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Abstract: One of the major challenges in the post-genomic era is elucidating the genetic basis of
human diseases. In recent years, studies have shown that polygenic risk scores (PRS), based on
aggregated information from millions of variants across the human genome, can estimate individual
risk for common diseases. In practice, the current medical practice still predominantly relies on
physiological and clinical indicators to assess personal disease risk. For example, caregivers mark
individuals with high body mass index (BMI) as having an increased risk to develop type 2 diabetes
(T2D). An important question is whether combining PRS with clinical metrics can increase the power
of disease prediction in particular from early life. In this work we examined this question, focusing
on T2D. We present here a sex-specific integrated approach that combines PRS with additional
measurements and age to define a new risk score. We show that such approach combining adult
BMI and PRS achieves considerably better prediction than each of the measures on unrelated
Caucasians in the UK Biobank (UKB, n = 290,584). Likewise, integrating PRS with self-reports
on birth weight (n = 172,239) and comparative body size at age ten (n = 287,203) also substantially
enhance prediction as compared to each of its components. While the integration of PRS with BMI
achieved better results as compared to the other measurements, the latter are early-life measurements
that can be integrated already at childhood, to allow preemptive intervention for those at high risk to
develop T2D. Our integrated approach can be easily generalized to other diseases, with the relevant
early-life measurements.

Keywords: body weight; genetic variations; GWAS; metabolic disease; obesity; sex difference;
UK-Biobank

1. Introduction

Predicting the risk of an individual to develop a specific disease is a key challenge in
clinical decision making [1]. Based on such predictions, individuals can be identified for
early intervention to prevent, delay the onset or better manage the disease and its outcome.
Understanding the genetic component of the disease can highlight individuals at risk based
on their genetic profile. Indeed, with more genetic and phenotypic information available
for large cohorts, genome-wide association studies (GWAS) have been used to find genetic
variants associated with complex diseases and traits [2–4] Nevertheless, in most GWAS
studies, variants that are significantly associated with the disease or trait explained only
a small fraction of its presumed genetic heritability component. The shortage of GWAS
contribution to complex disease risk has been addressed as the missing heritability problem
with various explanations that were presented to address it [5–7]. A likely explanation
argues that complex diseases are signified by complex intracellular interactions. However,
the many variants that are below significance in GWAS, actually affect the trait, and
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cumulatively contribute to the phenotype even more than the relatively few statistically
significant GWAS variants [8,9]. In light of this possibility, different studies developed
polygenic risk scores (PRS) that consider the accumulative effect of millions of genetic
markers to predict the probability of an individual to develop a complex disease [1,10–13].
In some cases, the PRS methodology was able to highlight individuals with the same risk
as individuals with rare monogenic mutations linked to a disease. The greater effect on
public health reflects the fact that the PRS-based approach covers many more individuals
(up to 20 folds) as compared to rare monogenic mutation carriers [14]. In addition, it was
shown that the penetrance of rare monogenic high-risk variants in various diseases is also
affected by the polygenic risk background as reflected by PRS [15].

The etiology of common complex diseases is presumed to be a combination of both
genetic and environmental factors and the interactions between them [16]. Various physical
and clinical measures are often taken to highlight individuals with high risk for diseases,
and these measures reflect both genetic and non-genetic factors. For example, high body
mass index (BMI), which has both genetic and non-genetic components [17], is a major risk
factor for type 2 diabetes (T2D) [18,19]. Birth weight is yet another example of a physical
measure that combines effects from both genetic and environmental factors [20]. However,
the direction of the association between birth weight and T2D (low birth weight being
a risk or also high birth weight), its scale and whether it is sex-dependent are still not
clear [21–25].

In this work we asked whether a combined approach that utilizes both genetic factors
(e.g., PRS) and quantitative measures (that have non-genetic components) can improve
disease prediction. We evaluated this approach by using both the PRS and physical
measurements associated with T2D prevalence (BMI, birth weight and comparative body
size at age ten) to predict disease risk, based on the UK Biobank (UKB) cohort [26].

Our results demonstrate that such a combined risk predictor significantly enhances
prediction as compared to PRS or each of the underlying measures alone. Importantly, our
analysis includes early-life measurements, meaning that individuals at high risk can be
identified early in life, leading to more effective intervention.

