing the name of one
miRNA on the TargetScan website. In the analysis of the effect of miRNA on target genes,
the target genes of multiple miRNAs were defined as the union of target genes of each
miRNA. We also included two other miRNA target prediction databases for validation,
namely, miRDB 6.0 (http://www.mirdb.org/download.html accessed on 10 July 2018) [23]
and miRTarBase 7.0 (http://mirtarbase.mbc.nctu.edu.tw/php/download.php accessed on
10 July 2018, latest version at https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_
2022/php/download.php accessed on 17 October 2022) [24]. miRDB predicts miRNA tar-
gets using machine learning methods, while miRTarBase curates experimentally validated
miRNA-target interactions.

2.3. Statistical Analysis

Statistical significance (p value) was determined by the Kolmogorov–Smirnov (KS)
test for different distributions of expression noises, and the Student’s t-test (two-tailed) for
values in naive ESCs, primed ESCs, and K562 cells. All statistical analyses were performed
using R v4.0.2.

3. Results

To examine the effect of miRNA on gene expression, we accessed two datasets that
contained both single-cell mRNA profiling and single-cell miRNA profiling. In dataset
GSE81287, generated by Omid R Faridani et al., the authors applied single-cell small RNA
sequencing to naive and primed human ESCs (hESCs) and to cancer cells [8]. Single-cell
mRNA sequencing was also applied to naive and primed hESCs for reference. Therefore,
we selected hESCs for our analysis. In dataset GSE114071, generated by Nayi Wang
et al., miRNAs and mRNAs in 20 K562 cells were co-sequenced using a half-cell genomics
approach [17]. These two datasets employed a read-based Smart-seq2 protocol for mRNA
sequencing [15]. Therefore, in both datasets, gene expression was quantified by normalized
read count such as RPKM (reads per kilobase of transcript per million reads mapped). To
the best of our knowledge, no study has co-sequenced mRNA and miRNA in single cells
using a UMI-based mRNA sequencing protocol.

Previous studies have described a general tendency of decreasing the expression noise
of mRNAs, when the mean expression level increases [25,26]. We observed that the mean
and CV of normalized counts such as RPKM always showed a linear relationship in the
logarithmic scale (Figures 1a and A1a,i). To account for the effect of the mean expression
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level, we calculated RCV by subtracting the confounding mean (Figures 1b and A1b,j).
Accordingly, RCV measures the relative noise of one mRNA compared with the mean noise
of another mRNA with the same expression level. We assume that RCVs of mRNAs should
be reduced if the mRNAs are targeted by highly expressed miRNAs.

The low capture rate of single-cell sequencing technology results in drop-out events,
which are failures to detect expressed genes. These events produce “false” zero count
observation and may lead to biased estimations of mRNA expression. A number of methods
have been proposed to denoise single-cell gene expression data and reconstruct biological
signals. We chose DCA [20] to further recover biological noise of mRNA expression. DCA
considers a read count matrix as input and uses a deep-learning-based autoencoder to infer
parameters of count distribution. The output of DCA is a DCA denoised count matrix with
the same shape as the input count matrix. As with RPKM, we normalized DCA output
with effective gene length and library size to create DCA normalized counts, and then
calculated RCV (Figure 1c,d and Figure A1c,d,k,l). We deemed both the RCV RPKM and the
RCV DCA normalized count as expression noises of each mRNA in downstream analysis.
The DCA denoised count matrix measures the total noise, including biological noise and
technical noise. The input count matrix measures reconstructed biological noise, but may
also include bias caused by the DCA algorithm.