2. Methods
2.1. UK Biobank (UKB) Data

The analysis in this work is based on the information available for UKB partici-
pants [26] (2019 release). We focused on Caucasians by limiting the analysis to participants
who self-reported themselves as White (being White, British, Irish or any other white
background [codes 1, 1001, 1002, 1003, respectively, in Ethnic background, UKB data field
21000]) and being classified as Caucasians based on their genetic ancestry (Genetic ethnic
group, data-field 22006). We also required the individuals to have both genotyping data
and information on T2D disease status. Disease classification was based on clinical infor-
mation provided for UKB participants and encoded by ICD-10 code for T2D (E11.X) either
as a main (UKB data field 41202) or secondary (UKB data field 41204) diagnosis. Additional
phenotypes were used for the analysis: BMI (taken at the UKB Assessment Centre, UKB
data field 21001), birth weight (based on self-reporting, UKB data field 20022) and com-
parative body size at age ten (based on self-reporting, UKB data field 1687). In case where
multiple values were reported for an individual (e.g., BMI measures taken at different time
points), the maximal value was taken. In each of the analyses we focused on individuals
with the relevant phenotypic information. To address possible sex differences, the analysis
was done separately for males and females. Following the filtering steps, 332,338, 184,288
and 318,260 participants were included in the analysis for BMI, birth weight and body size
at age ten, respectively. Finally, we focused on participants evaluated at age 40–70 and
removed genetic relatives, by keeping only one representative of each kinship group of
related individuals from the same sex (recall that analysis was done separately for each
sex). This resulted in sets of 290,584, 172,239 and 287,203 participants for BMI, birth weight
and body size at age ten, respectively.
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2.2. Polygenic Risk Score Calculation

The PRS of an individual is calculated as the weighted sum of his/her allele values
over the set of markers. This score is based on the genotype of each individual and does
not considers sex or age. Therefore, we refer to it as a “raw” PRS. Let m be the number of
markers used for raw PRS calculation, let Gi be the allelic status of marker i in a specific
individual (Gi ∈ {0, 1, 2}), and let wi be the weight of marker i (based on the association of
the marker with the trait). Raw PRS of that individual is then defined as:

raw PRS =
n

∑
i=1

wi·Gi

The weights for PRS calculation for T2D on a set of approximately 6.5 million imputed
markers, based on a previous work [14], were downloaded from The Cardiovascular Dis-
ease Knowledge Portal (https://cvd.hugeamp.org/downloads.html; accessed on 10 June
2021). We applied these weights, which had been fit on the UKB data, on the markers of
UKB participants to obtain raw PRS values for each individual.

2.3. Composite Risk Score

In this work, we defined a composite risk score (CRS) which is composed of three
components: genetic profile (raw PRS), phenotypic information P (i.e., BMI, birth weight
or comparative body size at age ten), and age. For each of the components, we estimate
an individual’s disease risk based on the disease prevalence observed within the relevant
UKB cohort across individuals with similar scores (e.g., similar raw PRS for the genetic
component). A weighted sum of the different components is taken to obtain a CRS
that reflects an individual’s disease risk. The estimated risk scores and weights for each
component are learned in a training set and evaluated on a test set (as described below).
The rationale behind transforming the original measures into estimated disease prevalence
is to allow incorporation of measures that are not necessarily monotonic with respect to
disease prevalence. In addition, transforming the measures into disease prevalence also
normalizes the different measures, that often span different ranges (e.g., raw PRS and BMI
values). The analysis was done separately for each sex.

Formally, we sorted all the individuals in the training set based on their raw PRS
values and divided them into 100 equal-size bins (i.e., raw PRS percentiles of UKB partic-
ipants). For each bin we calculated T2D prevalence in that bin (i.e., the number of cases
divided by the total number of individuals in that bin) and defined it as the genetic risk
(GR) of the members of that bin. For example, if in a specific bin, 5% of the individuals
were reported as having a disease, the GR of that bin was defined as 0.05. Thus, the GR
reflects the actual disease risk in the UKB, based on individuals with similar raw PRS
scores, sharing the same bin. Let raw PRSi be the raw PRS value of sample i. We define
GRi as the GR of the bin that raw PRSi belongs to.

The same procedure was also applied to the phenotypic measure P: we sorted all indi-
viduals in the training set based on their P measures and divided them into 100 equal-size
bins and calculated for each bin the phenotypic risk (PR) of members of that bin. In the case
of comparative body size at age ten, which included only three values (“Thinner”, “About
average” and “Plummer”), people were divided to three bins based on this classification
and the PR was calculated for each of these three predefined bins. We denote the PR of
individual i by PRi.

In addition, we also considered age for the composite score. We divided all individuals
in the training set according to their age (measured in rounded years) and for each age
calculated the age risk (AR) of members with the same age. We denote the AR of individual
i by ARi.

The composite risk score (CRS) of sample i, CRSi, was then defined as a weighted
sum of the three risk measures:

CRSi = α·GRi + β·PRi + γ·ARi

https://cvd.hugeamp.org/downloads.html
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where:
α + β + γ = 1, (α, β, γ ≥ 0)

These parameters are trained in and learned in the training set, as described below.
In addition to CRS, we also converted each of the measures alone to disease risk

estimates and included age, without including the other measure. Formally, the PRS of
sample i, PRSi, was defined as follows:

PRSi = α·GRi + γ·ARi

where:
α + γ = 1, (α, γ ≥ 0)

Thus, as opposed to the original raw PRS, PRS considers age as well (but does not
include the phenotypic measure).

Similarly, for the phenotypic measures BMI and birth weight, we defined a measure
risk score that combines them with age, but without PRS. Thus, BMI risk of sample i (as
opposed to raw BMI that included only the original BMI measurement) was defined as:

BMIi = β·PRi + γ·ARi

where:
β + γ = 1, (β, γ ≥ 0)

This was also done for birth weight risk (as opposed to raw birth weight) but not to
comparative body size at age ten that includes only three distinct values. Finally, we also
considered age alone, to examine whether the other measures provide additional predictive
information beyond age alone. In that case, it was defined as ARi.

For each measure (CRS, PRS and the phenotypic measures BMI and birth weight), we
trained our model on 70% of the individuals (comprising the training set) to estimate the
optimal weights (α, β, γ, depending on the specific measure) that maximize the area under
curve (AUC) in the receiver operating characteristic (ROC) for the specific measure. We
sampled all combinations for the values of the α, β, γ weights, in steps of 0.025 in the range
[0, 1]. Evaluation of the measures was performed on the remaining 30% of the individuals
(comprising the test set), based on odds ratio (OR) analysis, as described below. For the
age measure (AR) alone there was no weight to learn, but the measure itself (i.e., T2D
prevalence per age for each sex) was estimated on the training set and evaluated on the
test set.

2.4. Evaluation of the Results

We evaluated and compared the different measures (CRS, PRS, BMI, birth weight and
age) by examining the resulting T2D OR. For each measure, we divided the participants
in the test set into 100 equal-size bins (i.e., percentiles 0–99). We then calculated for each
bin its OR. Formally, let Dp be the number of individuals diagnosed with T2D among all
individuals in the p percentile, and let Hp be the number of individuals not diagnosed with
T2D among all individuals in the p percentile. Similarly, let D¬p and H¬p be the number of
individuals diagnosed with T2D among all individuals except those in the p percentile and
the number of individuals not diagnosed with T2D among all individuals except those in
the p percentile, respectively. The OR of percentile p, OR(p) was then defined as:

OR(p) =
Dp/Hp

D¬p/H¬p

To estimate the robustness of the results (e.g., calculating standard deviations for the
OR), we repeated the procedure of randomly dividing the dataset into training and test
sets, and evaluating the OR from the classification results of 1000 repetitions.
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The analysis presented here was performed in Python (version 2.7; using the packages
pandas, numpy, sklearn and scipy for data curation and analysis) and in R (version 3.6.0;
using the packages stats, tidyverse and cowplot for statistical analysis and plots).