The effect of miRNA on target gene expression noise may vary according to expression
level. Therefore, we grouped miRNAs according to their expression levels (the mean
fraction in all miRNAs). Four groups were partitioned based on a gradient of the mean
fraction in the logarithmic scale (Figure 1e, Table A1). We first predicted the target mRNAs
of miRNAs in each group, using TargetScan [22]. We then compared the expression noise
(RCV RPKM and RCV DCA normalized count) of target mRNAs between every two groups.
We found that the target mRNAs of miRNAs with higher expression level generally had
lower RCV RPKMs (Figures 1e and A1e,m). The KS test results showed significant differ-
ences between the several pairs of the distributions of RCV RPKMs (Figures 1f and A1f,n).
Notably, the statistical significance increased as the difference in miRNA expression lev-
els increased. These results suggest that the total noise of predicted target mRNAs is
anti-correlated with the expression level of miRNAs. Given that the mRNAs with higher
technical noise are not enriched in the predicted targets of specific miRNAs, the results
show that miRNAs reduce the expression noise of target mRNAs. For RCV DCA nor-
malized counts, we observed a similar pattern; specifically, highly expressed miRNAs
strongly reduced the expression noise of target mRNAs (Figures 1g,h and A1g,h,o,p). This
suggests that the noise-reduction effect of miRNAs can be observed in recovered biological
noises. To validate this finding, we repeated the analysis using a different noise-reduction
method (ccImpute [21], Figure A2) and two additional miRNA target prediction databases
(miRDB [23] and miRTarBase [24], Figure A3). All the results were similar and support the
conclusion that miRNAs reduce the expression noise of target mRNAs.

We next examined the effect of differentially expressed miRNAs in a number of cell
types. The miRNA expression levels of naive ESCs and primed ESCs were analyzed
in GSE81287. Faridani et al. identified 327 differentially expressed miRNAs (adjusted
p < 0.05) [8], of which 159 showed higher expression in naive ESCs and 168 showed higher
expression in primed ESCs. We used their results to avoid inconsistencies with the primary
analysis. For each differentially expressed miRNA, we predicted its target mRNAs, and
compared their mean expression and noise. We found that no miRNA showed a significant
difference in either its log mean expression or the noise of target mRNAs (t-test, Benjamini
FDR > 0.05). In fact, the distributions of mean expression and noise were nearly identical for
each miRNA (Figure 2a–d). This suggests that the effect of a single miRNA on expression
noise is too weak to be detected.
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quency in each group, namely, the most common targets. The 100 mRNAs in the two 
groups had similar expression patterns and did not agglomerate with mRNAs from the 
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Figure 2. The effect of differentially expressed miRNAs on mean expression level and the noise
of target mRNAs. miRNA and mRNA data are from GSE81287 naive and primed embryonic
stem cells (ESCs). (a–d) Distributions of mean expression level ((a) mean RPKM, (b) mean DCA
normalized count) and noise of mRNAs ((c) residual coefficient of variation (RCV) RPKM, (d) RCV
DCA normalized count) targeted by differentially expressed miRNAs. hsa-miR-182-5p and hsa-
miR-135a-5p are representative differentially expressed miRNAs, with higher expression in naive
and primed ESCs, respectively. The distributions are almost identical in naive and primed ESCs.
(e) Log(#count + 1) of the commonest mRNAs targeted by differentially expressed miRNAs in naive
and primed ESCs. MRNAs targeted by miRNAs with higher expression in naive and primed ESCs
have similar patterns. Zero expression is shown in cyan. (f) Violin plots showing the mean expression
levels and noises of the commonest mRNAs targeted by differentially expressed miRNAs in naive
and primed ESCs. (g,h) The log fold change of the mean expression level and noise of all the mRNAs
in naive and primed ESCs. The commonest mRNAs targeted by differentially expressed miRNAs do
not generally deviate from the origin. (g) Mean RPKM and RCV RPKM. (h) Mean DCA normalized
count and RCV DCA normalized count.

Combinatorial regulation of miRNAs has been shown to cause substantial reduction
in target gene expression and noise [5]. Therefore, we next compared the combinatorial
effect of all differentially expressed miRNAs, between naive ESCs and primed ESCs. We
separated all the differentially expressed miRNAs into two groups. One group contained
miRNAs with higher expression in naive ESCs and the other contained miRNAs with higher
expression in primed ESCs. For each mRNA, we counted the frequency that it is targeted
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by two groups of miRNAs. Then, we selected 100 mRNAs with the highest frequency in
each group, namely, the most common targets. The 100 mRNAs in the two groups had
similar expression patterns and did not agglomerate with mRNAs from the same group in
hierarchical clustering (Figure 2e). Neither the expression level nor noise of 100 mRNAs
differed significantly between naive ESCs and primed ESCs in each group (Figure 2f, t-test,
p > 0.05 for mean RPKM and RCV). The log fold change of mean expression or noise of
some mRNAs was greatly increased or reduced. However, none of the mRNAs of the naive
ESCs or primed ESCs showed an overall inclination to increase or reduce mean expression
and noise (Figure 2g,h). These results further show that using the applied methodologies,
the effect of miRNA regulation on expression noise of target mRNAs is hard to detect in
single cells.