3. Results
3.1. PRS and BMI

In the current study we used the UK Biobank (UKB) cohort [26], focusing on partici-
pants whose ethnic background was classified as White, where genotyping information and
disease status for T2D was available (see Methods). As there are known sex differences in
and T2D prevalence and risk factors [27,28], we preformed the analysis separately for males
and females. Raw PRS (based on [14]), BMI and disease state (case/control) information
was available for 290,584 participants, among them 157,813 (54.31%) were females.

Figure 1A shows the relationship between raw PRS and BMI and T2D disease preva-
lence. As can be seen, both measures were strongly associated with disease prevalence
in both sexes. T2D disease prevalence was higher in males as compared to females. The
analysis also showed that raw BMI was a better predictor for the disease risk as compared
to raw PRS. This was also demonstrated with respect to OR across the different percentiles
(Figure 1B). For example, the OR in the 99th percentile was 8.62 vs. 2.87 and 6.79 vs. 2.84
for raw BMI vs. raw PRS in females and males, respectively. The receiver operating charac-
teristic (ROC) curves also confirmed this. The area under the curve (AUC) of the raw BMI
measure was larger than the AUC of the raw PRS measure in both sexes: 0.767 vs. 0.626
and 0.721 vs. 0.629 for raw BMI vs. PRS in females and males, respectively (Figure 1C).
These results also indicate that the differences between the two measures were larger in
females than in males, and that BMI is a better predictor in females than in males for
identifying individuals at high risk to develop T2D.

Next, we examined whether combining PRS and BMI together can increase their
prediction power. For that purpose, we defined a new composite risk score (CRS) which
combines both the raw PRS and BMI measures, as well as age. For each of these measures
(raw PRS, raw BMI, age) we estimated an individual’s risk based on disease prevalence
of people with similar values (e.g., people in the same raw PRS percentile) and combined
them into a composite score. The AUC of the combined score was significantly higher as
compared to the other measures in both sexes (Wilcoxon signed rank test p-value < 10−16;
Supplementary Figure S1). Comparison of OR revealed that for both sexes, BMI exhibited
better performance as compared to PRS, but CRS outperformed both measures across all
percentiles (Figure 2). All measures (BMI, PRS and CRS) outperformed age alone.

Specifically, the average OR of the top percentile in males was 3.99, 7.84 and 9.38 for
PRS, BMI and CRS, respectively. In females, the average OR of the top percentiles was 3.94,
9.10 and 10.27 for PRS, BMI and CRS, respectively. Additional results of the top percentiles
are summarized in Figure 2C–E and Table 1. Both PRS and BMI measures that included
age achieved higher OR values than the raw PRS and BMI measures that did not include
age (Figure 1B), demonstrating the importance of adding age into the predictive model.

These results also demonstrate sex differences with respect to the predictive power
of BMI, and therefore of CRS: higher OR values were achieved for females, in accordance
with the results reported for the raw measures (Figure 1).
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Table 1. Average OR values for T2D for the different measures (BMI, PRS, CRS) by percentiles.

Sex Percentile OR (BMI) a OR (PRS) OR (CRS) p-Value b

Females

90 2.92 ± 0.43 2.01 ± 0.36 3.03 ± 0.44 3.63 × 10−13

95 4.44 ± 0.6 2.46 ± 0.41 4.59 ± 0.57 <10−16

97 5.54 ± 0.65 2.71 ± 0.44 6.22 ± 0.75 <10−16

99 9.10 ± 0.98 3.94 ± 0.48 10.27 ± 1.16 <10−16

Males

90 2.48 ± 0.32 1.95 ± 0.29 3.00 ± 0.36 <10−16

95 4.21 ± 0.47 2.38 ± 0.31 4.30 ± 0.48 1.67 × 10−12

97 4.69 ± 0.49 2.90 ± 0.36 5.44 ± 0.57 <10−16

99 7.84 ± 0.76 3.99 ± 0.42 9.38 ± 0.91 <10−16

a Results include the standard deviation of each measure. Measures with the highest OR for each percentile are
bolded. b p-value refers to Wilcoxon signed rank test for comparing the OR distributions of the two measures that
achieved the average highest OR across 1000 test sets, in each percentile.

3.2. PRS and Birth Weight

After evaluating BMI, we turned to another physical measure associated with T2D–
birth weight. We studied a cohort of 172,239 participants, 105,438 (61.21%) of which
were females, who had birth weight values, PRS, and T2D disease state information was
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available. Similar to the analysis performed for the BMI, we analyzed the association
between disease risk and raw birth weight, for males and females separately (Figure 3).
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99 3.62 ± 0.57 3.81 ± 0.63 4.64 ± 0.67 <10−16

Males

90 1.67 ± 0.38 1.99 ± 0.44 1.97 ± 0.40 0.11

95 1.83 ± 0.40 2.56 ± 0.50 2.51 ± 0.50 3.39 × 10−4

97 1.94 ± 0.39 2.59 ± 0.47 2.81 ± 0.51 <10−16

99 3.08 ± 0.51 4.54 ± 0.73 4.83 ± 0.72 <10−16

a Results include the standard deviation of each measure. Measures with the highest OR for each percentile are
bolded. b p-value refers to Wilcoxon signed rank test for comparing the OR distributions of the two measures that
achieved the average highest OR across 1000 test sets, in each percentile.
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While BMI was more predictive of T2D risk than birth weight, the latter also signifi-
cantly improved prediction power (as part of the combined score) over PRS. Comparing
males and females, we observed that males had higher OR values in the higher percentiles,
for both PRS and CRS measures (but not for birth weight).

3.3. PRS and Body Size at Age Ten

Studies have shown that childhood obesity increases the risk for adult T2D and
coronary artery disease (CAD) [29,30]. Information on childhood BMI was not available
for UKB participants but a related childhood measure of a comparative body size at age
ten was available for 287,203 participants, among them 156,307 (54.42%) were females.
While this measure is subjective and retrospective, and included only three predetermined
categorical values (thinner, about average and plumper), it was still associated with T2D
risk in adulthood (Figure 4).
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Figure 4. T2D disease prevalence for different categories of body size at age ten for females and males.

People who had described themselves as being plumper at age ten were at higher risk
to develop T2D in adulthood compared to people reporting average weight at that age.
Similarly, but to a lesser extent, people who described themselves as being thinner at age ten
were also at higher risk to develop T2D later in life as compared to people reporting average
weight at that age. This was observed in both sexes These differences in T2D prevalence
between the three groups were highly significant (Chi square test p-value < 10−16).

Next, we defined a combined score that considers PRS, comparative body size at age
ten and age. Even with this subjective and simplistic categorical measure, the CRS signifi-
cantly outperformed PRS with respect to AUC (Wilcoxon signed rank test p-value < 10−16;
Supplementary Figure S1) and OR (Figure 5 and Table 3). Results for males and females
were very similar, with slightly higher OR values in males (for both PRS and CRS). Specifi-
cally, the average OR in the top CRS percentile was 4.18 vs. 3.83 for PRS in females and
4.24 vs. 3.98 in males.
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females and males. Vertical lines correspond to the standard deviation of the average OR across 1000 random splits of the
dataset. The horizontal line represents a neutral OR of 1. OR values for females and males in specific percentiles are also
presented: (B) 90th, (C) 95th, (D) 97th and (E) 99th.

Table 3. Average OR values for T2D for PRS and CRS by percentiles.

Sex Percentile OR (PRS) a OR (CRS) p-Value b

Females

90 1.97 ± 0.35 2.02 ± 0.36 7.71 × 10−5

95 2.43 ± 0.41 2.40 ± 0.38 0.031

97 2.75 ± 0.43 3.00 ± 0.45 <10−16

99 3.83 ± 0.46 4.18 ± 0.49 <10−16

Males

90 1.96 ± 0.28 2.06 ± 0.29 <10−16

95 2.38 ± 0.32 2.48 ± 0.33 <10−16

97 2.93 ± 0.35 3.07 ± 0.37 <10−16

99 3.98 ± 0.42 4.24 ± 0.42 <10−16

a Results include the standard deviation of each measure. Measures with the highest OR for each percentile are
bolded. b p-value refers to Wilcoxon signed rank test for comparing the OR distributions of the two measures that
achieved the average highest OR across 1000 test sets, in each percentile.