4. Discussion

In this study, we showed that miRNAs slightly reduce the expression noise of target
genes; however, this effect is easily masked by strong technical noise from scRNA-seq. As
we delineate below, prior to running scRNA-seq, improvements can be implemented in
experimental design and computational analysis, aimed to reduce technical noise. Such
guidelines may be useful for experiments that evaluate the effect of miRNAs on mRNA
expression from scRNA-seq.

The means by which miRNAs regulate target mRNA were addressed in several studies.
scRNA-seq now enables observing the effect of this regulation at a higher resolution. Here,
we accessed two available datasets (GSE81287, GSE114071) that provide both single-cell
mRNA and single-cell miRNA profiling, to analyze miRNA regulation on the expression
noise of target mRNAs. We endeavored to properly measure the expression noise of mRNAs
by accounting for the effect of mean expression level, and used a denoising algorithm,
DCA, to further reconstruct biological noise. We compared the expression noise of target
mRNAs, between miRNAs with different expression levels in a group of cells, and between
differentially expressed miRNAs in a number of cell types. Although some results indicated
that the total noise of predicted target mRNAs is anti-correlated with the expression level
of miRNAs, other results revealed that miRNA regulation is generally mild and its noise
reduction effect on target mRNAs is not easily discerned.

To date, very few studies have combined single-cell mRNA and single-cell miRNA
profiling. In our experiments, we attempted to identify the technical noise that is part of
the total noise, in order to estimate true biological variability. However, the datasets we
used were not generated with this intention; hence, a large proportion of the technical noise
could not be separated from the biological noise. Several methods have been developed
to quantify technical noise and biological noise from scRNA-seq data. According to these
methods, bulk-cell mixture controls or external spike-ins are required in the decomposition
of total noise [12,26,27]. However, neither of these techniques were used in GSE81287
and GSE114071; this precluded completely separating technical noise and biological noise.
Moreover, amplification is also a major source of noise in scRNA-seq. UMIs are widely
considered the best approach to reduce amplification noise, but both of the datasets we used
implemented the read-based Smart-seq2 protocol rather than UMI-based protocols. As
spike-ins and UMIs were not available in the datasets, we chose DCA to estimate biological
noise because it does not require spike-ins, and is applicable to both read-based and UMI-
based expression data. However, the denoised data output by DCA and other methods
may be limited by the algorithms, and are not capable of recovering true biological noise. If
future studies were to include spike-ins and UMIs, biological noise may be better identified.

5. Conclusions

We propose several guidelines for future studies on the effect of miRNAs on gene
expression with scRNA-seq. (i) The use of a UMI-based protocol rather than a read-based
protocol in mRNA sequencing will greatly reduce amplification noise [13]. (ii) The use of
spike-ins in mRNA sequencing and noise decomposition tools will increase the potential
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of decomposing total noise into technical noise and biological noise with spike-ins [12,27].
Such tools may facilitate examining the effect of miRNA on true biological noise. (iii) The
sequencing of sufficient samples and sequencing of each library to a nearly saturated depth
such as one million reads [28] will increase the accuracy of estimations of mean expression
level and noise. (iv) Multiple miRNA target prediction databases (TargetScan, miRDB,
miRTarBase, etc.) should be considered in the interpretation of experimentally validated
data. The results from one database can be misleading and could introduce additional
technical noise. Therefore, validation by different methods is needed. We expect that future
studies with improved experimental design will better address the problems.
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Figure A1. The effect of miRNA on the target mRNAs in (a–h) GSE81287 naive ESCs and (i–p) 
GSE114071 K562 cells. The organization of this figure is the same as for Figure 1. (a,i) The mean and 
coefficient of variation (CV) of RPKM values of mRNAs. The red line is fitted by ordinary least 
squares regression and the blue line is fitted by the smoothing method, Generalized Additive Mod-
els. (b,j) Mean and residual CV (RCV) RPKM values of mRNAs. (c,k) Mean and CV DCA normal-
ized counts of mRNAs. (d,l) Mean and CV DCA normalized counts of mRNAs. (e,m) Cumulative 
distribution functions (CDFs) of RCV RPKM of target genes. Target genes are grouped by miRNA 
mean expression levels. As the miRNA mean expression level increases, the RCV RPKM of their 
target genes significantly decreases. (f,n) Kolmogorov–Smirnov (KS)-test −log10 (p) values between 
CDFs in (e,m). Red indicates higher statistical significance and white indicates lower statistical sig-
nificance. (g,o) CDFs of RCV DCA normalized count of target genes. Target genes are grouped by 
miRNA mean expression levels. (h,p) KS-test −log10 (p) values between CDFs in (g,o). Red indicates 
higher statistical significance and white indicates lower statistical significance. 