4. Discussion

In recent years, PRS has attracted increasing attention as a potential tool to estimate
disease risk for common conditions and diseases based on the genetics of individuals [1,12].
In the current work we enhanced PRS prediction potential by integrating the raw genetic
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signal with available physical measures that capture non-genetic (environmental) com-
ponents of human diseases, focusing on T2D. First, we integrated information on BMI
into the PRS model, as high BMI is a well-known risk factor for T2D [18,19]. We found
that while both PRS and BMI can highlight individuals with higher risk to develop T2D,
a combined approach was superior to each of the measures alone, for both males and
females, demonstrating the added value in such an approach.

Recently, several studies used integrated approaches for disease risk estimation by
adding PRS information to standard clinical predictors. Conceptually, these studies applied
the combined approach from both sides of its components: either to augment standard
disease risk predictors with PRS or to augment PRS with disease risk predictors. Studies
that focused on coronary artery disease (CAD) showed no [31] or little [32] improvement
when adding PRS to clinically accepted risk predictors. These results raised again the
question and the ongoing debate regarding the clinical utility of PRS [1,33,34].

A different study on CAD did find significant improvement by adding PRS to the
routinely used risk predictors [35]. Another study on CAD, T2D, atrial fibrillation, breast
and prostate cancer found that PRS improved the prediction power of such predictors [36].
Similarly, augmenting PRS with additional information such as BMI, and lab results such
as HDL and LDL measures improved prediction power for T2D [37]. Similarly, augment-
ing PRS by traditional measures for cardiovascular disease risk modestly enhanced its
prediction power [38]. In addition, a recent study added mortality risk factors to disease
PRS to mark individuals with higher mortality risk [39].

Importantly, these studies used measures collected at adulthood while PRS values
can be calculated earlier at life to indicate individuals at risk. Indeed, measurements that
are taken at adulthood are likely to have stronger prediction power, as more relevant
information on the disease and its risk predictors is revealed. However, interventions at the
adult stage may be less effective, as some of the biological processes leading to diseases may
have already started. Naturally, a composite score that includes adult BMI measures also
suffers from this limit. Therefore, we examined whether augmenting PRS with early-life
measures can increase their predictive utility. While genetic risk itself cannot be modified,
additional risk factors that impact long-term health outcomes and are obtained at early
life can be addressed through routine healthcare policy. In our study we used two such
early-life measures that were available for many UKB participants: birth weight and three
categories of body size at age ten. Similar to previous studies, we found association with
low birth rate and high T2D prevalence, with stronger association in females. This is in
accordance with the developmental origin’s theory, which suggests that low birth weight
reflects under nutrition in utero that can lead to permanent changes in body functions,
posing higher risk for certain metabolic diseases [40]. A weaker association was also found
for high birth weight. Importantly, the number of UKB participants that were included
in this analysis was relatively large as compared to many previous studies analyzing the
relationship between birth weight and T2D [22]. A combined approach that included
birth weight and PRS improved the prediction power of each of its components. We note
that the birth weight used in this study is based on self-reporting (and not on medical
records) and may be less accurate. A more accurate measure of birth weight is likely
to further improve the results. Turning to comparative body size at age ten, we found
that adding this information to PRS improved its prediction power as well. Indeed, BMI
had a better predictive power as compared to these early-life measures. However, these
measures may only partially reveal the component they intend to reflect. Specifically, the
body size categories at age ten measure is retrospective, subjective and included only three
categories. Therefore, the labels for the body size at age ten only roughly estimated the
actual body size at that age. Despite these limitations, early-life measures significantly
improved PRS prediction power. We anticipate that more accurate and relevant measures
such as childhood BMI or other relevant measures (that are routinely collected at the
clinic), as well as their trajectories (across different ages), will further improve disease risk
estimation and may inform early intervention.
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This work also introduces a revised approach with respect to integrate age and sex
into a predictive risk model. Traditionally, the sex of an individual is considered a co-
variate that is controlled for when learning raw PRS weights [41]. Therefore, when these
weights are used, the resulting PRS is no longer affected by sex, and an individual’s PRS
is determined solely based on their genetic background, regardless of their sex. In prac-
tice, like in other diseases, there are substantial sex differences in T2D prevalence and
pathophysiology [27,28]. In this work we addressed this issue by performing the analysis
for each sex separately. Therefore, two people with the same raw PRS value but different
sex may be given a completely different risk score. Indeed, we observed differences be-
tween the sexes. First, T2D prevalence was much higher in males as compared to females.
In addition, T2D risk in the top percentiles for the PRS measure was slightly higher in
males. This may perhaps explain why T2D risk in the top percentiles for the CRS measure
(which is partially based on the PRS measure) was also higher in males when PRS was
integrated with birth weight and comparative body size at age ten. However, when PRS
was combined with BMI, the CRS measure achieved higher OR scores in females. This is
likely because BMI, which outperforms PRS in its prediction power, is a better predictor
in females for highlighting individuals at higher risk for T2D [42], perhaps due to sex
differences in fat metabolism and storage [43].