Figure A1. The effect of miRNA on the target mRNAs in (a–h) GSE81287 naive ESCs and
(i–p) GSE114071 K562 cells. The organization of this figure is the same as for Figure 1. (a,i) The mean
and coefficient of variation (CV) of RPKM values of mRNAs. The red line is fitted by ordinary least
squares regression and the blue line is fitted by the smoothing method, Generalized Additive Models.
(b,j) Mean and residual CV (RCV) RPKM values of mRNAs. (c,k) Mean and CV DCA normalized
counts of mRNAs. (d,l) Mean and CV DCA normalized counts of mRNAs. (e,m) Cumulative distri-
bution functions (CDFs) of RCV RPKM of target genes. Target genes are grouped by miRNA mean
expression levels. As the miRNA mean expression level increases, the RCV RPKM of their target
genes significantly decreases. (f,n) Kolmogorov–Smirnov (KS)-test −log10 (p) values between CDFs
in (e,m). Red indicates higher statistical significance and white indicates lower statistical significance.
(g,o) CDFs of RCV DCA normalized count of target genes. Target genes are grouped by miRNA
mean expression levels. (h,p) KS-test −log10 (p) values between CDFs in (g,o). Red indicates higher
statistical significance and white indicates lower statistical significance.
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Figure A2. The evaluation of the noise-reduction effect of miRNAs using ccImpute. The organiza-
tion of this figure is the same as for Figure 1. (a,c,e) Cumulative distribution functions (CDFs) of 
residual coefficient of variation (RCV) normalized counts of target genes in primed cells (a), naïve 
cells (c), and K562 cells (e). Target genes are grouped by miRNA mean expression levels. As the 
miRNA mean expression level increases, the RCV ccImpute normalized count of their target genes 
significantly decreases. (b,d,f) Kolmogorov–Smirnov (KS)-test −log10 (p) values between CDFs in 
(a,c,e). Red indicates higher statistical significance and white indicates lower statistical significance. 

Figure A2. The evaluation of the noise-reduction effect of miRNAs using ccImpute. The organization
of this figure is the same as for Figure 1. (a,c,e) Cumulative distribution functions (CDFs) of residual
coefficient of variation (RCV) normalized counts of target genes in primed cells (a), naïve cells (c),
and K562 cells (e). Target genes are grouped by miRNA mean expression levels. As the miRNA mean
expression level increases, the RCV ccImpute normalized count of their target genes significantly
decreases. (b,d,f) Kolmogorov–Smirnov (KS)-test −log10 (p) values between CDFs in (a,c,e). Red
indicates higher statistical significance and white indicates lower statistical significance.
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Figure A3. The evaluation of the noise-reduction effect of miRNAs using two distinct miRNA target
prediction databases miRDB (a) and miRTarBase (b). The organization of this figure is the same as for
Figure 1. Please refer to the legend of Figure 1 for details.
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Table A1. The numbers of miRNAs and target genes in GSE81287 and GSE114071. Target genes of
multiple miRNAs are the union of target genes of each miRNA.

GSE81287 Primed GSE81287 Naive GSE114071

MiRNA Mean
Expression

MiRNA
Number

Target Gene
Number

MiRNA
Number

Target Gene
Number

MiRNA
Number

Target Gene
Number

log2 fraction > −6 9 3258 13 3898 5 1443

log2 fraction > −9 43 8046 71 7102 24 3274

log2 fraction > −12 149 10812 178 10562 55 6736

All expressed 519 12381 509 12402 262 8849
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