Similar to sex, age is also often considered a covariate that is controlled for when
learning PRS weights. The inferred PRS of an individual is constant and does not change
with age. However, similar to other diseases, T2D prevalence increases with age [44]. Here
we addressed the role of age as a principal risk factor by adding it into the predictive model.
As a result, our score reflects an individual’s risk to develop T2D around their age, and it
changes throughout life, resulting in risk score trajectories.

We designed our combined risk score to be simple and easy for application and
generalization. Thus, the PRS measure was based on raw PRS weights that had been
calculated in a previous work [14]. While we focused on T2D, such summary statistics are
available for numerous other diseases and traits (e.g., the Polygenic Score Catalog, [45]).
Therefore, with additional relevant phenotypes and measures (based on the nature of
the disease), our approach can also be applied to other complex diseases. In addition,
we converted each of the measures used in the study into disease prevalence measures
(based on the average disease prevalence in people with similar values of that measure).
This conversion allowed us to easily integrate measures whose relationship with disease
prevalence is not monotonic (e.g., birth weight and comparative body size at age ten), and
to integrate measures of different scales without explicit normalization. We integrated
the different measures through a simple linear model. Taken together, this method can be
applied relatively easily to various diseases, using various relevant measurements.

Even with this simplified approach, we achieved significant improvements that high-
lighted the importance of an integrated approach to estimate disease risk. Future works
can further improve this through complementary ways to calculate and integrate risk
factors. Below we briefly outline some suggestions for such improvements, mainly in the
integration of sex and age into the model. First, our sex-specific approach was applied
after the calculation of the raw PRS values, which can also be calculated for each sex alone.
Indeed, several recent works used sex-specific PRS values because of the putative role
of sex in many diseases and mortality [39,46]. Second, for simplicity of the combined
approach, age was taken as an independent measure with a constant effect. However, the
role of some T2D risk factors changes throughout life [47]. Specifically, the weight of the
genetic component of T2D varies across different ages of onsets [48], and this can lead
to differential power of PRS to predict disease risk across different age groups, as was
demonstrated in other diseases [49,50]. Hence, the integration of age into the model can be
done in more sophisticated ways (e.g., nonlinear), reflecting the apparent different weights
of each component at different ages.

The PRS included in this work was trained solely based on T2D information, but a
PRS that leverages the genetic contributions of additional traits that may be correlated to
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it can increase its utility [51] and future works can apply such an approach. In addition,
T2D is highly heterogenous and can be further classified into different subgroups based
on various features, where the subgroups vary in their clinical outcome [52]. In this work
we analyzed T2D as a single disease, but future works can examine different models for
different T2D subgroups.

Lastly, the PRS used in our study were calculated for Caucasians, the largest ethnic
population in the UKB and therefore our analysis also focused on that population. Studies
have shown that PRS calculated for one population have reduced prediction power on
other populations [53,54]. We hope that future studies will apply our methodology on
additional populations such that a composite score and therefore a better early intervention
will be available for these populations as well.

In summary, we demonstrated the benefit of adding measures to enhance PRS pre-
diction. Specifically, we integrated PRS with early-life measures to pave the way for early
intervention. We hope this will encourage future work on the integration of PRS with
additional measures to provide more accurate clinical risk estimates for T2D and other
complex diseases.
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